Øvinger uke 42 løsninger

Størrelse: px
Begynne med side:

Download "Øvinger uke 42 løsninger"

Transkript

1 Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av nn. Når u rivrr n får u ny n i tllrn for hvr gang u rivrr. Når u intgrrr får u tilsvarn n i nvnrn. Dtt r clut for å vlg ritig løsningsstratgi. Dt åpn onvrgnsintrvallt nrs i v lvis rivasjon llr intgrasjon mn v intgrasjon av altrnrn r an t av npuntn i intrvallt oft inlurs. a) Start m n og rivr lvis n gang. Antall - r justrr u til slutt. n - onvrgnt for - < <. Lvis rivasjon gir a: n n- - H-L (Hus jrnrgln!) Svart på oppgavn følgr av multipliasjon m på bgg sir av lihtstgnt. n n H-L onvrgnt for - < < b) Start m n og rivr lvis n gang. n Ú n n0 - onvrgnt for - < <. Lvis rivasjon gir a: Hn L n jrnrgln!) - -H-L H-L (Hus Ra onvrgrr for - < < Rsultatt an også utls v å bnytt rsultatt fra a): Hn L n n n n H-L - H-L - H-L H-L c) Hr sal u rivr n gomtris ra to gangr for å få proutt nhn - L. n - n n- - nhn - L n- J H-L H-L N H-L ultipliasjon m på bgg sir gir svart: nhn - L n H-L onvrgnt for - < < ) n i nvnr sal u tn intgrasjon. Hr må u hus å sj intgrasjonsonstantn mn n blir som rgl null. n n

2 nhn - L n- Rgnøvingr fasit u.nb J H-L N H-L ultipliasjon m på bgg sir gir svart: nhn - L n H-L onvrgnt for - < < ) n i nvnr sal u tn intgrasjon. Hr må u hus å sj intgrasjonsonstantn mn n blir som rgl null. H-Ln n H-Ln n n H-Ln n n Ù â lnh L C 0 : 0 ln C C 0 H-Ln n n lnh L ln HL onvrgnt for - < < Sjr : H-Ln n onvrgrr ttr Libniz' s tst Sjr - : H-L n n Konlusjon : H-Ln n n n ln HL ivrgrr ttr intgraltst onvrgnt for - < Oppgav Når vi ør polynomgran til Taylorpolynomt til f HL vil approsimasjonn til f HL bli br og br forutsatt at Taylorra til f HL onvrgrr ( mot f HL). Taylorra frmommr v grnsbtratningn limn pn HL - Ú Vi har rfor at f HL - Ú innnfor onvrgnsintrvallt. Bnyttr samm stratgi som i oppgav. : - Ú -Ú - -Ù - â ln H - L C 0 : -Ú 0 ln C C 0 -Ú ln H - L Dtt gir oss f HL ln H - L Oppgav a) f () - f () f () f ()

3 Rgnøvingr fasit u.nb a) f () - f () f () f () p HL f H0L f ' H0L p HL f H0L f ' H0L p HL f H0L f ' H0L f '' H0L! f '' H0L! - f ''' H0L! - p H0.0L * p H0.0L * 0.0 * fir ritig sifr: f(0.0) 0.09 b) f() tan f () cos f () - f () f ( ) f( ) H-sin L cos sin cos cos sin cos f ( f ( ) p HL f f ' - - f '' p HL f f ' - p HL f f ' - f ''! Kontrollrt i athmatica:! - f '''! >FF Oppgav f HL f () sin cos f () f(0) - sin ( v l Hopital s rgl ) f (0) 0 ( v l Hopital s rgl ) Hsin - cos L sin p HL f H0L f ' H0L Ù0 0.5 â - f (0) - ( v l Hopital s rgl ) f '' H0L! Numris sj i athmatica: : 8 8 -

4 Rgnøvingr fasit u.nb NntgratB <F - PlotB: > 8 - < PlotStyl 88Thic R< 8Dash Thic Blu<<F PlotB: > 8 - < PlotStyl 88Thic R< 8Dash Thic Blu<<F Oppgav 5 Rn HL f HL - Pn HL f HnL HcL HnL! n 0 < c < Når u rivrr f() cos flr gangr vil svart vær ntn ± sin llr ± cos. Uanstt vil Rn HL n n a f HnL HcL La. Dn størst filn u gjør vå approsimr funsjonn m polynomt pn HL vil a vær H Rn HL Lma n n. n og 0. vil rfor R H0.L H0.L7 7 < *0-

5 Rgnøvingr fasit u.nb 5 Oppgav a) Bnyttr jnt rsultatr for 0: sin Ú 0 Erstattr m : sin Ú Ra onvrgrr for all b) Kan vi bnytt Ú 0! H - L? Erstattr m - : - Ú 0! H- - L Ú0 H-L! Dtt r fil! H L Når utvilingspuntt i r 0 må vi pass på. Ut fra finisjonn får vi: f() - f( ) f () - - f () f () - f () Dtt gir - - osv. - H-L - Ra onvrgrr for all H-L... Ú 0 H-L! H - L c) Dt r tirvn å rivr f() arctan flr gangr og vi finnr i t gnrll lt på nn måtn. n vi vt at arctan Ù0 t ât Ú 0 H-L ( sum av gomtris r onvrgnt for - < < ) Erstattr m : Ú 0 H-L ntgfrrr lvis: Ù0 t H-L â t Ú C onvrgnt for - < < 0 Uttryt gjlr for 0. nnstting av 0 gir oss C 0. arctan Ù0 t H-L â t Ú 0 Ra onvrgrr for ttr Libniz s tst arctan H-L Ú 0

6 H-L â t Ú 0 t Rgnøvingr fasit u.nb Ù0 C onvrgnt for - < < Uttryt gjlr for 0. nnstting av 0 gir oss C 0. arctan Ù0 t H-L â t Ú 0 Ra onvrgrr for ttr Libniz s tst arctan H-L Ú 0 H-L Ú 0 Dtt r n av mang hunr potnsrr som lr fram til mn nn onvrgrr forfrlig langsomt. Rsultatt går unr navn av Grgory s forml.

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn

Generell info vedr. avfallshåndtering ved skipsanløp til Alta Havn Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.

Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år. Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Retningslinjer for klart og tydelig språk i Statens vegvesen

Retningslinjer for klart og tydelig språk i Statens vegvesen Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350

QUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350 QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Avstandsmålr no Brusvldnng www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Innldnng Tn dg

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =

Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y = MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk

Fagevaluering FYS Klassisk mekanikk og elektrodynamikk Fgvluring FYS3120 - Klssisk mknikk og lktroynmikk vår/høst 2009 Forlsr: Jon Mgn Lins Rgnøvlsr: Pr Øyvin Solli Fysisk Fgutvlg 1. mi 2009 Bsvrlsn r nonym, mn vi gjør oppmrksom på t orlsr hr tilgng til ll

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen

Tilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen Si 1 av 6 Tilkobling Winows-instruksjonr or n lokalt tilkoblt skrivr Mrk: Når u installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og okumntasjon, må u bruk Vivisr or skrivrinstallasjon.

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

Øving 6 Tallfølger og differenslikninger

Øving 6 Tallfølger og differenslikninger Øving Tallfølger og differenslikninger Teori Se også Mathematicakompendiet kap. En tallfølge er en liste av elementer satt opp i en bestemt rekkefølge { a[0]a[]a[]...a[n]... } = {a[n]} 0. Vi kaller elementet

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

Kompetansevurdering av MTS utøver

Kompetansevurdering av MTS utøver Norwgin Mnhstr Trig Group Komptnsvurring v MTS utøvr Tortisk l Hvrt spørsmål i tt skjm står v t utsgn ttrfulgt v fm yttrligr uttllsr. Hvr v uttllsn kn vær snn llr usnn. Kryss v snn / usnn for hvr uttlls.

Detaljer

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.

Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2. Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P

Detaljer

Butikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32%

Butikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32% Hvragn grov, tort utvalg, 50-100% grovht Tlbut gjlr man-on 29% 39 Tlbut gjlr man-on Vår Butkktkt brø gn nytkt 52% 45-47% 79 or.pr 56,/tk brø r br m mny or.pr 169,00/kg or.pr 27,50/ 28,50/pk Nygrllt kyllng

Detaljer

Vernerunde sjekkliste og oppfølging

Vernerunde sjekkliste og oppfølging Si 1 av 6 Vrnrun sjlist g ppfølging Ml virgån sl Gjnt av: AMU Dat: Vrnmrå:Ml vg sl Dltar : Hvvrnmbu Arn Brvi, vatmstr Olav Mrstøl, Pr Arnt Harns ATV Elvråslr Juli Riis g Fungrn HMS-ansvarlig: Kirsti M

Detaljer

Fag: Menneskef maskin - interaksjon. Fagnr: LV "'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE.

Fag: Menneskef maskin - interaksjon. Fagnr: LV 'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE. Fag: nnskf maskin intraksjn Fagnr: LV "'i3a Faglig vildr: Annari Trvatn Grupp(r): 3AA 3AB 3A3AD3A Dat: 200401 ks amnstid fra til: 900 1200 ksamnsppgavn bstår av Antall sidr: inkl frsid 9 Antall ppgavr:

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

Periodisk emne-evaluering FYS Relativistisk kvantefetteori

Periodisk emne-evaluering FYS Relativistisk kvantefetteori Prioisk mn-vluring FYS4170 - Rltivistisk kvntttori høst 2009 Forlsr: Jn Olv Eg Forlsr r nsvrlig or skjmt 23. novmr 2009 Svr på tt skjmt r nonym, mn orlsr, SUFU og stuimonistrsjonn v Fysisk institutt hr

Detaljer

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT

UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT - Sid 1 / 12 MR01 UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Bskrivls sist rvidrt: År: 2007. Månd: 08. Dag: 28. UTPLUKK/UTSKRIFT AV SELVAVLESNINGSKORT Hnsikt Formålt

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler

Grafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr

Detaljer

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005

Notater. Anne Sofie Abrahamsen. Analyse av revisjon Feilkoder og endringer i utenrikshandelsstatistikken. 2005/10 Notater 2005 2005/10 Notatr 2005 Ann Sofi Abrahamsn Notatr Analys av rvisjon Filkodr og ndringr i utnrikshandlsstatistikkn Sksjon for utnrikshandl Innhold 1. Innldning... 2 2. Filkodr... 2 3. Analys av filkodr - original

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

FOLKETS PIMPER PØLSA!

FOLKETS PIMPER PØLSA! DET FINNES EN PØLSE MED 80% KJØTT, OG DET FINNES EN HEL VERDEN AV TILBEHØR. FOLKETS PIMPER PØLSA! Vi yn pøln frtjnr å få dn trni rin hburrn tcn. Drfr lnrr vi ått frh ppriftr til inpirjn! FOLKETS WIENER

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Høstn 2014 Antall salgspriodr: 3 Total fortjnst: 67500 kr God og lttsolgt! Vi tjnt 20000,- Ls mr! En nkl

Detaljer

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans i Midsund. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans i Midsund Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans dg glad Dans dg i form Jan Risbakkn Jan Risbakkn Parkvin

Detaljer

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller

Vi feirer med 20-års jubileumspakker på flere av våre mest populære modeller r d i v r Vi klatr Vi firr md 20-års jubilumspakkr på flr av vår mst populær modllr Hyundai i40 stolt vinnr av EuroCarBody 2011 Fra 113g/km 0,43 l/mil Utdrag av utstyrsnivå i40 Prmium: Hyundai i40 I dn

Detaljer

Testgrunnlag: VDE 0660 del 500/IEC Gjennomført test: Driftsstøtstrømfasthet I pk. lp Støtkortslutningsstrøm [ka] Samleskinneholderavstand [mm]

Testgrunnlag: VDE 0660 del 500/IEC Gjennomført test: Driftsstøtstrømfasthet I pk. lp Støtkortslutningsstrøm [ka] Samleskinneholderavstand [mm] Kortslutningsigrr iht. DN EN 439-1/EC 439-1 Typgokjnning iht. DN EN 439-1 løpt v n systm-typgokjnning l følgn tstr m Rittl smlskinnsystmr og rprsnttiv Rittl RiLin oppyggingskomponntr gjnnomført: Bvis på

Detaljer

Tjen penger til klassekassen.

Tjen penger til klassekassen. DEL UT TIL KLASSEREPRESENTANTEN Tjn pngr til klasskassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 4 Total fortjnst: 94000 kr Vårn 2015 God og lttsolgt! Vi tjnt 67500,- Ls mr! En nkl

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00 Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

Evaluering av NGU-dagen

Evaluering av NGU-dagen .. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,

Detaljer

ARSPLAN. Stavsberg barnehage

ARSPLAN. Stavsberg barnehage ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)

Detaljer

MAYERS LIVSSITUASJONS - SKJEMA (1)

MAYERS LIVSSITUASJONS - SKJEMA (1) Nvn: MAYERS LIVSSITUASJONS - SKJEMA (1) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i n ktull rurikkn. 1. TA VARE PÅ DEG SELV: f g h i j k l m n o p q r s t u Er u i stn til å: - komm g

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Chebyshev interpolasjon

Chebyshev interpolasjon Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Next Generation Plattformen Quick guide

Next Generation Plattformen Quick guide Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,

Detaljer

Tidstypiske bygninger og bygningsdetaljer i Norge

Tidstypiske bygninger og bygningsdetaljer i Norge DEN SIST DTALjn DEKOR REKKVERK & Stolpr, DEKOR, Imprgnrt Tistypisk ygningr og ygningstaljr i Norg M Olavsrosa og portaln til Storgarn Bjørnsta på Maihaugn ønskr vi vlkommn til Söra sin Dkorkatalog. 1800

Detaljer

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor.

Ved å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor. Mtmtikk for ungomstrinnt KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET FLERE UTFORDRINGER Oppgv 1 Osr h htt tr ulik mtmtikkprøvr. Hn h rgnt riktig 90 % på n først prøvn, 80 % på n nr prøvn og 75 % på n trj prøvn.

Detaljer

Ukens tilbudsavis fra

Ukens tilbudsavis fra Ukns tilbudsavis fra Hvordan blar man i tilbudsavisn? For å bla i tilbudsavisn så klikkr du ntn i t av hjørnn, llr du kan klikk på piln nd på mnylinjn. S nærmr på produktn? Du kan zoom inn på produktn

Detaljer

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG

Eksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid

Detaljer

Klart vi skal debattere om skum!!

Klart vi skal debattere om skum!! Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl

Detaljer

BLOcks SUbstitution Matrices. Substitusjonsmatrisen BLOSUM og tilfeldig gange. Blokk. Eksempel på fire av blokkene fra Heinkoff & Heinkoff s database

BLOcks SUbstitution Matrices. Substitusjonsmatrisen BLOSUM og tilfeldig gange. Blokk. Eksempel på fire av blokkene fra Heinkoff & Heinkoff s database LOcks SUbstitution Matrics Substitusjonsatrisn LOSUM og tilflig gang Hinkoff & Hinkoff 992 Skåringsatrisn brgns so logaritn til n liklioo ratio. yggr IKKE på n volusjonær oll Liklioon basrr sg n og aln

Detaljer

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars

åpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars åpningstidr 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanlbollfrokost skattjakt psalg 12. - 16. mars amfi orkangr Følg Prisfstn på facbook www.facbook.com/amfiorkangr Kanlbollfrokost Tirsdag 12. mars PROGRAM

Detaljer

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse

Spørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse Appniks til Tori Flttn Hlvorsn, Ol Rikr Hvt, Birgit Johnn Ryså, Tov Skrø, Elin Olug Rosvol. Psintrfringr m llmnnlgrs oppfølging v lvorlig spisforstyrrls. Tisskr Nor Lgforn 2014; 134: 2047-51. Dtt ppnikst

Detaljer

3.1 RIGG OG DRIFT AV BYGGEPLASS

3.1 RIGG OG DRIFT AV BYGGEPLASS Prosjkt: Wbr-produktr Sid: 3-1 Kapittl: 09 Murrarbid Bygningsdl: 29 Rhab av fasadr Typ: 3 Rigg og Drift Murrarbid Rhab av fasadr 3 Rigg og Drift 3.1 RIGG OG DRIFT AV BYGGEPLASS Gnrlt I ttrfølgnd rigg-postr

Detaljer

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1

Mundell-Fleming modellen ved perfekt kapitalmobilitet 1 Mundll-Flming modlln vd prfkt kapitalmobilitt 1 Stinar Holdn, 4. august 03 Kommntarr r vlkomn stinar.holdn@con.uio.no Mundll-Flming modlln vd prfkt kapitalmobilitt... 1 Kapitalmobilitt og rntparitt...

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2

d2x/dt2 dx/dt x F _ 1/m D F m K x m t-plan: x m s-plan: x m Transferfunksjon: m K m D m Standard form for en 2.orden transferfunksjon: 2 Mknik. jær, fjærkrf v pr, pkr En [kg] r f il fjær/pr- og lir påvirk n r krf. Mn vil opp okrfn: [ N ] [ kg ] [ ] jær vil opp okrfn: kg f [ N] [ ] [ ] pr vil opp okrfn: kg [ N] ] [ ] v[ rfln for : f or å

Detaljer

ISE matavfallskverner

ISE matavfallskverner ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j

Detaljer

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud

Eldre i Verdal Muligheter Rettigheter Aktiviteter/tilbud Eldr i Vrdal Mulightr Rttightr Aktivittr/tilbud Eldrrådt Omsorg og vlfrd Omsorg og vlfrd i Vrdal r dlt inn i to virksomhtsområdr: Øra omsorg-og vlfrdsdistrikt Vinn og Vuku omsorg-og vlfrdsdistrikt Hva

Detaljer

PLANTEGNINGER FOR PROFESSOR DAHLS GATE 1

PLANTEGNINGER FOR PROFESSOR DAHLS GATE 1 PLNTGNINGR OR HLS GT 1 SI 2. PLN KJLLR SI 3. PLN UNRTSJ SI 4. PLN 1. TSJ SI 5. PLN 2. TSJ SI 6. PLN 3. TSJ SI 7. PLN 4. TSJ SI 8. PLN LOTTSJ SI 8. SNITT 1 SI 8. SNITT 2 1K02.1 60S 1K08.1 60S 1K01.1 60S

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (2) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN R E G E J! I P M JIP O S K R E T S LIKE! I P P I P Nyttig hjer Nfød Fo å sik jnin ntakt hos små ban anbfal Hlsdiktoat

Detaljer

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart ÅRSPLAN Tinn: 5 Piod: Høst og vå U Omåd Komptansmål Dlmål/læingsmål Læmiddl/læv / mtod Kat og od Fag vis fosjll Himmltning Atlas Et synlig tntt Kat på data Knn ls og b papibast og digital at Kat Om attgn

Detaljer

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav.

10.2 FAGVERK. Bjelke-fagverk Dette er konstruksjoner som er aktuelle for store spennvidder eller spesielle funksjonskrav. 220 C10 RAMMER OG FAGVERK 10.2 FAGVERK Bjlk-fagvrk Dtt r konstruksjonr som r aktull for stor spnnviddr llr spsill funksjonskrav. a) akbjlk b) I-bjlk c) Etasjfagvrk Figur C 10.4.a r n typisk takkonstruksjon,

Detaljer

Chebyshev interpolasjon

Chebyshev interpolasjon Chebyshev interpolasjon Chebyshev polynomer Vi vil studere polynomapproksimasjon på intervallet [-, ]. Målet er å minimalisere den største verdien av feilestimatet E HxL = f HxL - P HxL, hvor maksimum

Detaljer

Byen vår. Kino. KulTur

Byen vår. Kino. KulTur Nr. 10 Nvmbr 2013 18. årgang Byn vår Kin KulTur In nh ld KulTur Hrdamust Kin md Kjær lsr! Du finnr gså infrmasjn m n rkk andr arrangmnt dnn måndn. Vi vil spsilt minn m høstknsrtn i Fana kulturhus. Dr blir

Detaljer

Om du sender inn et utfylt papirskjema, vil dette fungere som en søknad om å levere på papir. A-meldingen finner du her:

Om du sender inn et utfylt papirskjema, vil dette fungere som en søknad om å levere på papir. A-meldingen finner du her: Forsidn Om du sndr inn t utfylt papirskjma, vil dtt fungr som n søknad om å lvr på papir. A-mldingn finnr du hr: Dtt trngr du for å fyll ut A-mldingn: Juridisk og virksomhtns organisasjonsnummr. Dtt kan

Detaljer

Deres ref Vår ref Dato. Oppdragsbrev - etterbruk og salg av statens eiendom på Adamstuen -

Deres ref Vår ref Dato. Oppdragsbrev - etterbruk og salg av statens eiendom på Adamstuen - Statbygg Potbok 8106 Dp 0032 OSLO Dr rf Vår rf Dato 16/1416-1 18.03.2016 Oppdragbrv - ttrbruk og alg av tatn indom på Adamtun - Statbygg gi md dtt i oppdrag å tart arbidt md ttrbruk og vntult alg og/llr

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

122-13 Vedlegg 3 Rapportskjema

122-13 Vedlegg 3 Rapportskjema Spsifikasjon 122-13 Vdlgg 3 Rapportskjma Dok. ansvarlig: Jan-Erik Dlbck Dok. godkjnnr: Asgir Mjlv Gyldig fra: 2013-01-22 Distribusjon: Åpn Sid 1 av 6 INNHOLDSFORTEGNELSE SIDE 1 Gnrlt... 1 2 Tittlflt...

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml

-40% side 2 og FOR. Lettsaltet torskefilet og fersk seifilet Pr kg. Kyllingfilet. Et utvalg Jif og Ajax rengjøringsprodukter Fra 250 ml Ssktoukr! fi Lttsaltt torskfilt og frsk sifilt DSH. 750 g. Pr pk 106,53 Jif og Ajax rngjøringsproduktr Fra 250 ml Nidar favorittr Fra 300 g fra 97,06. 1 pk fra 37,60 79-40% Et stort utvalg Big On og Grandiosa

Detaljer

LØSNING AV EKSAMEN I EMNE TKT 4123 MEKANIKK 2

LØSNING AV EKSAMEN I EMNE TKT 4123 MEKANIKK 2 LØSNNG A EKSAMEN EMNE TKT MEKANKK Tirsdag 6. ai 9 Oga F F F Dforasjon a innkragt bjk (tab 5 F F x og x, hor x r utsing E E t ti d tynn søyn og x r utsingt ti dn idtrst søyn. E Ech Dt gir: F x x og E Ec

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker

Asker 17.03.12. Kaare Granheim: Askers rolle i den regionale utviklingen. Konsekvenser for befolkning og boligmarked i Asker Askr 17.03.12 Kaar Grahim: Askrs roll i d rgioal utviklig. Koskvsr for bfolkig og boligmarkd i Askr Kaar Grahim Vidrgåd (KG) NTH bygigsigiør md økoomi for kraftkommur som ksamsoppgav Aspla 1970 md kommual

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

Høring- Forslag til forskrift om evakuerings- og redningsredskaper på flyttbare innretninger

Høring- Forslag til forskrift om evakuerings- og redningsredskaper på flyttbare innretninger Vår to Vår rfrns Vår skshnlr 23.10.2015 2015/65015 Nin Hnssn Ås Drs rfrns Arkivko Dirkt tlfon 33-16 52 74 52 51 Høringsinstnsr iht. list Høring- Forslg til forskrift om vkurings- og rningsrskpr på flyttr

Detaljer

Krav om sikker påfyllingsanordning, transport og merking av emballasje for bioetanol til alkoholfyrte peiser.

Krav om sikker påfyllingsanordning, transport og merking av emballasje for bioetanol til alkoholfyrte peiser. D da Vår rfras Vår sasbhadlr Drs da Drs rfras gby, lf. 33 41 25 00 I hhld il lis 1 av 5 Arivd 422 Krav sir påfylligsardig, raspr g rig av ballasj fr bial il alhlfyr pisr. Dirra fr safssirh g brdsap (DSB)

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG

Christiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

FESTEN VÅRTILBUD GJØR DEG KLAR TIL FESTFIN! Følg oss på BLI MEDLEM AV I KLUBB KLUBBHVALTORVET SEND HVAL TIL 2225

FESTEN VÅRTILBUD GJØR DEG KLAR TIL FESTFIN! Følg oss på BLI MEDLEM AV I KLUBB KLUBBHVALTORVET SEND HVAL TIL 2225 VÅRTILBUD GJØR DEG KLAR TIL FESTEN FESTFIN! PÅ HVALTORVET FINNER DU ALT DU TRENGER AV GAVER OG ANTREKK TIL BRYLLUP, KONFIRMASJON, 17. MAI, OG SOMMERENS FESTDAGER. VELKOMMEN! Bildt r fra kollksjonn til:

Detaljer

Tjen penger til klubbkassen.

Tjen penger til klubbkassen. DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Antall salgspriodr: 3 Total fortjnst: 32000 kr Høstn 2014 God og lttsolgt! Vi tjnt 25000,- Ls mr! En nkl måt å tjn

Detaljer