Regning som grunnleggende ferdighet Ny GIV! Akershus. Hefte med praktiske eksempler

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Regning som grunnleggende ferdighet Ny GIV! Akershus. Hefte med praktiske eksempler"

Transkript

1 Regning som grunnleggende ferdighet Ny GIV! Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken Sandvika, 12.september 2011

2 På denne og neste tre sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE UTFORDRINGER, Caspar forlag AS

3 3

4 4

5 5

6 PARSJEKK Denne strukturen egner seg til kontroll, bearbeiding og faglig påfyll. Hvis oppgavene er enkle, egner parsjekk seg også som introduksjon til et emne. Strukturen gir en viss trening i presis muntlig framstilling. Det er lett å lage differensierte undervisningsopplegg ved bruk av parsjekk. I tillegg kan bruk av parsjekk være en måte å gi de elevene som ikke er så faglig sterke, litt drahjelp på. Materiell: Hvert par får et ark med oppgaver. Organisering: Elevene bør sitte to og to ved siden av hverandre. Veiledning til læreren: Læreren skriver oppgaver i to kolonner på et ark. Oppgavene kan f.eks. være regnestykker, fagbegreper eller regler. Repetisjonsoppgaver og regnestykker i lærebøkene kan lett gjøres om til parsjekkoppgaver. Framgangsmåte: Elevene sitter to og to og løser annenhver oppgave. Elev 1 skal løse første oppgave ved å forklare muntlig hva som skal skrives ned. Elev 2 er sekretær og noterer det elev 1 sier. Elev 2 kan veilede og komme med råd hvis nødvendig. Når neste oppgave skal løses, bytter elevene roller, osv. Når parene er ferdige med oppgavene, kan to og to par sjekke svarene med hverandre. For å unngå at noen elever må vente på resten av klassen, kan det nederst på oppgavearket være to lag en oppgave til din medelev. 6

7 Mulighet for differensiering: Oppgavearket kan ha to og to oppgaver som er ganske like. Eleven som føler seg flinkest i emnet, begynner. Den andre kan lære av medeleven og deretter klare å løse sin oppgave. En annen mulighet er å la venstre kolonne inneholde lette oppgaver, mens høyre kolonne består av vanskeligere oppgaver. Læreren kan lage oppgaveark av ulik vanskelighetsgrad, slik at parene kan avgjøre hvilket nivå de vil jobbe på. La i så fall arkene ha forskjellig farge. 7

8 PARSJEKK GRUNNLEGGENDE REGNEFERDIGHETER For hver oppgave du skal løse må du også si hvilke regler som er viktige å passe på. Elev A: 1) Elev B: 2) Regel: Regel: 3) ) 3 (6 4) Regel: Regel: 5) 3 2 6) Regel: Regel: 7) (3+1) 2 8) (1 3) 2 Regel: Regel: 9) Lag en oppgave som den andre løser: 10) Lag en oppgave som den andre løser: 8

9 MEMORY Denne spillaktiviteten egner seg til å sjekke at elevene har forstått viktige begreper og til å prøve ut kunnskap på egen hånd. Aktiviteten kan tilrettelegges for å fremme muntlig aktivitet. Materiell: Hvert par eller hver gruppe får et sett med spillkort. Hvert sett inneholder kort med to farger. Kort med den ene fargen har et spørsmål eller begrep som skal forklares, mens kort med den andre fargen har svar på spørsmålene eller definisjoner. Organisering: Elevene jobber sammen to og to Framgangsmåte: Kortene legges ut i to rader: én med f.eks. røde og én med gule kort. En elev trekker et rødt kort først, tenker litt og trekker deretter et gult kort. Elevene forklarer hvorfor kortet er feil eller riktig. Hvis man trekker to kort som passer sammen, får man et par (et stikk). Hvis den som trekker har trukket et par uten å se det eller kunne forklare det, kan kanskje den andre få paret hvis forklaringen er riktig. Som hjelp for å regne underveis kan elevene få utdelt et ark med selve oppgavene. 9

10 Regnerekkefølge Memory (3 + 5) (5 2) 9 5 (3 2)

11 LENKE Dette er en metode med mulighet for stor variasjon, og den kan brukes i en samlet klasse, i grupper eller i par. Lenke er fint å bruke når det er viktig at elevene får sjekket at de har forstått. I tillegg får elevene trening i å lytte og snakke. Materiell: Hver elev får én eller flere lapper med for eksempel spørsmål og svar. Veiledning til læreren: Læreren lager matematikkoppgaver på lappene ved å skrive ett svar og ett spørsmål på hver lapp. Et spørsmål kan gjerne ta utgangspunkt i svaret på samme lapp. Hvis man velger å ha spørsmål om begreper isteden, behøver det ikke være noen sammenheng mellom et svar og neste spørsmål. Husk å blande lappene før de deles ut. 11

12 LENKE i par Bruk: Hvis lenken er kort, eller hvis læreren ønsker å aktivisere elevene mest mulig kan det være hensiktsmessig å bruke lenke i par. Organisering: Når lenken legges i par, bør elevene sitte ved siden av hverandre to og to. Materiell: Lappene kan bestå av spørsmål og svar, eller av deler som skal settes sammen til en helhet. Framgangsmåte: Elevene fordeler lappene seg imellom. Lappen som er starten på lenken, kan gjerne ligge foran dem på bordet. Den som har neste lapp, legger ut lappen uten å si noe. Slik fortsetter man til lenken er lagt ut. Lenken kan ta utgangspunkt i et regnestykke eller i en matematisk framgangsmåte. Lappene legges under hverandre i lenken. Etter at hele lenken er lagt ut, bør elevene (f.eks. annenhver gang) forklare algoritmen som er brukt fra trinn til trinn, og hva som er viktig å passe på i denne overgangen. Mulighet for differensiering: Læreren kan f.eks. lage tre alternative oppgaver, slik at parene kan velge mellom tre nivåer. Bruk gjerne forskjellig farge på de ulike nivåene. 12

13 LENKE LIKNINGER Oppgave: Løs likningen 3 2 3x 2 5x 2x 5 3 6x 4 5x 2x 5 6x 5x 2x x 6 3x x 2 13

14 LENKE i gruppe Bruk: Hvis lenken er kort, eller hvis læreren ønsker å aktivisere elevene mest mulig kan det være hensiktsmessig å bruke lenke i gruppe. Organisering: Når lenken legges gruppevis, bør elevene i hver gruppe sitte rundt et bord, slik at alle kan se lappene etter hvert som de legges ut. Framgangsmåte: Elevene i gruppa fordeler lappene omtrent likt seg imellom, slik at de får en eller flere lapper hver. Læreren sier hvilket spørsmål de skal starte med. Den som har svaret på spørsmålet, sier svaret. Deretter leser han eller hun spørsmålet som står på lappen, og legger lappen i lenken på bordet. Den som har svaret på dette spørsmålet, sier svaret, osv. Slik fortsetter man til hele lenken er lagt ut. 14

15 LENKE MÅLENHETER 90 cm Jeg har 90 cm, hvem har 10 cm mer? 12 dm Jeg har 12 dm, hvem har halvparten så langt? Jeg har 1 m, hvem har dobbelt så mye? 1 m 60 cm Jeg har 60 cm, hvem har 12 cm mer? 200 cm Jeg har 200 cm, hvem har 50 cm mindre? 720 mm Jeg har 720 mm, hvem har 80 mm mer? 15 dm Jeg har 15 dm, hvem har 3 dm mindre? 80 cm Jeg har 80 cm, hvem har 10 cm mer? 15

16 GUIDET LÆRING Denne aktiviteten kan brukes som innledning til et emne. I stedet for at læreren styrer innledningen til emnet gjennom en samtale i plenum, styres læringen gjennom et skriftlig materiale. Informasjonen til elevene gis i små porsjoner og på en slik måte at elevene må formulere hypoteser eller gjøre seg opp en mening om hvordan noe henger sammen. Materiell: Elevene i hvert par får ett sett med nummererte ark eller kort. Disse ligger i riktig rekkefølge, og elevene jobber seg ferdig med én side før de begynner med den neste. Organisering: Elevene sitter to og to. Veiledning til læreren: Det er viktig at læreren sier til elevene at de ikke må kikke på neste ark før de har jobbet seg grundig igjennom det foregående. Læreren må understreke at elevene ikke må gå for raskt fram. Det bør være god plass til å notere på arkene, og elevene bør notere alt de kommer på. Framgangsmåte: Elevene jobber med ett ark om gangen, tenker høyt og blir enige om et svar på spørsmålene de får underveis. Etter hvert som de jobber, og etter å ha gjort seg opp en mening skriver de ned forslag til løsning. Svar, eller nye biter av fakta som skal hjelpe dem i tankeprosessen, får de ved å bla om til neste side. Videreføring: For å sikre riktig forståelse av lærestoffet kan man gjennomgå svarene i samlet klasse, for eksempel fylle ut riktige svar på et lysark. Dette vil også kunne belyse ulike løsninger og ulike grader av dybde i svarene. Hvis noen grupper har vært litt for raske, får de en sjanse ved at kunnskapen stadfestes i plenum. 16

17 Ark 1 PROPORSJONALE STØRRELSER GUIDET LÆRING Prisen på epler er 20 kr/kg. Hva må vi betale dersom vi kjøper: 1 kg, 2 kg, 3 kg, 4 kg, 5 kg eller 6 kg? Fyll ut tabellen: Antall kg Pris å betale (kr) Prøv å forklare sammenhengen mellom antall kg epler og det vi betaler. bla om... 17

18 Ark 2 PROPORSJONALE STØRRELSER GUIDET LÆRING Svar: Sammenhengen er at: - Prisen øker med 20 kroner per kilogram - Antall kg og pris øker i samme takt - Deler vi pris på antall kg får vi bestandig 20 til svar.... Antall kg Pris å betale (kr) Hva kaller vi denne sammenhengen mellom pris og antall kg? bla om... 18

19 Ark 3 PROPORSJONALE STØRRELSER GUIDET LÆRING Svar: Sammenhengen mellom pris og kg er proporsjonal. Vi kan uttrykke at to størrelser er proporsjonale ved å innføre x og y, og så kaller vi tallforholdet mellom y og x for k. Dersom vi kaller antall kg for x og pris for y, og skriver opp tabellen fra ark 1 på nytt, blir dette tydelig dersom vi tar med en tredje rad i tabellen; - nemlig y k. K kaller vi proporsjonalitetsfaktoren. x y Sjekk at det stemmer at k 20 uansett hvor mange kg vi kjøper. x Antall kg (x) Pris å betale (y) k y x Nå skal vi snart framstille denne sammenhengen grafisk. Vi lar antall kg være på x-aksen og pris på y-aksen. Prøv å svare uten å tegne hva slags graf blir dette? Hvor vil grafen krysse aksene? bla om... 19

20 Ark 4 PROPORSJONALE STØRRELSER GUIDET LÆRING Svar: Dersom vi framstiller to størrelser som er proporsjonale i et koordinatsystem, får vi alltid en rett linje som går gjennom origo. Likningen for denne linja er y = k x Bruk det du nå vet til å avgjøre hvilke av følgende som viser proporsjonalitet. Hva er i så fall k? Hva er det som ikke stemmer der det ikke er proporsjonalitet? a) b) c) d) x y e) x y f) x y

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal

Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Regning som grunnleggende ferdighet Ny GIV! Møre og Romsdal Hefte med praktiske eksempler Tone Elisabeth Bakken Molde, 29.januar 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt!

Detaljer

NyGIV Regning som grunnleggende ferdighet

NyGIV Regning som grunnleggende ferdighet NyGIV Regning som grunnleggende ferdighet Yrkesfaglærere Hefte med utdelt materiell Tone Elisabeth Bakken 3.april 2014 På denne og neste fire sider er det kopier fra Tangentens oppgavehefte: MATEMATISKE

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken 16.januar 014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

NyGIV Regning som grunnleggende ferdighet Kristiansand

NyGIV Regning som grunnleggende ferdighet Kristiansand NyGIV Regning som grunnleggende ferdighet Kristiansand Hefte med praktiske eksempler Tone Elisabeth Bakken 29.-30.august 2013 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere

ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing. PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere ELEVAKTIVE METODER: Snakke matte, samarbeidslæring og problemløsing PÅBYGG TIL GENERELL STUDIEKOMPETANSE Skolering av lærere MATEMATIKK 2P-Y 15.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Sandvika 12.september 2011 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Hovedpunkter: Praktisk regning dag 1 Læringsmiljø Elevers

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus

Regning som grunnleggende ferdighet Ny GIV! Akershus Regning som grunnleggende ferdighet Ny GIV! Akershus Hefte med praktiske eksempler Tone Elisabeth Bakken Håndverkeren kompetansesenter, 7.februar 2013 Ønsker du beskrivelse av og informasjon om flere metoder,

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus

Regning som grunnleggende ferdighet Ny GIV! Akershus Regning som grunnleggende ferdighet Ny GIV! Akershus. Inspirasjon og ideer til arbeidet i klasserommet Dag 1 16.januar 2014 Håndverkeren kurssenter Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus: Grunnleggende

Detaljer

NyGIV Regning som grunnleggende ferdighet Akershus

NyGIV Regning som grunnleggende ferdighet Akershus NyGIV Regning som grunnleggende ferdighet Akershus Hefte med utdelt materiell Tone Elisabeth Bakken Dag 2 6.februar 2014 Ønsker du beskrivelse av og informasjon om flere metoder, - ta kontakt! tone.bakken@ohg.vg.no

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus

Regning som grunnleggende ferdighet Ny GIV! Akershus Regning som grunnleggende ferdighet Ny GIV! Akershus. Inspirasjon og ideer til arbeidet i klasserommet Dag 1 10.september 2013 Håndverkeren kurssenter Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus:

Detaljer

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2013. Del 1. MAT0010 Matematikk. Del 1 + ark fra Del 2. Bokmål Eksamen 1.05.013 MAT0010 Matematikk Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt: Del

Detaljer

Regning som grunnleggende ferdighet. Møre og Romsdal Elevaktiv undervisning. Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.

Regning som grunnleggende ferdighet. Møre og Romsdal Elevaktiv undervisning. Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs. Regning som grunnleggende ferdighet. Ny GIV Møre og Romsdal Elevaktiv undervisning Molde, 29.januar 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Aftenposten 7.nov.2012 Matematikk. Å regne handler

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler

Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Regning som grunnleggende ferdighet Ny GIV! Akershus Praktiske eksempler Dag 1 (pulje 3) 23.oktober 2012 Håndverkeren kurs- og konferansesenter Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus: Vurdering

Detaljer

Regelhefte for: getsmart Begreper

Regelhefte for: getsmart Begreper Regelhefte for: getsmart Begreper Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner. Det vil

Detaljer

Arkene med tegninger kan brukes til å lage kort. Arkene kan kopieres og limes på tykke ark eller kopieres direkte på tykke ark.

Arkene med tegninger kan brukes til å lage kort. Arkene kan kopieres og limes på tykke ark eller kopieres direkte på tykke ark. Forord Planter og dyr Planter og dyr er et læremiddel til bruk i naturfag på barnetrinnet og i begynneropplæring i norsk. Undervisningsmateriellet passer for elever på barnetrinnet. Andre målgrupper er

Detaljer

Regning som grunnleggende ferdighet

Regning som grunnleggende ferdighet Regning som grunnleggende ferdighet Praktiske metoder i undervisningen, snakke matte,matematikkvansker Kristiansand, dag 1, 29.august 2013 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Fokus: Grunnleggende

Detaljer

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter

Regning i alle fag. Hva er å kunne regne? Prinsipper for god regneopplæring. 1.Sett klare mål, og form undervisningen deretter Regning i alle fag Hva er å kunne regne? Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer å resonnere og bruke matematiske begreper, fremgangsmåter, fakta og verktøy

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere

Regning som grunnleggende ferdighet Kurs for yrkesfaglærere Regning som grunnleggende ferdighet. Kurs for yrkesfaglærere 3.april 2014 Tone Elisabeth Bakken tone.bakken@ohg.vgs.no Bestillingen For å greie problemløsing og utforsking som tar utgangspunkt i praktiske,

Detaljer

Eksamen MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark.

Eksamen MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark. Eksamen 05.12.2012 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere DEL 1 Kandidatnummer: Skole: Del 1 + innleverte ark Bokmål Eksamensinformasjon for Del 1 Eksamenstid Hjelpemidler til Del 1

Detaljer

Regler for: getsmart Kids. - Regning med sedler og mynt!

Regler for: getsmart Kids. - Regning med sedler og mynt! Regler for: getsmart Kids - Regning med sedler og mynt! Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Regler for: Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! 3 2 Regler for: getsmart Lilla 9 Graf y 4 7 3 2 2 3 Funksjon 1-4 4-3 -2-1 -1 1 2 3-2 x f(x)= f(x)= 3 2 2 3 3 2 2 3-3 -4 Graf 9 3 2 2 3 Funksjon 7 Det anbefales at man først ser på powerpoint-reglene når

Detaljer

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Videregående. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Algebra Videregående 8 _ (x²) 1 2 Algebra 4 (2 2³) 1 4 _ xy (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy (x²) 1 2 _ (2 2³) 1 4 _ xy 4 Algebra Algebra _ 8 Det anbefales at

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Heldagsprøve 10. trinn. Våren 2014

Heldagsprøve 10. trinn. Våren 2014 Heldagsprøve 10. trinn Våren 2014 Del 1 Informasjon for del 1 Tiden du har til disposisjon 5 timer totalt (del 1 og del 2 til sammen) Del 1 og del 2 skal deles ut samtidig. Del 1 skal du levere innen 2

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark

Eksamen 20.05.2011. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1. Kandidatnummer: Skole: Del 1 + innleverte ark Eksamen 20.05.2011 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 1 Kandidatnummer: Skole: Del 1 + innleverte ark Bokmål Eksamensinformasjon for Del 1 Eksamenstid Hjelpemidler

Detaljer

Eksempeloppgave 2 2009

Eksempeloppgave 2 2009 Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 1 Bilde: Utdanningsdirektoratet Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon til Del

Detaljer

Elevaktiv undervisning på videregående skole

Elevaktiv undervisning på videregående skole Anne-Mari Jensen Elevaktiv undervisning på videregående skole I år ble jeg tildelt Holmboeprisen. Elevene på skolen min hadde nominert meg. Det var stort! Jeg fikk være med på et par fantastiske dager

Detaljer

Regning med tall og algebra

Regning med tall og algebra Regning med tall og algebra Dette er en variert samling av oppgaver. De kan alle løses ved algebraisk, men det fins også andre måter å løse dem på. Man kan bruke kvadratsetningene, potensregning, prosentregning

Detaljer

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her,

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her, Oppgave 1 b 3b Hva er 3a 8a b hvis a 2? A 5 B 7 C 8 D 24 E 70 Er det nødvendig å finne tall for a og b? Hvor i uttrykket finnes a b? b Hva blir verdien av første ledd når a 2? Skriv om potensen i andre

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Løsningsforslag for 1P høsten 2015

Løsningsforslag for 1P høsten 2015 Løsningsforslag for 1P høsten 015 Dette løsningsforslaget er mest en veiledning til hvordan oppgaven kan løses og forstås. Noen av forklaringene som er gitt kan greit utelates i en besvarelse. Del 1 Oppgave

Detaljer

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 05.12.2013. MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 05.12.2013 MAT0010 Matematikk Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring: 5 timer totalt:

Detaljer

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Gul og Blå. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Gul og Blå 6 Diagram Brøk Diagram 6 Brøk Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: Ungdomstrinnet. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! (x²) 1 2 Regler for: getsmart Grå Ungdomstrinnet 8 _ (x²) 1 2 4 (x²) 1 2 _ (x²) 1 2 _ 4 _ 8 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk

Detaljer

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D

Matematikk Hjemmeeksamen i gruppe, Høst Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl Sett D Matematikk 2 1-7 Hjemmeeksamen i gruppe, Høst 2012 Mandag 17. desember, kl.9.00 Torsdag 20. desember, kl. 9.00 Sett D Oppgaven tar utgangspunkt i den vedlagte casen. Eksamensbesvarelsen skal være en analyse

Detaljer

Hva betyr det å lære sammen?

Hva betyr det å lære sammen? Samarbeid Om samarbeid Hvis du har et eple og jeg har et eple og vi bytter, har vi begge fortsatt ett eple. Men hvis du har en idé og jeg har en idé og vi bytter, vil vi begge ha to ideer. George Bernard

Detaljer

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK

HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK HOPPlæring i Hortenskolen AKTIVITETER TIL IDÈBANK FAG: TRINN: Engelsk 1 og 2.trinn KOMPETANSEMÅL: - Finne ord og uttrykk som er felles for engelsk og eget morsmål. MÅL FOR AKTIVITET: Elevene skal repetere

Detaljer

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 16.05.017 MT0010 Matematikk el 1 Skole: Kandidatnr.: el 1 + ark fra el okmål okmål Eksamensinformasjon Eksamenstid: Hjelpemidler på el 1: Framgangsmåte og forklaring: 5 timer totalt. el 1 og el

Detaljer

Eksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 20.05.2011. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 0.05.011 MAT0010 Matematikk 10. årstrinn (Elever) Del 1 Skole: Kandidatnr.: Del 1 + ark fra Del Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:

Detaljer

Vedlegg til veiledning til læreplan i engelsk. Se skolenettet.no/veiledninger

Vedlegg til veiledning til læreplan i engelsk. Se skolenettet.no/veiledninger side 1 av 5 COPY CORRECT CHOOSE Denne aktiviteten er beskrevet med utgangspunkt i setninger. Den kan også gjennomføres med korte beskjeder. Den er en videreføring av tilsvarende aktivitet på 1. 2. trinn,

Detaljer

Eksamen vår 2009 Løsning Del 1

Eksamen vår 2009 Løsning Del 1 S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Kommunikasjon i matematikktimene. Av Stig Eriksen

Kommunikasjon i matematikktimene. Av Stig Eriksen Kommunikasjon i matematikktimene Av Stig Eriksen 2 + 2 = 2 2 Innhold Om klasseromsdialog Om smågruppedialog Litt om hvorfor. Mål: Klasseromsdialog å skape en kultur Å skape en atmosfære i klasserommet

Detaljer

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål

Eksamen 21.05.2012. MAT0010 Matematikk 10. årstrinn (Elever) Del 1. Del 1 + ark fra Del 2. Bokmål Eksamen 21.05.2012 MAT0010 Matematikk 10. årstrinn (Elever) Del 1 Skole: Bokmål Kandidatnr.: Del 1 + ark fra Del 2 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Framgangsmåte og forklaring:

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Tyngdekraft og luftmotstand

Tyngdekraft og luftmotstand Tyngdekraft og luftmotstand Dette undervisningsopplegget synliggjør bruken av regning som grunnleggende ferdighet i naturfag. Her blir regning brukt for å studere masse, tyngdekraft og luftmotstand. Opplegget

Detaljer

Eksempelsider for kartleggingsprøver i regning på 1. trinn

Eksempelsider for kartleggingsprøver i regning på 1. trinn Eksempelsider for kartleggingsprøver i regning på 1. trinn Her finner du tre oppgavesider med instrukser som har samme format som oppgavesidene i kartleggingsprøven. Ved å gjøre disse sidene i klasserommet

Detaljer

Løsningsforslag til Eksamen 2P vår 2008

Løsningsforslag til Eksamen 2P vår 2008 Løsningsforslag til Eksamen P vår 008 Delprøve 1 OPPGAVE 1 a) Avlesning av grafen viser at 50 stoler koster 40.000 kroner. Gjennomsnittskostnaden per stol blir da: 40000 = 800 kroner. 50 b) c) = = 4,46

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Origo er skjæringspunktet mellom x-aksen og y-aksen. Koordinatene til origo er altså. (0, 0) b Førstekoordinaten til

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men del

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene!

Regler for: getsmart Måling. Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Regler for: getsmart Måling Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere PowerPoint presentasjoner. Det vil bli lagt

Detaljer

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning

Eksempeloppgave 2014. Fotball. René Descartes. MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2. Ny eksamensordning Eksempeloppgave 2014 MAT0010 Matematikk Eksempel på eksamen våren 2015 Del 2 Fotball Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) René Descartes II Minstekrav

Detaljer

Mal for vurderingsbidrag

Mal for vurderingsbidrag Mal for vurderingsbidrag Fag: En grunnleggende ferdighet som skal inn i alle fag. Jeg bruker dette opplegget i samfunnsfag der tema er vikingtida. Tema: Å lese en fagtekst. Trinn:6 Tidsramme: ca 2 skoletimer

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Aktivitet for foreldre på Ingen utenfor-partnerskoler

Aktivitet for foreldre på Ingen utenfor-partnerskoler Aktivitet for foreldre på Ingen utenfor-partnerskoler Foreldres involvering og engasjement er svært viktig i arbeidet for trivsel for elevene og i arbeidet med å forebygge mobbing. Dette arbeidet bør også

Detaljer

Moro med former trinn 90 minutter

Moro med former trinn 90 minutter Lærerveiledning Passer for: Varighet: Moro med former 5. - 7. trinn 90 minutter Moro med former er et skoleprogram hvor elevene får utforske og leke seg med geometrien. Vi vil arbeide med geometriske figurer

Detaljer

Introduksjon til undervisningsmateriellet

Introduksjon til undervisningsmateriellet Introduksjon til undervisningsmateriellet Undervisningsmateriellet består av fem moduler: Kornartene, Fra jord til bord, Grove kornprodukter, Måltidene og Fremtidens skolebrød. Hver modul inneholder fakta,

Detaljer

LÆRINGSSTRATEGIER. Vedlegg til planen LESING I LINDESNESSKOLEN ( trinn)

LÆRINGSSTRATEGIER. Vedlegg til planen LESING I LINDESNESSKOLEN ( trinn) LÆRINGSSTRATEGIER Læringsstrategier er framgangsmåter elevene bruker for å organisere sin egen læring. Dette er strategier for å planlegge, gjennomføre og vurdere eget arbeid for å nå nasjonalt fastsatte

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Hjelpemidler på Del 1: Ingen hjelpemidler er tillatt, bortsett fra vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler.

Hjelpemidler på Del 1: Ingen hjelpemidler er tillatt, bortsett fra vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

MAT503 Samling Notodden uke Dagen: Dagens LUB-er:

MAT503 Samling Notodden uke Dagen: Dagens LUB-er: MAT503 Samling Notodden uke 3 2017 Dagen: 09.15-1200 Forelesning og aktiviteter knyttet til hvordan elever forstår funksjonsbegrepet 12.00-13.00 Lunsj 13.00-15.00 Vi lager et undervisningsopplegg knyttet

Detaljer

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 27.01.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 27.01.2012 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 2008 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del

Detaljer

Oppgavestreng Halvering/dobling i multiplikasjon

Oppgavestreng Halvering/dobling i multiplikasjon Oppgavestreng Halvering/dobling i multiplikasjon Mål Generelt: Resonnere omkring egenskaper ved tall regneoperasjoner. Bruke ulike representasjoner i utforskning begrunnelse av egenskaper strategier. Spesielt:

Detaljer

Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter

Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter Lærerveiledning Passer for: Varighet: Lekende funksjoner Vg1T, TY, P, PY og Vg2 P 75 minutter Lekende funksjoner er et skoleprogram hvor elevene går fra praktiske og fysiske aktiviteter til abstrakte representasjoner,

Detaljer

Koordinatsystem med levende funksjoner trinn 90 minutter

Koordinatsystem med levende funksjoner trinn 90 minutter Lærerveiledning Passer for: Varighet: Koordinatsystem med levende funksjoner 8. - 10. trinn 90 minutter Koordinatsystem med levende funksjoner er et skoleprogram hvor elevene får fysisk og praktisk erfaring

Detaljer

Lengdemål, areal og volum

Lengdemål, areal og volum Lengdemål, areal og volum Lengdemål Elever bør tidlig få erfaring med å vurdere ulike avstander og lengdemål. De kommer ofte opp i situasjoner i hverdagen hvor det er en stor ulempe å ikke ha begrep om

Detaljer

Lesing som grunnleggende ferdighet i Elektro

Lesing som grunnleggende ferdighet i Elektro Lesing som grunnleggende ferdighet i Elektro FYR-skolering * Oslo 16.11.2015 Ingeborg M. Berge * LESESENTERET, UIS Grunnleggende ferdigheter er integrert i læreplanen på fagenes premisser, og opplæringen

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Foreldremøte 13.september 2017

Foreldremøte 13.september 2017 Foreldremøte 13.september 2017 Hva er russisk matematikk Utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på

Detaljer

Dette opplegger er primært basert på Addisjon / Legge sammen.

Dette opplegger er primært basert på Addisjon / Legge sammen. Ferdigheter og øvelser Dette oppsettet kan brukes både for noenlunde kartlegging av elevenes forståelse og kompetanse og som suksessive øvelser. Ved å starte øvelse 1 og arbeide seg nedover (krysse av

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Foreldreundersøkelsen

Foreldreundersøkelsen Utvalg År Prikket Sist oppdatert Auglend skole (Høst 2014) Høst 2014 10.04.2015 Stavanger kommune (Høst 2014) Høst 2014 10.04.2015 Foreldreundersøkelsen Bakgrunn 1. trinn 2. trinn 3. trinn 4. trinn 5.

Detaljer

Selvportretter og drømmer

Selvportretter og drømmer Utarbeidet av: Nasjonalt senter for kunst og kultur i opplæringen ved Elisabeth Misvær. En videreutvikling av DKS-produksjonen «Det gjemmer seg i deg» ved kunstpedagoger fra Bodø kulturskole: Janne Vik

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

REGNEPLAN FOR LANDÅS SKOLE

REGNEPLAN FOR LANDÅS SKOLE 1 REGNEPLAN FOR LANDÅS SKOLE På Landås skole har alle lærere, i alle fag, på alle trinn ansvar for elevenes regneutvikling. Å kunne regne er å bruke matematikk på en rekke livsområder. Å kunne regne innebærer

Detaljer

Regelhefte for: getsmart Kids: Opp til 10

Regelhefte for: getsmart Kids: Opp til 10 Regelhefte for: getsmart Kids: Opp til 10 Det anbefales at man først ser på powerpoint-reglene når man skal lære seg ulike spill med kortstokkene! Sjekk hjemmesiden for flere powerpoint-presentasjoner.

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler der alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Modelltekst som inspirasjon til å skrive egne bøker

Modelltekst som inspirasjon til å skrive egne bøker Modelltekst som inspirasjon til å skrive egne bøker - vurdering gjennom dialog underveis i en skriveprosess Skriving med de yngste elevene bør bestå av mange små skriveprosesser som ledes av læreren. Vurdering

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder

Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder Aspekter ved regning som skal vektlegges i ulike fag Regning er en grunnleggende ferdighet som går på tvers av fag. Ferdigheten å kunne regne er å bruke matematikk på en rekke livsområder ARTIKKEL SIST

Detaljer

Mal for vurderingsbidrag

Mal for vurderingsbidrag Mal for vurderingsbidrag Fag: Mat og helse Tema: Lære å lese og følge en oppskrift Trinn: 6.klasse Tidsramme: ----------------------------------------------------------------------------- Undervisningsplanlegging

Detaljer

Matematisk samtale Multiaden 2015. Tine Foss Pedersen

Matematisk samtale Multiaden 2015. Tine Foss Pedersen Matematisk samtale Multiaden 2015 Tine Foss Pedersen Matematisk samtale - muntlige ferdigheter Vi bør vektlegge bruk av ulike uttrykksmåter, strategier og løsningsmetoder. Det skaper grunnlag for diskusjon:

Detaljer

Mine første norske ord

Mine første norske ord Astrid Brennhagen Mine første norske ord Muntlig språktrening for nybegynnere Lærerveiledning Arbeid med ord læremidler A/S Pb. 7085, Vestheiene, 4674 Kristiansand Tlf.: 38 03 30 02 Faks: 38 03 37 75 E-post:

Detaljer

Matematisk julekalender for trinn, 2009

Matematisk julekalender for trinn, 2009 Matematisk julekalender for 8. - 10. trinn, 2009 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver med tilsammen 14 svar. Oppgavene kan løses uavhengig av hverandre, og alle svar tilsvarer

Detaljer

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument

Fire kort. Mål. Gjennomføring. Film. Problemløsing Fire kort Planleggingsdokument Fire kort Mål Generelt: Søke etter mønster og sammenhenger. Gjennomføre undersøkelse og begrunne resultat. Utfordre elevene på å resonnere og kommunisere. Spesielt: Finne alle kombinasjoner når de adderer

Detaljer

Forståelse og bruk av fagbegreper - differensiert undervisning

Forståelse og bruk av fagbegreper - differensiert undervisning Forståelse og bruk av fagbegreper - differensiert undervisning Differensiering er en viktig strategi for å tilpasse opplæringen til elevenes ulike faglige behov. Derfor er det viktig å differensiere arbeidet

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

FORELDREMØTE 25.april 2017

FORELDREMØTE 25.april 2017 FORELDREMØTE 25.april 2017 Hva er Russisk matematikk utviklende opplæring i matematikk? - Prinsippene og tenkningen bak - Eksempel på noen oppgaver - Hva legges vekt på? - Hva bør elevene ha lært på de

Detaljer

Å styrke leseferdigheten i elektrofag er å styrke elevenes faglighet

Å styrke leseferdigheten i elektrofag er å styrke elevenes faglighet Å styrke leseferdigheten i elektrofag er å styrke elevenes faglighet Praktiske eksempler på arbeid med ord og begreper INGEBORG M.BERGE * FYR-SAMLING 2016 * LESESENTERET, UIS Grunnleggende ferdigheter

Detaljer

Hannametoden en finfin nybegynnermetode for å løse Rubik's kube, en såkalt "layer-by-layer" metode og deretter en metode for viderekommende.

Hannametoden en finfin nybegynnermetode for å løse Rubik's kube, en såkalt layer-by-layer metode og deretter en metode for viderekommende. Hannametoden en finfin nybegynnermetode for å løse Rubik's kube, en såkalt "layer-by-layer" metode og deretter en metode for viderekommende. Olve Maudal (oma@pvv.org) Februar, 2012 Her er notasjonen som

Detaljer