INF1040 Digital representasjon

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF1040 Digital representasjon"

Transkript

1 INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium. Hva kurset dreier seg om: Hvordan kode, lagre og overføre på mest hensiktsmessig måte tall, tekst, grafikk, lyd, bilder, video, Hvordan komprimere og kryptere slike data. Hva skjuler seg bak begreper som ASCII, CD, DVD, MP3, HDTV, DAB, Hvordan kan forskjellige duppeditter håndtere tekst, lyd, bilder? INF1040-presentasjon-1

2 Analog virkelighet digital representasjon Virkeligheten er stort sett analog Mange fenomener varierer kontinuerlig, og kan måles med (nesten) vilkårlig nøyaktighet for eksempel tid, posisjon, temperatur, lydstyrke, lysintensitet,... Analoge signaler er utsatt for forvrengning og feil. Digitale signaler kan overføres feilfritt, og mye billigere, og kan komprimeres og krypteres multiplekses for økt overførings-kapasitet Digital signaloverføring forutsetter diskretisering av tiden av posisjonen av alt som vi måler som funksjon av tid og/eller sted INF1040-presentasjon-2

3 Fra tegn og råtekst til komplett nettsted Digital representasjon av tegn og tekster Sentrale internasjonale standarder. Skille mellom den digitale representasjonen og presentasjonen. Eksempel: hvordan nettsider med tilhørende stilark kan konstrueres. Markeringsspråk - for å legge inn tilleggsopplysninger om teksten. XML - som er det toneangivende markeringsspråket. Hvordan bygge en nettside ved hjelp av markeringsspråket XHTML. INF1040-presentasjon-3

4 Representasjon av tall og geometrier Tallsystemer. Titallsystemet, det binære og det heksadesimale tallsystemet. Hvordan vi kan konvertere mellom disse tallsystemene. Digital representasjonen av tall Enkle regneregler for binære tall Heltall og reelle tall, både positive og negative, representert binært Verdiområder og presisjon Moduloregning, også kalt klokkearitmetikk. Koordinater og koordinatsystemer Hvordan beskrive punkter på en linje, i et plan, i et rom osv. Representasjon av geometriske former og figurer digitale kart. INF1040-presentasjon-4

5 Hørsel, lydbølger og digital lyd En kortfattet beskrivelse av hvordan hørselen fungerer. Et grunnlag for hvordan lyd bør digitaliseres. Vi kan oppnå vesentlig besparelser i datamengdene ved å bare ta vare på de delene av et sammensatt lydsignal som vi er i stand til å høre. Lydbølger, og det begrepsapparatet vi har bruk for. Hvordan finner vi ut hvilke frekvenser som finnes i et lydsignal. Digitaliseringen av et lydsignal ved sampling, kvantisering og lagring. Hvor tett vi må ta prøver sampler av lydintensiteten? Hvor mange mulige verdier vi må ha for intensiteten? Hvordan kan et digitalisert signal avspilles. Noen lagringsformater for lyd gjennomgås, slik som MP3. Digital radio (DAB) og noen alternative løsninger blir også omtalt. INF1040-presentasjon-5

6 Syn, avbildning og digitale bilder En kortfattet beskrivelse av hvordan synssansen fungerer. En bakgrunn for hvordan bilder bør digitaliseres og prosesseres. Avbildning med en enkel linse. Hva er den geometriske oppløsning? Hvor stort blir bildet av et objekt? Hvor små detaljer i objektet vi kan se i bildet? Hvor mange detektorer vi må ha i bildeplanet? Digitaliseringen av et bilde ved sampling, kvantisering og lagring. Hvor tett vi må sample et analogt bilde? Hvor mange bitposisjoner vi bør ha i hver piksel. Raster og vektorrepresentasjon. INF1040-presentasjon-6

7 Fargebilder, video og digital bildeanalyse En innføring i hvordan vi og et kamera- kan oppfatte farger. Noen av de vanligste metodene for representasjon av farger. teknikker for framvisning og utskrift av bilder. noen av de vanligste digitale bildeformatene. Fra stillbilder til digital video og digital kino Teknikker for kompresjon av video og lagring på DVD, HD DVD, Blu-ray. Noen steg i et system for digital bildeanalyse Eksempel: Et system for automatisk gjenkjenning av tekst i bilder. INF1040-presentasjon-7

8 Kompresjon og kryptering Kompresjon og koding av masse tekst, mye lyd og mange bilder. Teknikker for kompresjon av tekst, signaler, bilder og video. Eksakte og lossy teknikker. Dere vil bli i stand til å utføre en Huffman-koding. Dere vil lære om Lempel-Ziv koding og JPEG kompresjon. Kryptering og steganografi det vi vil holde for oss selv. Metoder for å kryptere meldinger (tekst, lyd, bilde, video). Steganografi og vannmerking blir også gjennomgått. INF1040-presentasjon-8

9 INF1040 et nyttig kurs! Digital teknologi omgir oss hele tiden. i PC er, mobiltelefoner MP3-spillere og små minnepinner. Digitale data overføres og avspilles hele tiden i et ufattelig omfang. Hensikten med kurset er å gi innsikt i hvordan disse kolossale mengdene med data kan håndteres. Dere bør ikke bare være brukere dere bør forstå hvordan teknologien virker. Vi skal innom mange temaer, og underveis skal vi ha det trivelig! Det blir mykje lyd og mange bilder. NB! Til kurset er det skrevet en splitter ny lærebok. Løp og kjøp!!! INF1040-presentasjon-9

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet. Ditt kandidatnr: DETTE ER ET LØSNINGSFORSLAG Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 7. desember 2007 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11)

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det

Detaljer

INF1040 Oppgavesett 7: Tall og geometrier

INF1040 Oppgavesett 7: Tall og geometrier INF1040 Oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende

Detaljer

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet

Eksamen i INF 1040, 5. desember Det matematisk-naturvitenskapelige fakultet Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Fredag 5. desember 2008 Tid for eksamen : 09.00 12.00 Oppgavesettet er på

Detaljer

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av.

Læringsmål tall. Kunne prefikser for store tall i. det binære tallsystemet. Forstå ulike prinsipper for representasjon av. Tall 1111 0000 0001 1101 1110-2 -1 0 1 2 0010 0011-3 3 1100-4 4 0100 1011-5 -6 6 5 0101 1010-7 -8 7 0110 1001 1000 0111 (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) INF1040-Tall-1 Kunne prefikser for store

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding

Løsning av øvingsoppgaver, INF2310, 2005, kompresjon og koding Løsning av øvingsoppgaver, INF230, 2005,. Vi har gitt følgende bilde: kompresjon og koding 0 2 2 2 3 3 3 2 3 3 3 0 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen av

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet

Læringsmål tall. Prefikser for potenser av Store tall. Kunne prefikser for store tall i. det binære tallsystemet Tall Kunne prefikser for store tall i Læringsmål tall 0000 000 titallsstemet t t 0 0-2 - 0 2-3 3 000 00 det binære tallsstemet Forstå ulike prinsipper for representasjon av 00-4 4 000 negative heltall

Detaljer

INF1040 Digital representasjon Oppsummering

INF1040 Digital representasjon Oppsummering INF1040 Digital representasjon Oppsummering Ragnhild Kobro Runde, Fritz Albregtsen INF1040-Oppsummering-1 Fredag 7. desember 2007. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

MAT1030 Forelesning 3

MAT1030 Forelesning 3 MAT1030 Forelesning 3 Litt om representasjon av tall Dag Normann - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:22) Kapittel 3: Litt om representasjon av tall Hva vi gjorde forrige uke Vi diskuterte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

Kapittel 3: Litt om representasjon av tall

Kapittel 3: Litt om representasjon av tall MAT1030 Diskret Matematikk Forelesning 3: Litt om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 3: Litt om representasjon av tall 26. januar 2010 (Sist oppdatert:

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF2310, våren 2009 6. Vi har gitt følgende bilde: kompresjon og koding del I 1 0 1 2 2 2 3 3 3 1 1 1 2 1 1 3 3 3 1 0 1 1 2 2 2 3 3 2 1 2 2 3 2 3 4 4 2 1 2 3 2 2 3 4 4 2

Detaljer

Oppsummering 2008 del 1

Oppsummering 2008 del 1 INF1040 Digital it representasjon Oppsummering 2008 del 1 Ragnhild Kobro Runde INF1040-Oppsummering-1 Fredag 5. desember 2008. 09.00 12.00 Møt senest 08.45! Ta med legitimasjon! Eksamen I Ingen hjelpemidler

Detaljer

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 INF 40 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 Utlevering: onsdag 17. oktober 2007, kl. 17:00 Innlevering: fredag 2. november 2007, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave IT Informatikk basisfag 4/9 Sist gang: manipulering av bits I dag: Representasjon av bilde og lyd Heksadesimal notasjon Organisering av data i hovedminne og masselager (elektronisk, magnetisk og optisk

Detaljer

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3

INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 INF 1040 Digital representasjon 2006 Utkast til - Obligatorisk oppgave nr 3 Utlevering: fredag 3. november 2006, kl. 12:00 Innlevering: fredag 17. november 2006, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til

Detaljer

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I

Løsningsforslag, Ukeoppgaver 9 INF2310, våren kompresjon og koding del I Løsningsforslag, Ukeoppgaver 9 INF23, våren 2 6. Vi har gitt følgende bilde: kompresjon og koding del I 2 2 2 3 3 3 2 3 3 3 2 2 2 3 3 2 2 2 3 2 3 4 4 2 2 3 2 2 3 4 4 2 2 2 3 3 3 4 3 4 a. Finn Huffman-kodingen

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Noen begreper 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding 7. Lempel-Ziv koding 8. JPEG koding

Detaljer

Raster VS Vektor. Stian Larsen Raster

Raster VS Vektor. Stian Larsen Raster Raster VS Vektor. Stian Larsen 29.09.10 Raster Raster grafikk, også kalt punktgrafikk, presenterer et bilde i biter av informasjon. Denne informasjonen blir til piksler som har fargekoder og informasjon

Detaljer

DAB+ Svaret er overføring, særinteresser og lite annet.

DAB+ Svaret er overføring, særinteresser og lite annet. DAB+ DAB står for Digital Audio Broadcast, på norsk digital lydkringkasting. De to DAB-variantene DAB og DAB+ er beskrevet lengre ned. Legg merke til at digital ikke er forsøkt oversatt, det har gått inn

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

Sampling, kvantisering og lagring av lyd

Sampling, kvantisering og lagring av lyd Litteratur : Temaer i dag: Neste uke : Sampling, kvantisering og lagring av lyd Cyganski kap 11-12 Merk: trykkfeilliste legges på web-siden Sampling av lyd Kvantisering av lyd Avspilling av samplet og

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD

INF 1040 høsten 2009: Oppgavesett 12 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 16 og 17) 13. Lagring av video på DVD INF 040 høsten 2009: Oppgavesett 2 Digital video og digital bildeanalyse (løsningsforslag) (kapittel 6 og 7) 3. Lagring av video på DVD a) Med en bitrate på 250 Mbit/s, hvor lang tidssekvens av en digital

Detaljer

INF 1040 Kompresjon og koding

INF 1040 Kompresjon og koding INF 1040 Kompresjon og koding Tema i dag : 1. Hvor mye informasjon inneholder en melding? 2. Redundans 3. Differanse- og løpelengdetransformer 4. Gray kode 5. Entropi 6. Shannon-Fano og Huffman koding

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF1040 Digital representasjon Eksamensdag : Torsdag 7. desember 2006 Tid for eksamen : 09.00 12.00 Oppgavesettet er

Detaljer

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP)

INF januar 2017 Ukens temaer (Kap med drypp fra kap. 4. i DIP) 25. januar 2017 Ukens temaer (Kap 2.3-2.4 med drypp fra kap. 4. i DIP) Romlig oppløsning Sampling av bilder Kvantisering av pikselintensiteter 1 / 27 Sampling av bilder Naturen er kontinuerlig (0,0) j

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen 27.01.2014 INF2310 1 Temaer i dag Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 231 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

DV - CODEC. Introduksjon

DV - CODEC. Introduksjon DV - CODEC EN KORT PRESENTASJON I INF 5080 VED RICHARD MAGNOR STENBRO EMAIL: rms@stenbro.net 21. April 2004 Introduksjon Dv-codecen ble utviklet spesielt for bruk i både profesjonelle og konsumer kamera.

Detaljer

Grunnleggende om Digitale Bilder (ITD33515)

Grunnleggende om Digitale Bilder (ITD33515) Grunnleggende om Digitale Bilder (ITD33515) Lars Vidar Magnusson January 13, 2017 Delkapittel 2.2, 2.3, 2.4 og 2.5 Lys og det Elektromagnetiske Spektrum Bølgelengde, Frekvens og Energi Bølgelengde λ og

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,

Detaljer

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS

Tall. Posisjons-tallsystemer. Representasjon av heltall. Tall positive, negative heltall, flytende tall. Tekst ASCII, UNICODE XML, CSS Tall jfr. Cyganski & Orr 3..3, 3..5 se også http://courses.cs.vt.edu/~csonline/numbersystems/lessons/index.html Tekst ASCII, UNICODE XML, CSS Konverteringsrutiner Tall positive, negative heltall, flytende

Detaljer

INF1400 Kap 1. Digital representasjon og digitale porter

INF1400 Kap 1. Digital representasjon og digitale porter INF4 Kap Digital representasjon og digitale porter Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell

Detaljer

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital INF 14 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Analog eller digital, kontinuerlig eller diskret 2. Sampling, kvantisering, digitalisering 3. Nyquist-Shannon teoremet 4. Oversampling,

Detaljer

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6 Tall Tallsstemer - - - - = = 7B - - -7-8 7 Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = + + + + 7 eller: 7 = ( * ) + ( * ) + ( * ) +

Detaljer

INF 1040 Sampling, kvantisering og lagring av lyd

INF 1040 Sampling, kvantisering og lagring av lyd INF 1040 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Analog eller digital, kontinuerlig eller diskret 2. Sampling, kvantisering, digitalisering 3. Nyquist-Shannon teoremet 4. Oversampling,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L

Representasjon av tall på datamaskin Kort innføring for MAT-INF1100L Representasjon av tall på datamaskin Kort innføring for MAT-INF00L Knut Mørken 3. desember 204 Det er noen få prinsipper fra den første delen av MAT-INF00 om tall som studentene i MAT-INF00L bør kjenne

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

E K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Dato: 7. Desember 2016 Varighet:

E K S A M E N. Universitetet i Agder Fakultet for fakultet for Teknologi og realfag. Dato: 7. Desember 2016 Varighet: Universitetet i Agder Fakultet for fakultet for Teknologi og realfag E K S A M E N Emnekode: Emnenavn: DAT229 Video Dato: 7. Desember 2016 Varighet: 0900-1200 Antall sider inkl. forside 5 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

Om obligatoriske oppgave 2 Bakgrunn og tips

Om obligatoriske oppgave 2 Bakgrunn og tips Kompresjon p.1/14 Om obligatoriske oppgave 2 Bakgrunn og tips Forelesning 31/10, 2005 MAT-INF1100 Kompresjon p.2/14 Oblig 2 Hovedelementer 1. Dekomponering og interpolasjon 2. Kompresjon Siktemål Gi eksempler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

Vannmerking. Tradisjonell Vannmerking

Vannmerking. Tradisjonell Vannmerking Vannmerking Et foredrag av Erlend Nilsen og Joakim Blomskøld Tradisjonell Vannmerking Teknologi fra så tidlig som på 1200-tallet. Kjemisk behandling av papir, bruk av usynlig blekk, liten skrift og lignende.

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II

Lempel-Ziv-koding. Lempel-Ziv-koding. Eksempel på Lempel-Ziv. INF 2310 Digital bildebehandling. Kompresjon og koding Del II Lempel-Ziv-koding INF 2310 Digital bildebehandling Kompresjon og koding Del II LZW-koding Aritmetisk koding JPEG-kompresjon av gråtonebilder JPEG-kompresjon av fargebilder Rekonstruksjonsfeil i bilder

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Digitale verktøy Mina Gulla 28/09/10. Grafikk og bilder. Oppgave T4: Digitale bilder

Digitale verktøy Mina Gulla 28/09/10. Grafikk og bilder. Oppgave T4: Digitale bilder Digitale verktøy Mina Gulla 28/09/10 Grafikk og bilder. Oppgave T4: Digitale bilder 1) Det er i hovedsak to måter å representere digitale bilder, raster (punkter) og vektorer (linjer og flater). Redegjør

Detaljer

Hovedpunkter. Digital Teknologi. Digitale Teknologi? Digitale Teknologi? Forelesning nr 1. Tall som kun er representert ved symbolene 0 og 1

Hovedpunkter. Digital Teknologi. Digitale Teknologi? Digitale Teknologi? Forelesning nr 1. Tall som kun er representert ved symbolene 0 og 1 3 Digital Teknologi Forelesning nr Digitale Teknologi? Teknologi som opererer med digitale signaler, eller diskrete data. Vi skal se at det er mange fordeler med digitale systemer 4 Desimale / binære tall

Detaljer

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER

PLASS og TID IN 106, V-2001 KOMPRESJON OG KODING 30/ Fritz Albregtsen METODER ANVENDELSER IN 106, V-2001 PLASS og TID Digitale bilder tar stor plass Eksempler: a 512 512 8 bits 3 farger 63 10 6 bits KOMPRESJON OG KODING 30/4 2001 b 24 36 mm fargefilm digitalisert ( x = y=12µm) 2000 3000 8 3

Detaljer

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover.

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lyd Hva er lyd? Sinuser, frekvenser, tidssignaler Hvordan representere lydsignaler matematisk? Litt praktisk informasjon Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lydeksemplene

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

INF1400 Kap 0 Digitalteknikk

INF1400 Kap 0 Digitalteknikk INF1400 Kap 0 Digitalteknikk Binære tall (ord): Digitale signaler: Hva betyr digital? Tall som kun er representert ved symbolene 0 og 1 (bit s). Nøyaktighet gitt av antall bit. (avrundingsfeil) Sekvenser

Detaljer

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet

Læringsmål. INF1000: Forelesning 12. Hovedkilde. Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet INF1000: Forelesning 12 Digital representasjon av tall og tekst Læringsmål Kunne binærtall og heksadesimale tall og konvertering mellom ulike tallsystemer: Titallsystemet Det heksadesimale Det binære tallsystemet

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

INF 1040 høsten 2008: Oppgavesett 10 Digitale bilder (kapittel 12,13,14)

INF 1040 høsten 2008: Oppgavesett 10 Digitale bilder (kapittel 12,13,14) INF 1040 høsten 2008: Oppgavesett 10 Digitale bilder (kapittel 12,13,14) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det er ikke

Detaljer

MAT1030 Forelesning 13

MAT1030 Forelesning 13 MAT1030 Forelesning 13 Funksjoner Roger Antonsen - 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) Kapittel 6: Funksjoner Opphenting Forrige forelesning snakket vi veldig grundig om relasjoner Vi snakket

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 7. juni 2016 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall

Tall. Binære regnestykker. Binære tall positive, negative heltall, flytende tall Tall To måter å representere tall Som binær tekst Eksempel: '' i ISO 889-x og Unicode UTF-8 er U+ U+, altså Brukes eksempelvis ved innlesing og utskrift, i XML-dokumenter og i programmeringsspråket COBOL

Detaljer

Velkommen til MAT1030!

Velkommen til MAT1030! MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo Velkommen til MAT1030! 13. januar 2009 (Sist oppdatert:

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. januar 2009 (Sist oppdatert: 2009-01-14 16:44) Velkommen

Detaljer

INF1040 Oppgavesett 6: Lagring og overføring av data

INF1040 Oppgavesett 6: Lagring og overføring av data INF1040 Oppgavesett 6: Lagring og overføring av data (Kapittel 1.5 1.8) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv -oppgavene. Fasitoppgaver Denne seksjonen inneholder innledende oppgaver

Detaljer

Digitalisering av lyd

Digitalisering av lyd Digitalisering av lyd Denne øvelsen er basert på materiale som Tore A. Danielsen utviklet som del av sin masteroppgave i fysikkdidaktikk. Arnt Inge Vistnes har også bidratt med ideer og diskusjoner. Hva

Detaljer

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER

PLASS og TID INF Fritz Albregtsen. Tema: komprimering av bilder ANVENDELSER METODER PLASS og TID INF 60-30042002 Fritz Albregtsen Tema: komprimering av bilder Litteratur: Efford, DIP, kap 2 Digitale bilder tar stor plass Eksempler: a 52 52 8 bits 3 farger 63 0 6 bits b 24 36 mm fargefilm

Detaljer

INF1040 Oppgavesett 14: Kryptering og steganografi

INF1040 Oppgavesett 14: Kryptering og steganografi INF1040 Oppgavesett 14: Kryptering og steganografi (Kapittel 19) Husk: De viktigste oppgavetypene i oppgavesettet er Tenk selv - og Prøv selv - oppgavene. Fasitoppgaver 1. Krypter følgende strenger ved

Detaljer

OBLIG 2 WEBUTVIKLING

OBLIG 2 WEBUTVIKLING OBLIG 2 WEBUTVIKLING Oppgave 1 Design ved hjelp av skisser eller wireframes et nettsted med et "avansert" design. Lag spesifikke design for ulike skjermstørrelser og utskrift. Fokuser spesielt på å få

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting

Forelesning 13. Funksjoner. Dag Normann februar Opphenting. Opphenting. Opphenting. Opphenting Forelesning 13 Dag Normann - 25. februar 2008 Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner. Vi definerte hva vi mener med partielle ordninger og med totale ordninger. Deretter snakket

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO okmål ksamen i IN igital representasjon. des. UNIVRSITTT I OSLO et matematisk-naturvitenskapelige fakultet ksamen i : IN igital representasjon ksamensdag : Onsdag. desember Tid for eksamen :.. Oppgavesettet

Detaljer

SOSI standard - versjon 3.0 1-131. DEL 1 SOSI-raster

SOSI standard - versjon 3.0 1-131. DEL 1 SOSI-raster SOSI standard - versjon 3.0 1-131 DEL 1 SOSI-raster SOSI standard - versjon 3.0 1-132 DEL 1 SOSI-raster - Historikk og status Denne side er blank 1-132 SOSI standard - versjon 3.0 1-133 DEL 1 SOSI-raster

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 25. februar 2008 Opphenting Forrige forelesning fortsatte vi innføringen av ekvivalensrelasjoner.

Detaljer

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6

Gråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde? INF Hovedsakelig fra kap. 6.3 til 6.6 Hvordan endre kontrasten i et bilde? INF 230 Hovedsakelig fra kap. 6.3 til 6.6 Histogrammer Histogramtransformasjoner Histogramutjevning Histogramtilpasning Histogrammer i flere dimensjoner Matematisk

Detaljer

INF1040 Digital representasjon. Oppsummering. Glyfer og tegn. Den endelige løsning UNICODE og ISO bit ulike tegn!

INF1040 Digital representasjon. Oppsummering. Glyfer og tegn. Den endelige løsning UNICODE og ISO bit ulike tegn! INF040 Digital representasjon Oppsummering Glyfer og tegn Tegn: Det bakenforliggende begrep for bestemte visualiseringer ( strektegninger ) på papir, skjerm, steintavler Et tegn kan vises fram med ulike

Detaljer

Dagens plan. INF3170 Logikk

Dagens plan. INF3170 Logikk INF3170 Logikk Dagens plan Forelesning 1: Introduksjon og mengdelære Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 Hva skal vi lære? 22. januar 2007 3

Detaljer

MAT1030 Forelesning 13

MAT1030 Forelesning 13 MAT1030 Forelesning 13 Funksjoner Dag Normann - 2. mars 2010 (Sist oppdatert: 2010-03-02 14:15) Kapittel 6: Funksjoner Forrige uke Forrige forelesning snakket vi om relasjoner. Vi snakket om ekvivalensrelasjoner

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 4. mars 2009 (Sist oppdatert: 2009-03-06 18:57) MAT1030 Diskret

Detaljer

Oppgave T4 Digitale Bilder

Oppgave T4 Digitale Bilder Oppgave T4 Digitale Bilder 1) Det er i hovedsak to måter å representere digitale bilder, raster (punkter) og vektorer (linjer og flater). Redegjør for disse to typene, diskuter fordeler og ulemper. Rastergrafikk:

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 13: Funksjoner Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 6: Funksjoner 2. mars 2010 (Sist oppdatert: 2010-03-02 14:14) MAT1030 Diskret Matematikk

Detaljer

LOKALE BRUKERVEILEDNINGER FOR BRUK AV LYD OG LYSUTSTYR I KONSMO FLERBRUKSHALL (sist oppdatert 21.8.2015)

LOKALE BRUKERVEILEDNINGER FOR BRUK AV LYD OG LYSUTSTYR I KONSMO FLERBRUKSHALL (sist oppdatert 21.8.2015) LOKALE BRUKERVEILEDNINGER FOR BRUK AV LYD OG LYSUTSTYR I KONSMO FLERBRUKSHALL (sist oppdatert 21.8.2015) Trykk midt PÅ panelet for og SKRU PÅ STYRINGSPANELET FORKLARING AV PANELETS INNHOLD 1. Projektor

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer