Matematikk for IT, høsten 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Matematikk for IT, høsten 2016"

Transkript

1 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) ? 131 : 19 = Vi ser at vi får 17 i rest. 19 deler derfor ikke b) Er 113 et primtall? Siden det ikke er et partall er det ikke delelig med eller noen andre partall. Tverrsummen er = 5 som ikke er delelig med 3, og 113 er derfor ikke delelig med 3 (eller 9). Siden det ikke ender på 0 eller 5 er det ikke delelig med 5. Siden 7 = 11 er det ikke delelig med 7. Siden = 11 er det heller ikke delelig med 11. Konklusjon: 113 er et primtall a) 7:11 5 Vi ser at 7 = Følgelig: q = r = 5. b) Her må vi huske på at resten alltid skal være positiv:

2 1 : 7 18 ( 7) 5 ( 56) 4 Følgelig: q = 18 r = b) Dvs. 54 : = 6 6 : = : 131 = 1 54 = a) (mod 3) Dette sjekker vi enklest ved å sjekke om er delelig med 3: = 51. Tverrsummen av 51 er 6 som er delelig med er følgelig delelig med 3. Følgelig: 70 er kongruent med 19 modulo 3. b) (mod 5) Vi ser at 455 ( 106) = er ikke delelig med 5. Følgelig: 455 er ikke kongruent med 106 modulo 5. c) 80 4 (mod 19) Vi ser at 80 4 = er delelig med 19. Følgelig: 80 er kongruent med 4 modulo 19. d) 11 (mod 11) Fermats lille teorem sier at a n a (mod n) dersom a er et heltall og n er et primtall. Siden er et heltall og 11 er et primtall, kan vi konkludere med at 11 (mod 11) c) r (mod 7) Her må vi altså finne en r slik at ( r) kan deles med 7. Vi vet at 7 4 = 8. Velger vi derfor r = 6, blir 6 = 8. (Vi kan ikke velge r = 1 som også hadde vært kongruent fordi det i oppgaven er spesifisert at r skal være positiv).

3 a) b) c) d) Det er ulike måter å konvertere fra binært til desimalt. Vi kan for eksempel dividere gjentatte ganger med og «ta vare på» resten i hver divisjon. a) 47 : = 3 med rest 1. 3 : = 11 med rest : = 5 med rest 1. 5 : = med rest 1. : = 1 med rest 0. 1 : = 0 med rest 1. Vi konkatenerer så (konkatenere = lenke sammen, sette etter hverandre) restene, med den siste resten vi fant først, og får: d) Følgelig: 1866 : = 933 med rest : = 466 med rest : = 33 med rest 0 33 : = 1 med rest 1 1 : = 58 med rest 0 58 : = 9 med rest 0 9 : = 14 med rest 1 14 : = 7 med rest 0 7 : = 3 med rest 1 3 : = 1 med rest 1 1 : = 0 med rest Ved konvertering fra binært til oktalt er det enklest å gruppere de binære sifrene 3 og 3 og konververte hver 3-er-gruppe til oktalt og deretter konkatenere. a) Følgelig:

4 b) Følgelig: c) d) b) c) Her kan vi dele gjentatte ganger med 8 og benytte resten i hver divisjon. a) 56 : 8 = 7 med rest 0 7 : 8 = 0 med rest 7 Følgelig: c) 74 : 8 = 34 med rest 34 : 8 = 4 med rest 4 : 8 = 0 med rest 4 Følgelig: For å konvertere fra binært til heksadesimalt er det enklest å gruppere i fire og fire siffer og så konvertere hver firer-gruppe til heksadesimalt og deretter konkatenere. c) B B 9 4

5 d) E E Her er det enklest å konvertere hvert siffer til binærtall og så konkatenere. b) 3AC C 1100 A AC c) EDDE E 1110 D 1101 EDDE b) b e = e) a d = a, d b, d c, d d, c a, c b, c c, a d, b a, d b, d c, d d, c a, b b, a c, b d, a a, b b, c c, b d, b a, c b, a c, a d, a 5

6 1.4. Det er 5 tall, og vi kan da danne 5! = = 10 permutasjoner Antall permutasjoner av tallene 0,, 4, 6 og 8 som slutter med 0 er lik antall permutasjoner av tallene, 4, 6, 8, altså 4! = a) 3-permutasjoner av tallene 1,, 3, 4: Her har rekkefølgen betydning, og vi får b) 3-kombinasjoner av 1,, 3, 4: Her er rekkefølgen uten betydning, og vi får ! 5! 5 4 3! a) P ( 5,3) (5 3)!!! (Her har jeg forkortet! i telleren mot! i nevneren). 7! 7! 7 6! b) P ( 7,1) 7 (7 1)! 6! 6! 8! 8! ! c) P ( 8,6) 00 (8 6)!!! ! ! d) ! (8 5)! 5! 3! ! 9! e) 1 0 0! (9 0)! 1 9! 13 13! ! f) ! (13 5)! ! 6

7 1.4.7 Dette er ordnet utvalg (siden det er forskjell på å få f. eks. 1. og. plass) uten tilbakelegging (fordi en person ikke kan få mer enn én plassering) hvor vi skal trekke ut 9 av 9. Antall muligheter er derfor: 9! 9! P ( 9,9) 9! (9 9)! 0! Alternativt kan vi tenke slik: Det må være antall mulige permutasjoner av de 9 studentene, altså 9! a) Antall permutasjoner av e, f som inneholder ordet cd. Vi har 6 bokstaver. Vi kan plassere bokstavkombinasjonen cd på 1. og. plass i rekk på. og 3. plass, på 3. og 4. plass, på 4. og 5. plass eller på 5. og 6. plass, altså 5 mulige plasseringer. I hvert av disse tilfellene er det fire ledige plasser som de fire resterende bokstavene kan boltre seg på, noe som i hvert tilfelle gir 4! = 4. Totalt antall muligheter blir derfor 5 4! = 5! = 10. Alternativt kan vi tenke på cd som én bokstav siden disse i dette tilfellet er uatskillelige, og at vi derfor ikke har 6 bokstaver men bare 5, og antall permutasjoner av disse 5 er 5!. b) Her har vi et ord på 3 bokstaver, og følgelig kan vi tenke av vi bare har 4 bokstaver å permutere, og vi får 4! = personer til stede. Loddsalg med 1.,. og 3. gevinst. Hver person kjøper ett lodd. a) Hvis det ikke er noen begrensninger, blir dette antall 3-permutasjoner av de 50, altså: 50! ! P ( 50,3) (50 3)! 47! b) Hvis personen med lodd 3 vinner. gevinst er det 49 lodd igjen som kan fordeles tilfeldig på 1. og 3. gevinst. Dette er antall -permutasjoner av 49: 49! ! P ( 49,) 35 (49 )! 47! c) Dersom personen med lodd 3 vinner en av de tre gevinstene. Dette blir antall dersom personen vinner 1. gevinst + antall dersom personen vinner. gevinst + antall dersom personen vinner 3. gevinst, altså 3 ganger tallet vi fant i b): 3 35 =

8 d) Dersom personen med lodd 3 ikke vinner vil det være 49 lodd igjen som kan vinne de tre premiene. Dette blir da 49! ! P ( 49,3) (49 3)! 46! e) Dersom personene med lodd 3 og 45 begge vinner vil det være 48 lodd igjen som kan vinne den siste gevinsten. Men lodd 3 og 45 kan vinne disse to gevinstene på 3! 3 1! P ( 3,) 6 måter. (3 )! 1! Dette gir at antall muligheter blir 48! 48 47! 6 P (48,1) (48 1)! 47! f) 1. gevinst vinnes av en person med lodd 11, 19 eller 3. Det er nå gevinster igjen som kan vinnes av 49 personer (alle de som ikke vinner 1. gevinst). Vi kan da først regne ut antall mulighet for dette: P ( 49,) 35 Men så er det altså 3 ulike muligheter for fordelingen av 1. gevinsten. Totalt antall blir derfor 3 35 = 7056 g) Ingen personer med lodd 11, 19 og 3 vinner. Nå vet vi at de tre gevinstene kan fordeles på 47 personer. Antall blir derfor 47! ! P ( 47,3) (47 3)! 44! Det er 9 bokstaver i det norske alfabetet. Antall mulige kombinasjoner av første og siste bokstav i etternavnet er derfor 9 9 = 841. Dersom det selges = 84 billetter må det derfor være to personer med samme førstebokstav og sistebokstav i etternavnet hylleseksjoner, 6 hyller i hver seksjon med hver oppdelt i 0 båser. Dette gir totalt = 1440 båser. Dersom det da er = 1441 varer på lageret, må minst to produkter plasseres i samme bås a) Hva er koeffisienten foran x 3 y 7 10 i ekspansjonen av ( x y)? Dette er gitt ved ! ! ! (10 7)! 7! 3 1 8

9 Oppgave 1 10 menn og 6 kvinner. Komite med 6 medlemmer med like mange menn som kvinner. Vi skal da velge ut 3 av de 10 mennene. Dette er uordnet utvalg (fordi rekkefølgen de velges i er uten betydning, siden de ikke skal velges til ulike roller i komiteen) uten tilbakelegging (fordi en mann som er valgt ut til å være med i komiteen ikke kan velges på nytt til den samme komiteen). Dette kan derfor gjøres på 10 10! ! 7! 3 1 måter. For hver av de 10 måtene vi kan velge menn til komiteen, kan vi velge ut 3 av de 6 kvinnene til komiteen på 6 6! ! 3! 3 1 måter. Totalt kan vi derfor danne 10 0 = 400 ulike komiteer. Oppgave Hvor mange bit-strenger av lengde både starter og slutter med en 0? Dersom bit-strengen både skal starte og slutte med 0, er det kun 14 av de bit-ene som er tilfeldige. Valget av disse er et ordnet utvalg (fordi plassen sifferet sette på har betydning) med tilbakelegging (fordi sifrene 0 og 1 kan gjenbrukes på hver av plassene). Antall slike er derfor

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015

Matematikk for IT. Prøve 1. Torsdag 17. september 2015. Løsningsforslag. 22. september 2015 Matematikk for IT Prøve 1 Torsdag 17. september 2015 Løsningsforslag 22. september 2015 Oppgave 1 Gitt følgende mengder A = {0, 1, 2, 3, 4}, B = {0, 1, 2} og C = {0, 3, 6, 9} Universet er U = {0, 1, 2,

Detaljer

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1

Matematikk for IT. Prøve 1 Løsningsforslag. Fredag 23. september september Oppgave 1 Matematikk for IT Prøve 1 Løsningsforslag Fredag 23. september 2016 23. september 2016 Oppgave 1 Er 29 17 (mod 4)? Begrunn svaret. Dette kan vi lettest sjekke ved å se om 4 deler 29 17. 29 17 = 12. Vi

Detaljer

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Onsdag 18. september Løsningsforslag Matematikk for IT Prøve 1 Onsdag 18. september 2013 Løsningsforslag Oppgave 1 a) Er 26 11 (mod 3)? Begrunn svaret. Dette spørsmålet betyr: Gir 26 : 3 samme rest som 11 : 3? Vi ser at 26 : 3 gir rest 2,

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Oppgaver i sannsynlighetsregning 3

Oppgaver i sannsynlighetsregning 3 Oppgaver i sannsynlighetsregning 3 Oppgave 1 Vi har et lykkehjul med 8 like sektorer som er nummerert fra 1 til 8. Du har valgt sektor nummer 3. a) Tenk deg at du snurrer lykkehjulet en gang. Hva er sjansen

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt

Total sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk = Vi kan skrive en hendelse B som en disjunkt MAT000V Sannsynlighetsregning og kombinatorikk Total sannsynlighet Vi kan skrive en hendelse B som en disjunkt union av A B og A B Total sannsynlighet og Bayes' setning Kombinatorikk Ordnede utvalg med

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

FAKTORISERING FRA A TIL Å

FAKTORISERING FRA A TIL Å FAKTORISERING FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til faktorisering F - 2 2 Grunnleggende om faktorisering F - 2 3 Fremgangsmåter F - 3 3.1 Den grunnleggende

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Permutasjoner og utvalg

Permutasjoner og utvalg Permutasjoner og utvalg En permutasjon av en samling objekter er en eller annen rekkefølge objektene i samlingen kan settes opp i. Eksempel 1 Gitt bokstavene a, b, c og d. Da er følgende oppstillingen

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.

TALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b. TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og

Detaljer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer

Forelesning 2. Flere pseudokoder. Representasjoner av tall. Dag Normann januar 2008 KONTROLLSTRUKTURER. Kontrollstrukturer. Kontrollstrukturer Forelesning 2 Flere pseudokoder. Representasjoner av tall. Dag Normann - 16. januar 2008 KONTROLLSTRUKTURER Mandag innførte vi pseudokoder og kontrollstrukturer. Vi hadde tre typer grunn-instruksjoner:

Detaljer

Koder. Kristian Ranestad. 8. Mars 2005

Koder. Kristian Ranestad. 8. Mars 2005 i kryptering 8. Mars 2005 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag

Matematikk for IT. Prøve 1. Torsdag 18. september Løsningsforslag 23.09.2014 Matematikk for IT Prøve 1 Torsdag 18. september 2014 Løsningsforslag Oppgave 1 a) Gitt tallet BD 16. Konvertér dette tallet til titallsystemet. Siden B 16 = 11 10 og D 16 = 13 10 blir dette

Detaljer

Løsningsforslag, eksamen MAT104 våren 2013

Løsningsforslag, eksamen MAT104 våren 2013 Løsningsforslag, eksamen MAT104 våren 2013 Oppgave 1 (35%) La ( ) a) Bruk definisjonen på den deriverte til å finne ( ). Løsning: ( ) ( ) ( ) ( ) ( ) ( ) ( ). b) Hva er stigningstallet til ( ) når? Løsning:

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 21: Mer kombinatorikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 15. april 2009 (Sist oppdatert: 2009-04-15 00:05) Kapittel 9: Mer kombinatorikk

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer:

Løsningsforslag. Emnekode: Emne: Matematikk for IT ITF Eksamenstid: Dato: kl til kl desember Hjelpemidler: Faglærer: Løsningsforslag Emnekode: ITF75 Dato: 7. desember Emne: Matematikk for IT Eksamenstid: kl 9. til kl. Hjelpemidler: To -ark med valgfritt innhold på begge sider. Kalkulator er ikke tillatt. Faglærer: Christian

Detaljer

Realfagsglede VG2 80 minutter

Realfagsglede VG2 80 minutter Lærerveiledning: Passer for: Varighet: Realfagsglede VG2 80 minutter INSPIRIA science center: Bjørnstadveien 16, 1712 GRÅLUM Telefon: 03245/ 69 13 93 00 E-post: post@inspiria.no www.inspiria.no «Realfagsglede»

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Il UNIVERSITETET I AGDER

Il UNIVERSITETET I AGDER Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning 6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene

Detaljer

Forelesning 20 mandag den 27. oktober

Forelesning 20 mandag den 27. oktober Forelesning 20 mandag den 27. oktober 5.10 Eksempler på hvordan regne ut Legendresymboler ved å benytte kvadratisk gjensidighet Eksempel 5.10.1. La oss se igjen på Proposisjon 5.6.2, hvor vi regnet ut

Detaljer

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006

Kryptering Kongruensregning Kongruensregning i kryptering Litteratur. Hemmelige koder. Kristian Ranestad. 9. Mars 2006 i kryptering 9. Mars 2006 i kryptering i kryptering i kryptering En hemmelig melding Kari sender til Ole den hemmelige meldingen: J MPWF V siden responsen er litt treg prøver hun påny med: U EVOL I Nå

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2015

Løsningsforslag til eksamenen i MAT103, våren 2015 Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

STK1100 våren 2017 Kombinatorikk

STK1100 våren 2017 Kombinatorikk STK1100 våren 2017 Kombinatorikk Svarer til avsnitt 2.3 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket.

STK1100 våren Kombinatorikk = = Uniform sannsynlighetsmodell. Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. ST1100 våren 2017 ombinatorikk Uniform sannsynlighetsmodell Et stokastisk forsøk har N utfall. Det er de mulige utfallene for forsøket. Vi antar at de N utfallene er like sannsynlige. Svarer til avsnitt

Detaljer

INF1400 Kap 1. Digital representasjon og digitale porter

INF1400 Kap 1. Digital representasjon og digitale porter INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Løsningsforslag til tidligere mappeoppgaver

Løsningsforslag til tidligere mappeoppgaver til tidligere mappeoppgaver Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst 007 9. november 007 Her legger vi ut løsningsforslag til noen oppgaver fra tidligere i år. Se på http://www-lu.hive.no/team/t06ab/todelt-logg.htm

Detaljer

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper

Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Oversikt over bevis at det finnes uendelig mange primtall med bestemte egenskaper Richard Williamson 3. desember 2014 Oppgave 1 La n være et naturlig tall. Bevis at det finnes et primtall p slik at p >

Detaljer

Fasit og løsningsforslag til Julekalenderen for ungdomstrinnet

Fasit og løsningsforslag til Julekalenderen for ungdomstrinnet Fasit og løsningsforslag til Julekalenderen for ungdomstrinnet 0.: Svaret er Hvert kutt kan maksimalt skjære hvert av de andre kuttene gang. Ett kutt går gjennom ett område mer enn antall kutt det skjærer.

Detaljer

Matematisk julekalender for trinn, 2009

Matematisk julekalender for trinn, 2009 Matematisk julekalender for 8. - 10. trinn, 2009 Årets julekalender for 8.-10. trinn består av 9 enkeltstående oppgaver med tilsammen 14 svar. Oppgavene kan løses uavhengig av hverandre, og alle svar tilsvarer

Detaljer

Utvalg med tilbakelegging

Utvalg med tilbakelegging Utvalg med tilbakelegging Gitt n forskjellige objekter. Vi skal velge r objekter på en slik måte at for hvert objekt vi velger, noterer vi hvilket det er og legger det tilbake. Det betyr at vi kan velge

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17

ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 ÅRSPLAN MATEMATIKK 7. TRINN 2016/17 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten Kunne avgjøre hvilken brøk som er størst ut

Detaljer

Opptelling - counting

Opptelling - counting Opptelling - counting Kombinatorikk og sannsynlighetsregning er en viktig del av diskret matematikk. Her studeres ulike beregnings- og telleteknikker for å beregne sannsynlighet, antall, kapasitet eller

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

KODER I KLASSEROMMET

KODER I KLASSEROMMET KODER I KLASSEROMMET Kristian Ranestad 28.02.2001 Dette heftet er utarbeidet til klasseromsprosjektet ved Matematisk institutt, UiO. I dette prosjektet inngår det halvdags kurs for lærere i forskjellige

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18

ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 ÅRSPLAN MATEMATIKK 7. TRINN 2017/18 Uke Tema Læringsmål Lærestoff Metoder 34 36 God start Kunne avgjøre hvilken nevner brøken har ut fra oppdeling av helheten. Kunne avgjøre hvilken brøk som er størst

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Tall Vi på vindusrekka

Tall Vi på vindusrekka Tall Vi på vindusrekka Tall og siffer... 2 Dekadiske enheter... 3 Store tall... 4 Avrunding... 5 Tverrsum... 8 Partall og oddetall... 9 Primtall... 10 Sammensatte tall... 11 Faktorisering... 13 Negative

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

Kapittel 8. Potensregning og tall på standardform

Kapittel 8. Potensregning og tall på standardform Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive

Detaljer

Kapittel 2 TALL. Tall er kanskje mer enn du tror

Kapittel 2 TALL. Tall er kanskje mer enn du tror Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT220/MAUMAT44 - Algebra Fredag. juni 204, kl. 09-4 Tillatte hjelpemidler: Kalkulator i samsvar med fakultetets

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Notat kombinatorikk og sannsynlighetregning

Notat kombinatorikk og sannsynlighetregning Notat kombinatorikk og sannsynlighetregning av Peer Andersen Peer Andersen 2010 1 SANNSYNLIGHETSREGNING MED FLERE TRINN Sannsynlighetsregning med et trinn kan være situasjoner der vi spør hva sjansen er

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35

Detaljer

LØSNINGSFORSLAG EKSAMEN V06, MA0301

LØSNINGSFORSLAG EKSAMEN V06, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Øvingsforelesning 1 Python (TDT4110)

Øvingsforelesning 1 Python (TDT4110) Øvingsforelesning 1 Python (TDT4110) Introduksjon, Kalkulasjoner Ole-Magnus Pedersen Oversikt Praktisk Info Repetisjon fra sist Oppgaver for øving 2 2 Praktisk Info Last opp øvinger på Blackboard før godkjenning

Detaljer

Reelle tall på datamaskin

Reelle tall på datamaskin Reelle tall på datamaskin Knut Mørken 5. september 2007 1 Innledning Tirsdag 4/9 var tema for forelesningen hvordan reelle tall representeres på datamaskin og noen konsekvenser av dette, særlig med tanke

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen...

6 Kryptografi Totienten Eulers teorem Et eksempel på et bevis hvor Eulers teorem benyttes RSA-algoritmen... Innhold 6 Kryptografi 3 6.1 Totienten.................................... 3 6.2 Eulers teorem.................................. 8 6.3 Et eksempel på et bevis hvor Eulers teorem benyttes............ 19

Detaljer