Felttur 2016 Elektromagnetisme
|
|
- Mia Hanssen
- 8 år siden
- Visninger:
Transkript
1 Felttur 2016 Elektromagnetisme August Geelmuyden Universitetet i Oslo Teori I. Påvirkning uten berøring Når to objekter påvirker hverandre uten å være i berøring er det ofte naturlig å introdusere konseptet felt. Feltets rolle er å formidle påvirkningen fra det ene objektet til det andre. På den måten kan man unngå den litt problematiske ideen om at romlig separerte objekter påvirker hverandre ved heller å tenke på hendelsen som at objektet påvirker feltet, feltet brer seg utover og feltet påvirker det andre objektet. Det fine med dette synspunktet er at ideen om påvirkning som et lokalt konsept er ivaretatt. Et eksempel på en situasjon der det er naturlig å introdusere et felt er for å forklare samspillet mellom elektriske ladninger. i er her interessert i kreftene de elektriske ladningene utfører på hverandre, noe som betyr at vi bør studere et vektorfelt. Feltet for elektrisitet kalles elektrisk felt og betegnes ofte ved E = E(t, r). Kraften det elektriske feltet utøver på et punktlegeme med ladning q er gitt ved F = qe. Likningen F = qe er matematisk ekvivalent med Newtons andre lov F = ma, bare med den ekstra muligheten at m < 0. Et vektorfelt som på mange måter likner det elektriske feltet er tyngdefeltet. Tyngdefeltet til en punktmasse m kan tenkes på som tyngdeakselerasjonen massen gir opphav til. I analogi til likningen g m r 2 kan vi altså skrive E q r 2. Dette er loven den franske fysikeren Charles Augustin de Coulomb oppdaget i Loven, som i ettertid har blitt kjent under navnet Coulombs lov, kan også skrives F = 1 q 1 q 2 4πε 0 r 3 r der F er kraften mellom to punktpartikler med ladning q 1 og q 2 som befinner seg i en avstand r fra hvarandre. Proporsjonalitetskonstanten, k e = 1/4πε 0, kalles Coulombs konstant. På samme måte som tyngdefeltet har et potensial, kan vi konstruere et elektrisk potensial slik at E =. tørrelsen på det elektriske potensialet kalles spenning og måles i olt. Fra Coulombs lov finner vi at = 1 q 4πε 0 r for en punktladning q. Ha imidlertid i tankene at det elektriske feltets direkte avhengighet av det elektriske potensialet ikke lenger stemmer i nærvær av et magnetisk felt. Da må også et vektorpotensial introduseres. 1
2 II. Maxwells lover I. Gauss lov Fra definisjonen av det elektriske feltet følger det at den elektriske fluksen ut av et volum må være proporsjonal med ladningen volumet inneholder. Faktisk er E da = q int ε 0 der er overflaten til volumet, E er det elektriske feltet, da er en uendelig liten bit da av med retning vinkelrett, ut av volumet på den relevante delen av. q int er den totale ladningen volumet inneholder og ε 0 er en proporsjonalitetskonstant kalt vakuumpermittiviteten. om nevnt er det elektriske feltet og tyngdefeltet av matematisk lik form. Det er derfor ikke overraskende at også tyngefeltet har en Gauss lov: g da = 4πGm der g er tyngdeakselerasjonen, G er gravitasjonskonstanten og m er massen inneholdt i volumet. Gauss lov er et veldig nyttig verktøy for å beregne det elektriske feltet til et ladet legeme. Eksempelvis kan vi finne det elektriske feltet til et kuleskall med radius R og uniform ladning q en avstand r > R fra kulen ved å velge til å være et kuleskall av radius r. Det betyr at E da = E da = E 4πr 2 = 4πr 2 E = q. ε 0 Med andre ord setter et uniformt ladet kuleskall opp et elektrisk felt som er identisk med feltet fra en punktladning i sentrum av kulen, altså E = 1 4πε 0 q r 2 ˆr. ed å introdusere konseptet om ladningstetthet ρ kan vi relatere et legemes totale ladning q med dets ladningstetthet ved å observere at q = ρd. Gauss lov kan dermed skrives E da = ρ ε d, som ved å benytte divergensteoremet gjør at vi kan skrive ρ Ed = ε d. iden begge sider integreres over det samme kan vi samle de to integralene til ett: ( E ρ ) d = 0. ε Legg merke til at dette skal stemme for absolutt alle volumer. Det må bety at dette egentlig er en egenskap som angår objektene inni integralet. Altså Dette er Gauss lov på differensialform. E = ρ ε. 2
3 II. Gauss lov for magneter ed å resirkulere argumentene i begynnelsen av denne teksten bør det, siden magnetisme er en form for påvirkning uten berøring, være mulig å forklare magnetisme ved hjelp av et magnetisk felt B. I likhet med det elektriske feltet ble det magnetiske feltets 1/r 2 -avhengighet bekreftet på slutten av 1700-tallet. Derfor er det ikke overraskende at det også finnes en variant av Gauss lov for det magnetiske feltet. Grunnet magnetfeltets retning kan det imidlertid ikke forklares av en potensialfunksjon. Det forklares i stedet av et vektorpotensiale A slik at B = A. Det betyr at divergensen av det magnetiske feltet er null. Altså eller, om du vil, B = 0 B da = 0. Dette betyr at den størrelsen som spiller rollen som magnetfeltets masse, eller ladning, er konstant null. Av den grunn lar denne loven seg best formulere med ord, nemlig: Det finnes ikke magnetiske monopoler. Legg merke til at magnetfeltet allerede ser litt merkelig ut. Ut av ethvert volum vil det sprute like mye magnetfelt ut, som det spruter inn. Ytteligere, og mer seriøse, komplikasjoner ved magnetfeltet vil dukke opp når vi senere studerer kraften magnetfeltet utøver. III. Faradays induksjonslov På begynnelsen av 1830-tallet oppdaget fysikerene Michael Faraday og Joseph Henry et forhold mellom elektrisitet og magnetisme uavhengig. De oppdaget at spenningen over en krets er proporsjonal med endringen i magnetfeltets fluks ut av arealet kretsen omslutter. Da Gustav Kirchhoff formulerte sin spenningslov, som sier at summen av spenningen over en strømsløyfe er alltid er lik null, i 1847 visste han altså at dette ikke alltid stemmer. I nærvær av et magnetisk felt i endring sier nemlig loven at summen av spenningen over en strømsløyfe er gitt ved hvor mye magnetfeltfluksen gjennom arealet utspent av sløyfen avtar med. La oss forsøke å skrive dette matematisk. i har sett at spenning,, er det elektriske feltets potensialfunksjon, som betyr at b a E dl = (b) (a) der dl er en differensial vektor som peker langs kurven somforbinder punktet a med punktet b. Hvis kurven er lukket følger det altså at E dl = 0. Dette er Kirchhoffs spenningslov. Faradays induksjonslov sier at dette bare er et spesialtilfelle av den mer generelle loven E dl = d B da dt der er ethvert areal med rand lik. Dette er Maxwell-Faradays lov på integralform. ed å benytte tokes sats kan vi skrive om integralet langs sløyfen som et integral over flaten : E dl = E da = d B da. dt 3
4 i kan like gjerne utføre derivasjonen med hensyn på tid før integrasjonen, men da må vi passe på ikke å derivere noen av de variablene som integreres bort. Dette betyr at derivasjonen kan omgjøres til en partiell derivasjon inne i integralet slik at loven sier ( E + B ) da = 0, der de to uttrykkene har blitt samlet under et felles integraltegn. iden dette skal gjelde for alle flater følger det at E = B, som er Faradays induksjonslov på differensialform. I. Ampèré-Maxwells lov om du kanskje allerede har gjettet bar den originale loven bare navnet til én av fysikerene, nemlig Ampèré. Ampèré oppdaget på begynnelsen av 1800-tallet at integralet rundt en lukket sløyfe er proporsjonal med strømmen gjennom sløyfen. Altså B dl = µ 0 I enc der I er strømmen gjennom sløyfen og µ 0 proporsjonalitetskonstanten, kalt vakuumpermittiviteten. trøm, som er definert som ladningsendring per tid, kan tenkes på som fluks av strømtetthet J E. Altså I = J da. Uttrykt ved strømtettheten sier Ampèrés lov dermed at B dl = µ 0 J da. Her Maxwell kommer inn i bildet. Maxwell oppdaget nemlig at dette ikke stemmer i nærheten av et elektrisk felt i endring. I det tilfellet må loven ta den mer generaliserte formen ( ) d E B dl = µ 0 J da + µ 0 ε 0 E da = µ 0 J + ε 0 da. dt I likhet med Faradays induksjonslov kan denne likningen skrives på formen ( ) E B µ 0 J µ 0 ε 0 da = 0 som, ettersom dette må gjelde for alle overflater, betyr at B = µ 0 J + µ 0 ε 0 E. Dette er Ampèré-Maxwells lov på differensialform. Loven sier at magnetfeltet rundt en lukket sløyfe er proporsjonal med summen av strømmen og endringen i den magnetiske fluksen gjennom sløyfen. Legg merke til likhetstrekket med Faradays 4
5 induksjonslov. Hvis strømtettheten er null, er begge feltenes vridning proporsjonal med endringen i det andre feltet. En konsekvens av denne likningen er Biot-avarts lov, B(r) = µ Idl r 2π r 3 der I er strømmen langs en lukket sløyfe hvorav dl er en infinitesimal vektor som peker langs sløyfen, mens r = r l. Loven følger ved å anta stasjonært elektrisk felt og bruke at B = 2 A stemmer for A. elv om beviset utelates her er resultatet såpass viktig at det fortjener en plass i denne teksten: Enhver elektrisk strøm gir opphav til et magnetfelt som står vinkelrett på strømretningen. III. Lys som elektromagnetiske bølger La oss si at vi, helt umotivert, skulle ønske å undersøke uttrykket ( E). ed å huske at ville vi først kunne observere at a (b c) = b(a c) c(a b) ( E) = ( E) 2 E = ρ ε 0 2 E. I et område med jevnt fordelt ladningstetthet ( ρ = 0) vil altså På den annen side har vi at ( E) = 2 E. ( E) = B = B = ( ) E µ 0 J + µ 0 ε 0 Hvis også strømtettheten i området er null, J = 0, vil altså det elektriske feltet tilfredsstille likningen 2 E = µ 0 ε 0 2 E 2. Dette likner veldig på den kjente partielle differensiallikningen 2 f = 1 c 2 2 f 2 kalt bølgelikningen. Bølgelikningen beskriver utviklingen til en bølge med hastighet c i rom og tid. i har med andre ord funnet at det elektriske feltet oppfører seg som en bølge med hastighet c = 1 µ0 ε 0 i områder uten strømtetthet og med jevnt fordelt ledningstetthet. lyshastigheten: 1 c = m/s. µ0 ε 0 erdien av hastigheten er Dette er første steg i erkjennelsen om at lys er elektromagnetiske bølger. Legg merke til at siden det ikke er noen annen romlig avhengighet enn lyshastgheten i bølgelikningen for E kan dette også 5
6 ses på som første skritt mot relativitetsteorien. For oss, som vet at lyshastigheten er den samme i alle referansesystemer, er det mulig å se at dette er tilfellet fra denne likningen det er faktisk en konsekvens av Maxwells lover! Legg også merke til at lyshastigheten endres dersom permittiviteten eller permeabiliteten endrer seg. Lyshastigheten, c, i et medium med permittivitet ε og permeabilitet µ er med andre ord gitt ved c = 1 εµ. Endelig kan vi også gi litt mening til begrepet i brytningsindeks /i. iden brytningsindeksen n til et medium er forholdet c/c mellom lyshastigheten c i vakuum lyshastigheten c i mediet kan vi nemlig uttrykke brytningsindeksen ved n = εµ ε 0 µ 0. I. Polarisering En pussig konsekvens av at lys er elektromagnetiske bølger er at lys er en vektorstørrelse. Med andre ord har lys en skjult retning retningen til det oscillerende E-feltet! Parameteren som bestemmer denne retningen er gitt navnet i polarisering /i. anlig, upolarisert lys, består av bølger med elektrisk komponent i alle retninger. I enkelte tilfeller hender det imidlertid at lyset blir polarisert i den forstand at E-feltet til alt lyset har samme retning i hvert punkt. Et typisk eksempel er fenomenet i Brewstervinkel /i. ed en bestemt innfallsvinkel, θ B = arctan(n fra /n til ), går den komponenten av E-feltet som ikke er parallell med overflaten rett inn i et medie uten å bli reflektert. Det er denne effekten man utnytter når man bruker polariserte solbrilleglass. ollyset som reflekteres fra snøen er lineært polarisert. Dersom solbrilleglassene stopper lys med denne polariseringen vil refleksjonene fra snøen ikke være like sterke.. Magnetisk kraft Kraften F det elektriske feltet E utøver på et legeme med ladning q er gitt ved F = qe. Dette minner om Newtons andre lov, der q spiller rollen som masse og E spiller rollen som legemets akselerasjon. Den tilsvarende kraften fra et magnetfelt B er fundamentalt annerledes fra E-feltets. Først og fremst er kraften fra et magnetfelt vinkelrett på magnetfeltets retning. Desto mer spesielt er det at kraften avhenger av det påvirkede legemets hastighet. Uttrykket for kraften er F = qv B. Dette er en katastrofe! Kraften på legemet avhenger av legemets hastighet. ett fra legemets perspektiv er det altså ingen magnetkraft som virker på det. Dette høres svært inkonsistent ut. La oss se nærmere på et eksempel og prøve å se hva som foregår. Gitt en punktladning q som beveger seg med hastighet v parallellt med en uendelig lang og rett strømførende ledning med strøm I som ligger i en avstand r fra punktpartikkelen. La oss si at strømmen i ledningen er slik at de positive ladningene har samme hastighet v som punktpartikkelen, mens de negative ladningene beveger seg like fort den andre veien. trømmen kan da skrives I = 2λv der λ er ladningstettheten (ladning per lengde) for de positive ladningene. iden de negative og positive ladningene i ledningen har samme ladningstetthet, men med forskjellig fortegn, er det altså ikke noe elektrisk felt som virker på punktpartikkelen. Punktladningen er imidlertid utsatt for en magnetisk kraft F = qvb der B = µ 0 I/2πr. ett fra punktladningens ståsted utgjøres strømmen kun av de elektriske ladningenes 6
7 bevegelse. iden punktladningen, sett fra sitt eget perspektiv, ikke beveger seg kan det imidlertid ikke virke noen magnetisk kraft på punktladningen. Dette ser ut til å være et seriøst problem! Problemet løses av relativitetsteori. Når vi endrer referansesystem må huske at lengder sammentrekkes. At avstanden mellom de negative ledningene sammentrekkes mer enn de positive gjør at ledningen har en negativ ladning sett fra punktladningen. Denne ladningen setter opp et elektrisk felt som utøver en elektrisk kraft på den stillestående punktladningen. Med andre ord er magnetisme bare elektrisitet sett fra et referansesystem som beveger seg. 7
8 Formler Maxwells lover E = ρ ε 0 B = 0 (Gauss) (Magnetiske monopoler) E = B (Faraday) B = µ 0 J + 1 E c 2 (Ampèré-Maxwell) Andre formler: F = q (E + v B) (Lorentz) B = µ Idl r 2π r 3 (Biot-avart) 2 f = 1 c 2 2 f 2 (Bølgelikningen) Oppgaver I. Gauss lov La E(r) = { Qr 4πɛ 0 R e 3 r Q 4πɛ 0 r e 2 r for r R for r > R være det elektriske feltet fra ladning Q, hvor r er avstanden fra origo, ɛ 0 er vakuumpermittiviteten og R er et eller annet positivt tall. Gradienten i kulekoordinater er: 1 1 = e r r 2 r r2 + e θ r sin θ (1) θ sin θ + e 1 φ r sin θ φ. (2) a) Hva er ladningstettheten ρ(r)? [Hint: e på de to tilfellene r R og r > R hver for seg. ] b) Hvilken form har det ladede legemet? b) Man kan også gå den andre veien ved å finne det elektriske feltet E for et ladet legeme av en bestemt form. Hva må vi anta om ladningstettheten inne i figuren for å finne tilbake til uttrykket i likning (??)? II. Ampèrés lov Bruk Ampèrés lov til å finne det magnetiske feltet B i en avstand r fra en uendelig lang, rett ledning med strøm I. III. Faradays lov i legger en strømførende sløyfe langs randen av en sirkel slik at den lukkes med én vinding. løyfen ligger innenfor et justerbart homogent magnetfelt som peker parallelt med normalvektoren til. i endrer magnetfeltet slik at feltstyrken er gitt av B(t) = B 0 cos(ωt). a) Finn et uttrykk for det elektriske feltet E som induseres langs strømsløyfen. [Hint: Faradays induksjonslov på integralform ] b) Finn et uttrykk for den induserte spenningen i strømsløyfen. 8
9 c) Hvordan vil spenningen endre seg dersom vi øker vinkelfrekvensen ω? d) Hva skjer dersom strømsløyfens radius blir større? La r, er svaret realistisk? e) Hva endrer seg i uttrykket for spenningen dersom den strømførende sløyfen i stedet lukkes med N vindinger? f) Hva endrer seg i uttrykket for det elektriske feltet dersom den strømførende sløyfen i stedet lukkes med N vindinger? I. Elektromagnetiske bølger a) Anta at J = 0 og ρ = 0 og bruk Maxwells lover til å vise at også B-feltet tilfredsstiller en bølgelikning. b) Hvordan ser likningen ut dersom vi ikke antar noe om J og ρ? c) Hvilken differensiallikning må J og ρ tilfredsstille for at det magnetiske feltet skal oppføre seg som en bølge? [Hint: Hva må være null for at uttrykket fra b) blir en bølgelikning? ] d) Hva er vinkelen mellom E og B dersom magnetfeltets retning ikke endrer seg over tid? At magnetfeltets retning ikke endrer seg over tid betyr at B/ = ˆn B/ der ˆn er magnetfeltets retning. [Hint: Bruk Faradays induksjonslov på differensialform. ]. Polarisering a) is at E(r, x) = E 0 cos(kz ωt)e x tilfredstiller bølgelikningen. Hva må c, k og ω i såfall tilfredsstille? b) I hvilken retning beveger bølgen seg? c) I hvilken retning peker E-feltet? a) is at E(r, x) = E 0 cos(kz ωt)e x + E 0 sin(kz ωt)e y tilfredstiller bølgelikningen. c) I hvilken retning peker E-feltet nå? I. Ladningstetthet a) Bruk Ampèré-Maxwells lov til å uttrykke divergensen til B ved J og E. b) Bruk at divergensen til en virvling alltid er null til å bli kvitt B fra uttrykket for J og E. c) Bruk Gauss lov til å finne en likning som relaterer strømtettheten J med ladningstettheten ρ. d) Bruk at J = ρv, der ρ er ladningstetthet og v er ladningens gjennomsnittlige drivhastighet, til å skrive om likningen slik at den bare avhenger av ρ og v. Kjenner du igjen likningen? Hva betyr dette for mengden ladning i universet? [Hint: Kontinuitetslikningen. ] 9
Felttur 2017 Elektromagnetisme
Felttur 2017 Elektromagnetisme August Geelmuyden Universitetet i Oslo Teori I. Påvirkning uten berøring Når to objekter påvirker hverandre uten å være i berøring er det ofte naturlig å introdusere konseptet
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
Maxwell s ligninger og elektromagnetiske bølger
Maxwell s ligninger og elektromagnetiske bølger I forelesningene og i læreboken er Coulombs lov for the elektriske felt E formulert på følgende form: v da E = Q/ε 0 (1) Integralet til venstre går over
EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Elektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
UNIVERSITETET I OSLO
UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 22 mai 2012 Eksamenstid: 09:00-13:00 Faglig
FYS1120 Elektromagnetisme - Ukesoppgavesett 2
FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
FYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding
FYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
Midtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 5 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
Løsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
Maxwells ligninger. Forelesningsnotater til Fysisk fagutvalgs Felttur høsten Jørgen Eriksson Midtbø
Maxwells ligninger Forelesningsnotater til Fysisk fagutvalgs Felttur høsten 2012. Jørgen Eriksson Midtbø jorgeem@student.matnat.uio.no 1 Innhold 1 Introduksjon 3 2 Gauss lov 4 2.1 Eksempel: Utledning av
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
FYS1120 Elektromagnetisme ukesoppgavesett 7
FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.
Maxwells ligninger. Forelesningsnotater til Fysisk fagutvalgs Felttur høsten Jørgen Eriksson Midtbø
Maxwells ligninger Forelesningsnotater til Fysisk fagutvalgs Felttur høsten 2014. Jørgen Eriksson Midtbø jorgeem@student.matnat.uio.no 1 Innhold 1 Introduksjon 3 2 Gauss lov 4 2.1 Eksempel: Utledning av
Den franske fysikeren Charles de Columb er opphavet til Colombs lov.
4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
Elektromagnetiske bølger
Elektromagnetiske bølger. Bølgeligningen I læreboka er det vist hvordan bølgeligningen kan utledes fra Maxwells ligninger på integralform. Vi skal her vise at bølgeligningen kan utledes fra Maxwells ligninger
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
Løsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017
Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
Magnetostatikk Elektrodynamikk:
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder Elektrodynamikk: Kap 29-32: Tidsvariasjon: Induksjon mm. Kap 28: Magnetiske kilder Elektrostatikk:
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS1120 Elektromagnetisme J. Skaar: Øvingsoppgaver til midtveiseksamen (med fasit) Her er 46 flervalgsoppgaver som kanskje kan være nyttige
Frivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 10.juni 2016 Klokkeslett: 09.00-13.00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne ü Rottmann:
KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon ide 1 av 7 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Guro vendsen (73592773) Hjelpemidler: C - pesifiserte
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
Oppgave 4 : FYS linjespesifikk del
Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q
EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.
EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
Midtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Onsdag 17. august 2016 Oppgae 1 I denne
To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.
Forside Midtveiseksamen i FYS 1120 Elektromagnetisme Torsdag 12. oktober kl. 09:00-12:00 (3 timer) Alle 18 oppgaver skal besvares. Lik vekt på alle oppgavene. Ikke minuspoeng for galt svar. Maksimum poengsum
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
Løsningsforslag til øving
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel
EKSAMEN I TFY4155 ELEKTROMAGNETISME OG FY1003 ELEKTRISITET OG MAGNETISME
TFY4155/FY1003 31. mai 2010 Side 1 av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT FO FYSKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSAMN TFY4155 LKTOMAGNTSM OG FY1003
OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
Nabla, elektromagnetisme, vektorpotensial og superledning for FYS1120
Nabla, elektromagnetisme, vektorpotensial og superledning for FYS1120 Den differensielle vektoroperatoren = e x x + e y y + e z z (1) kalles vanligvis for nabla eller del hvis man er mer engelsk orientert.
UNIVERSITETET I TROMSØ. EKSAMENSOPPGAVE i FYS-1002
UNIVERSITETET I T R O M S Ø UNIVERSITETET I TROMSØ Intitutt for fysikk og teknologi EKSAMENSOPPGAVE i FYS-1002 Eksamen i: Fys-1002 Elektromagnetisme Eksamensdato: 10. juni, 2013 Tid: 09:00 13:00 Sted:
EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 27. mai 2016 Oppgae 1 En koaksialkabel
Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.
TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler
Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME
Institutt for fysikk Eksamensoppgave i TFY455 ELEKTRISITET OG MAGNETISME FY003 ELEKTRISITET OG MAGNETISME Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433
Kondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.
NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle
Onsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
Gauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform
Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
EKSAMENSOPPGAVE I FYS-1002
Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:
EKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 8 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte
Magnetisme som relativistisk fenomen
Magnetisme som relativistisk fenomen Øystein Marøy Lars Kyllingstad 23. april 2004 Sammendrag I denne oppgaven har vi sett på magnetisme som et resultat av elektrostatikk og relativitetsteori. Vi har regnet
Elektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
Øving 15. H j B j M j
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007 Veiledning: Uke 17 Innleveringsfrist: Mandag 30. april Øving 15 Oppgave 1 H j j M j H 0 0 M 0 I En sylinderformet jernstav
Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
INF L4: Utfordringer ved RF kretsdesign
INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer
Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).
Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 8 Institutt for fysikk Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05