Strekkforankring av stenger med fot

Størrelse: px
Begynne med side:

Download "Strekkforankring av stenger med fot"

Transkript

1 236 B19 FORAKRIG AV STÅL Strekkforankring av stenger med fot Generelt kjeglebrudd Anvisningene her baserer seg delvis på J. Hisdal, Masteroppgave \10\. Masteroppgaven analyserer hovedsakelig anbefalingene i den forrige utgaven av Betongelementboken (2005), Eligehansen \9\, ACI \11\, PCI \12\, CE/TS \13\ og EC4-1-1 \14\. Litteraturhenvisningene gjelder først og fremst for sveisebolter med høy kvalitet og standardiserte utforminger. Anvisningene her gjelder for de stålkvalitetene og utformingene som er vist i følgende punkter. Som omtalt i forrige punkt vil ikke spaltebrudd, pullout brudd eller blowout brudd være aktuelle bruddformer. Som navnet tilsier er dette et betongbrudd der den utrevne betongbiten har en kjegleform (sirkulær bunn) se figur B Tidligere anvisninger baserte seg på en 45 kjegle. yere forsøk viser at bruddvinkelen er minst for små lengder (l), og større for større lengder. De nye anvisningene baserer seg på en mengde nye forsøk og forutsetter en pyramide på ca. 35 med kvadratisk bunn se figur B Denne bruddfiguren og formlene er helt empiriske, og laget for å gi kapasiteter i samsvar med prøveresultatene. Variasjon i bruddvinkel ivaretas ved å sette l 1,5 inn i formelverket i stedet for l 2. Redusert bruddareal A c Figur B Kjeglebrudd. = k f A c s ck,cube c A 0 c, A 0 c, l Bruddareal A c a) Generelt oppriss, bruddareal b) Plan, stor kantavstand c) Plan, liten kantavstand 35 a) Bruddflaten er idealisert som en pyramide hvor det beregningsmessige bruddarealet er grunnflaten A 0 c, b) Oppriss bruddareal c) Projisert bruddareal Den dimensjonerende utrivingskapasiteten til en forankring når det er store kantavstander og senteravstander (urisset uarmert betong): 0 Rd,c = (11,9 / γ c ) f ck,cube 1,5 = k 1 1,5 [,mm] Figur B Idealisert kjeglebrudd. Det første leddet k 1 får følgende verdier med γ c = 1,5:

2 B19 FORAKRIG AV STÅL 237 Tabell B Verdier for k 1 med γ c = 1,5 B30 k 1 = 11,9 / 1,5 37 = 7, = 48 /mm 1,5 B35 k 1 = 7, = 53,2 /mm 1,5 B45 k 1 = 7, = 58,8 /mm 1,5 B55 k 1 = 7, = 64,9 /mm 1,5 Eksempelvis dersom vi har = 195 mm i B35, får vi: 0 Rd,c = 53, ,5 = = 145 k For risset betong med kantarmering og bøyler anvendes k 1 som vist. I risset uarmert betong (uten kantarmering eller bøyler) anvendes 0,7 k 1. I forrige Betongelementbok, tabell B var kapasiteten angitt som cdo = 129 k Virkning av kant- og senteravstander I henhold til figur B blir bruddarealet til en enkelt forankring med store avstander: A 0 c, = (3 ) (3 ) = 9 2 Bruddareal til aktuell forankring eller forankringsgruppe kalles A c, og blir vanligvis mindre enn summen av enkeltarealene. Kapasiteten til aktuell forankring eller forankringsgruppe regnes slik: Rd,c = 0 Rd,c A c, / A 0 c, Bestemmelse av bruddarealet A c, er vist i følgende figur og eksempel: 3 A c 3 3 a 1 A c Figur B Bruddareal for beregning av kapasitet ved kjeglebrudd. A c = A 0 c = (2 1,5 ) (2 1,5 ) = (3 ) 2 = 9 2 a) En forankring med stor avstand til kant og til andre forankringer A c = (a 1 + 1,5 ) (2 1,5 ) når a 1 1,5 b) En forankring nær kant 3 A c s 1 s 2 a2 a 1 s 1 A c A c = (2 1,5 +s 1 ) (2 1,5 ) A c = (a 1 +s 1 + 1,5 ) (a 2 +s 2 + 1,5 ) når s 1 3,0 når a 1 og a 2 1,5 og s 1 og s 2 3,0 h c) To forankringer med stor ef avstand til kant d) Fire forankringer nær et hjørne Eksempel B Beregning av A c, / A 0 c, Figur B viser en forbindelse bestående av fire forankringer. Den effektive høyden er = 150 mm. I a) vil bruddarealet begrenses av to kanter mens det kan dannes et fullstendig bruddareal i b). ødvendig kantavstand for å sikre en fullstendig bruddkjegle er 1,5 = 225 mm.

3 238 B19 FORAKRIG AV STÅL = A c = 225 = A c = 225 Figur B Eksempel på beregning av A c, / A 0 c, for fire forankringer. a) Små kantavstander b) Stor avstand til kanter Arealene A 0 c, og A c, blir da: Fullstendig areal for én forankring: A 0 c, = 9 h 2 ef = = mm 2 Eksempel med små kantavstander (figur B a): A c, = (1, ) ( ,5 ) A c, = ( ) ( ) = A c, = mm 2 A c, /A 0 c, = / = 1,22, det vil si at Rd,c = 1,22 0 Rd,c Eksemplene viser at selv normale senteravstander og kantavstander gir vesentlig reduksjon i kapasiteten i uarmert betong. Eventuelle ytterligere reduksjoner er behandlet i neste avsnitt. Øvre grense for i hjørner på smale betongelementer I tilfeller der forankingen er nær tre eller flere kanter (se figur B 19.13) gir formelverket for små kapasiteter (forholdet A c, /A 0 c, blir svært lite). Dette motvirkes ved å erstatte den virkelige med en tenkt h ef. h ef erstatter den virkelige i alle formler som inngår i punkt Figur B Redusert effektiv forankringslengde h ef for hjørner i smale betongelementer. s1 h ef a 1 a 2,1 s 2 a 2,2 a 1,1 s 1 a 1,2 a 2,1 s 2 a 2,2 a) Oversikt b) Vegg-ende c) Søyletopp h ef = den største av {[a maks / (1,5 )] ; [s maks / (3 )] } h ef = den største av [a maks / 1,5; s maks / 3] der maksimal kantavstand fra senteret av forankringen og til betongkanten:

4 B19 FORAKRIG AV STÅL 239 a maks = den største av [a 1 ; a 2,1 ; a 2,2 ] 1,5 a maks = den største av [a 1,1 ; a 1,2 ; a 2,1 ; a 2,2 ] 3 og maksimal senteravstand s maks = den største av [s 1 ; s 2 ] 3 [Figur B b)] [Figur B c)] Eksempel B Bestemmelse av h ef skal bestemmes for en forbindelse tilsvarende figur B c. = 200 mm 1,5 = 1,5 200 = 300 mm 3 = = 600 mm a 1,1 = 120 mm a 1,2 = 80 mm a 2,1 = 110 mm a 2,2 = 100 mm s 1 = 80 mm s 2 = 100 mm Bestemmer a maks og s maks : a maks = maks[120; 80; 110; 100] = 120 mm s maks = maks[80; 100] = 100 mm h ef = maks [120/1,5; 100/3] = 80 mm For dette eksempelet skal altså h ef = 80 mm brukes i alle kapasitetsformlene i stedet for = 200 mm. I praksis vil det alltid være armering i slike soner. Det anbefales da heller å sikre forankringen via tilleggsarmering som vist i senere avsnitt Andre reduksjonsfaktorer I den komplette kapasitetsformelen inngår også faktorene Ψ s,, Ψ re, og Ψ ec,. Bestemmelse av Ψ s, : ψ s, er en faktor som tar hensyn til at bruddlasten reduseres ytterligere når den rotasjonssymmetriske spenningstilstanden i betongen forstyrres som følge av korte kantavstander (se figur B 19.14). Ψ s, = 0,7 + 0,3 a / (1,5 ) 1,0 a Figur B Spenningstilstand i betongen, faktor Ψ s, a) Langt unna kanter b) ær en kant a er avstanden til kant. Dersom det er flere kanter med avstand mindre enn 1,5, velges den minste. Dette er for eksempel tilfelle for en forbindelse plassert i et hjørne (se figur B d).

5 240 B19 FORAKRIG AV STÅL Ifølge Eligehausen \9\ kan dette sammenlignes med den reduserende bruddlasten man får ved risset kontra urisset betong. Ved forsøk har man kommet frem til at bruddlasten i risset tilstand er ca. 70 % av bruddlasten i urisset betong. Dette finner vi igjen i formelen. Dersom a = 0, det vil si at forankringen er helt i kanten (kun i teorien), reduseres bruddlasten med en faktor lik 0,7. I motsatt tilfelle der det er tilstrekkelig kantavstand til at en fullstendig bruddkjegle kan dannes, vil Ψ s, bli 1,0, og bruddlasten reduseres altså ikke ytterligere. For eksempelet vist i figur B vil følgende verdier være aktuelle: Små kantavstander: Ψ s, = 0,7 + 0,3 (80 / 225) = 0,81. Dette reduserer altså R Rd,c ytterligere. Store kantavstander: Ψ s, = 0,7 + 0,3 (1,5 / 1,5 ) = 1,0 Bestemmelse av Ψ re, : ψ re, er en faktor som tar hensyn til at armering nær overflaten til betongen kan gi uheldige strekkspenninger i betongen når den effektive forankringsdybden er mindre enn 100 mm. Ψ re, = 0,5 + / 200 1,0 Dette betyr at i alle vanlige praktiske tilfeller kan man anta Ψ re, = 1,0 Bestemmelse av Ψ ec, : Ψ ec, er en faktor som tar hensyn til at strekkraften kan virke eksentrisk på forbindelsen. [Figur B 19.15] Ψ ec, = 1 / {1 + 2 [e / (3 )]} 1,0 /2 s /2 s s e = 0 e e = s/2 e er avstanden mellom strekkraften og tyngdepunktet til forankringsgruppen. Dersom e = 0, det vil si lasten angriper sentrisk, blir Ψ ec, = 1,0 og det blir altså ingen reduksjon. Dersom e = 0,5 s der s er senteravstanden mellom forankringene, vil bruddlasten regnes som for en enkelt forankring, uavhengig av senteravstanden Forankringsfotens størrelse Forankringsfoten bør være så stor at betongens trykk mot foten ikke overskrider følgende verdier \13\: Urisset betong eller risset betong med kantarmering og bøyler: σ c = 8,4 f ck,cube / γ c Risset betong (uten kantarmering eller bøyler): σ c = 6,0 f ck,cube / γ c Trykket σ c regnes mot netto arealet: A h = A fot (π /4) Ø 2, slik at = σ c A h σ c Ø A fot Figur B Trykkbegrensing mot forankringsfot. Figur B Eksentrisk strekkraft, faktor Ψ ec,. σ c

6 B19 FORAKRIG AV STÅL 241 Ved å holde seg under disse begrensingene vil man unngå pullout brudd, og dermed kunne utvikle kjeglebrudd. Alle kjente standard løftemidler med sirkulær fot eller splittanker (kapittel C5) har forankringsfot som utvikler kjeglebrudd. Det samme gjelder gjengehylser med fot, eller bolthode som omtales i senere kapitler. Bolter med fot av standard bolthode og gjengestenger med fot av standard mutter, vil ofte være tilstrekkelig forankret se egne oversikter for dette senere. De empiriske formlene for kjeglebrudd er basert på forsøk med sveisebolter som har liten forankringsfot. Det finnes en del gjengehylser og løfteanker med såkalt «stor» forankringsfot se figur B Kjeglebruddet for slike forankringer kan antas som vist i figur B Svært ofte sikres dette med tilleggsarmering rett over foten. Se også eget avsnitt om gjengestang med fot og gjengehylser med spesielle forankringer. 1,5t f + u Standard fot Tilleggsfot u t t t f Figur B Kjeglebrudd. Forsterkning av fot. Figur B «Stor» forankringsfot og tilleggsarmering. a) Hylse b) Løfteanker Oppsummering av kjeglebrudd for uarmert betong Den komplette formelen for kjeglebrudd er: Rd,c = 0 Rd,c (A c, / A 0 c,) Ψ s, Ψ re, Ψ ec, Ψ S, er ekstra faktor (0,7 1,0) for kantavstander a < 1,5 som må tas med. Ψ re, = 1,0 når 100 mm. Ψ ec, = 1,0 når lasten er sentrisk i forhold til forankringene. Kapasitetsformelen blir derfor i de aller fleste normale tilfeller: Rd,c = 0 Rd,c (A c, / A 0 c,) Ψ s, Blowout brudd sikres ved overflatearmering. Pullout brudd sikres ved å bruke stor nok forankringsfot. Kapasitetstabeller for ulike typer innstøpingsgods finnes i senere avsnitt.

7 242 B19 FORAKRIG AV STÅL Armert betong Svært ofte vil senteravstander og kantavstander være så små at bruddkjeglene ikke gir nok utrivingskapasitet. Formlene her gir ingen addisjonseffekt av tilleggsarmering, så løsningen blir derfor å legge inn en armering som kan forankre hele kraften. Det mest effektive er å legge inn armeringsstenger parallelt med kraftretningen. Overføringen fra forankringsfoten til armeringen kan enklest dimensjoneres med en stavmodell. Armeringen bør plasseres maksimalt 0,75 fra innstøpningsgodset, og må forankres til begge sider av beregnet bruddkjegle. Figurene B og B viser typiske tilfeller. Forankringslengden inn i kjegleområdet vil vanligvis kreve U-bøyler og tverrstenger som utformes og dimensjoneres som vist i senere avsnitt om forankring av armering. < 0,75 x l bd l b,eq Tverrstenger Forankringsarmering Figur B Gjengehylse i sidekant av vegg. Typisk forankringsarmering for hele lasten. Hovedarmering er ikke vist. 2 x (/4) a) Oppriss b) Snitt < 0,75 x l bd l b,eq Tverrstenger Forankringsarmering Figur B Stålplate med fire sveisebolter. Typisk forankringsarmering for hele lasten. Hovedarmering er ikke vist. 2 x (/4) a) Oppriss b) Snitt Strekkforankring av kamstål Generelt om heftforankring Strekkforankring av kamstål dimensjoneres i henhold til EC2-1-1 kapittel 8. Generelt er nødvendig forankringslengde = kraft / (omkrets heftfasthet)

B19 FORANKRING AV STÅL

B19 FORANKRING AV STÅL B9 FORANKRING A STÅL Armeringen kan dimensjoneres ved jelp av en kraftmodell for ele kraften, se figur B 933 Legg merke til at slik armering ikke uten videre forindrer avskalling, fordi den ikke kan plasseres

Detaljer

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19.

Forskjellige bruddformer Bruddformene for uttrekk av stål (forankring) innstøpt i betong kan deles i forskjellige bruddtyper som vist i figur B 19. B19 FORAKRIG AV STÅL 231 uttrykk i en lav verdi på sikkerhetsfaktoren. Er SF oppgitt til 3 eller mindre (for betongbrudd), kan det tyde på at det er denne modellen som er brukt. Det innebærer at: x d =

Detaljer

19.3.3 Strekkforankring av kamstål

19.3.3 Strekkforankring av kamstål 242 19.3.2.6 Armert betong Svært ofte vil senteravstander og kantavstander være så små at bruddkjeglene ikke gir nok utrivingskapasitet. Formlene her gir ingen addisjonseffekt av tilleggsarmering, så løsningen

Detaljer

N 0 Rd,c > > > >44

N 0 Rd,c > > > >44 2.2.3 Dimensjonering av stagboltene Aktuelle bolter er Hilti HSA Ekspansjonsanker (kvikkbolt, stikkanker. stud anchor) i M16 og M20 og HSL3 Sikkerhetsanker (heavy duty anchor) i M20. I tillegg er HCA fjæranker

Detaljer

B19 FORANKRING AV STÅL

B19 FORANKRING AV STÅL 292 B19 FORAKRIG AV STÅL tabeller. Tabellene er basert på relevante forsøk som bør gå foran teoretiske beregninger. Husk at reglene for sikkerhetsvurdering angitt i punkt 19.2 skal følges! Tillatte brukslaster

Detaljer

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6.

C12 HULLDEKKER. Figur C Øvre grenselast. Ill. til tabell C 12.6. 248 C12 HULLDEKKER Det er som regel bare vridningsforbindelser som kan kreve så store strekk-krefter som N maks2, se figur C 12.9.a. Dersom forbindelsen skal overføre skjærkrefter mellom hulldekke og vegg

Detaljer

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering

C8 BJELKER. 8.1 OPPLEGG MED RETT ENDE Dimensjonering 180 I det følgende behandles typiske opplegg for bjelker. Dessuten gjennomgås dimensjonering av hylle for opplegg av dekker, mens dimensjonering av forbindelsen er vist i kapittel C11 for ribbeplater og

Detaljer

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll.

168 C7 SØYLER. Figur C Komplett fagverksmodell ved konsoller. Figur C Eksentrisk belastet konsoll. 168 C7 SØYLER Figur C 7.42. Komplett fagverksmodell ved konsoller. a) Sentrisk last over konsoll b) Eksentrisk last over konsoll Typiske prefabrikkerte søyler vil vanligvis ikke være maksimalt utnyttet

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE FORANKRINGSARMERING

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE FORANKRINGSARMERING MEMO 743 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE FORANKRINGSARMERING Siste rev.: Dok. nr.: 23.05.2016 K5-10-743 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET BALKONG

Detaljer

TSS 102 ANBEFALT ARMERINGSMØNSTER

TSS 102 ANBEFALT ARMERINGSMØNSTER MEMO 57 Dato: 04.10.2011 Sign.: sss TSS 102 Siste rev.: 20.05.2016 Sign.: sss ANBEFALT ARMERINGSMØNSTER Dok. nr.: K3-10/57 Kontr.: ps DIMENSJONERING TSS 102 ANBEFALT ARMERINGSMØNSTER Figur 1: Anbefalt

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense.

C13 SKIVER 275. Tabell C Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. C13 SKIER 275 Tabell C 13.12. Skjærkapasitet til svært glatt og urisset støpt fuge. Heft og øvre grense. Rd (kn/m) Fuge- B25, γ c = 1,8 B30, γ c = 1,8 B35, γ c = 1,8 bredde f cd = 11,8 MPa f cd = 14,2

Detaljer

B19 FORANKRING AV STÅL 297

B19 FORANKRING AV STÅL 297 B19 FORANKRING AV STÅL 297 19.11 FORANKRING AV ARMERING I denne sammenhengen betyr «armering» kamstål B500NC som støpes inn i elementer eller støpes inn i fuger på byggeplass. Sveising eller liming av

Detaljer

BSF EN KORT INNFØRING

BSF EN KORT INNFØRING Dato: 11.09.2014 Sign.: sss BSF EN KORT INNFØRING Siste rev.: 16.11.2018 Sign.: sss Dok. nr.: K4-10/551 Kontr.: ps PROSJEKTERING BSF EN KORT INNFØRING Denne innføringen er ment å gi en liten oversikt over

Detaljer

5.2.2 Dimensjonering av knutepunkter

5.2.2 Dimensjonering av knutepunkter 92 Det er derfor tilstrekkelig å kontrollere hver av lastene sine hovedretninger. Se også punkt 2.1.4 her. E Edx + 0 E Edy 0 E Edx + E Edy 5.2.1.8 Kraftfordeling til veggskivene Tar utgangspunkt i taket

Detaljer

5.1.2 Dimensjonering av knutepunkter

5.1.2 Dimensjonering av knutepunkter 80 H5 DIMENSJONERINGSEKSEMPLER V (kn) og M (knm) 500 0 500 1000 5 10 15 20 25 30 35 40 45 50 x (m) 1500 Snitt 4 (33,7 m < x < 50,8 m): F y = 0; det vil si: V f + h fy x H y2 H y5 H y4 = 0 V f = 10,1 x

Detaljer

122 C6 DIMENSJONERING AV FORBINDELSER

122 C6 DIMENSJONERING AV FORBINDELSER 122 C6 DIMENSJONERING AV FORBINDELSER Tabell C 6.1. Senteravstand på festemidler som gir kapasitet 20 kn/m. Kamstål (bind B, tabell B 19.11.2) B500NC Ø (mm): 8 10 12 16 20 25 N Rd,s = f yd A s (kn): 22

Detaljer

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt

7.3 SØYLETopp Grunnlaget finnes i bind B, punkt C7 SØYLER 159 Evt. shims Utstikkende søylejern Sentrisk gjengestang Utsparing (rør) gyses ved søylemontasje Figur C 7.28. Vanlig limeløsning. Illustrasjon til tabell C 7.6. u u a s Bjelke Korrugert rør

Detaljer

Dato: ps DIMENSJONERING

Dato: ps DIMENSJONERING MEMO 55d Dato: 26.04.2011 Sign.: sss TSS 101 Siste rev.: 20.05.2016 Sign.: sss ANBEFALT ARMERINGSMØNSTER Dok. nr.: K3-10/55d Kontr.: ps DIMENSJONERING TSS 101 ANBEFALT ARMERINGSMØNSTER Figur 1: Anbefalt

Detaljer

TSS 41 LOKAL DEKKEARMERING VERIFISERT MED TESTER

TSS 41 LOKAL DEKKEARMERING VERIFISERT MED TESTER Dato: 26.04.2011 Sign.: sss TSS 41 Siste rev.: 30.10.2018 Sign.: sss LOKAL DEKKEARMERING - Dok. nr.: K3-10/55c Kontr.: ps VERIFISERT MED TESTER DIMENSJONERING TSS 41 LOKAL DEKKEARMERING VERIFISERT MED

Detaljer

TSS 101 LOKAL DEKKEARMERING VERIFISERT MED TESTER

TSS 101 LOKAL DEKKEARMERING VERIFISERT MED TESTER Dato: 26.04.2011 Sign.: sss TSS 101 Siste rev.: 30.10.2018 Sign.: sss LOKAL DEKKEARMERING Dok. nr.: K3-10/55d Kontr.: ps VERIFISERT MED TESTER DIMENSJONERING TSS 101 LOKAL DEKKEARMERING VERIFISERT MED

Detaljer

TSS 41 ANBEFALT ARMERINGSMØNSTER

TSS 41 ANBEFALT ARMERINGSMØNSTER MEMO 55c Dato: 26.04.2011 Sign.: sss TSS 41 Siste rev.: 20.05.2016 Sign.: sss ANBEFALT ARMERINGSMØNSTER Dok. nr.: K3-10/55c Kontr.: ps DIMENSJONERING TSS 41 ANBEFALT ARMERINGSMØNSTER Figur 1: Anbefalt

Detaljer

C14 FASADEFORBINDELSER 323

C14 FASADEFORBINDELSER 323 C14 FASADEFORBINDELSER 323 Elementet Når mellomlegget har tilnærmet samme bredde som bærende elementvange i et veggelement, blir spaltestrekk på tvers av elementet ubetydelig. Spaltestrekk i lengderetningen

Detaljer

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50 240 Dato: 07.06.12 sss Side 1 av 6 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 STÅL, BETONG OG

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Prosjektering MEMO 551 EN KORT INNFØRING

Prosjektering MEMO 551 EN KORT INNFØRING Side 1 av 7 Denne innføringen er ment å gi en liten oversikt over bruk og design av forbindelsene, uten å gå inn i alle detaljene. er et alternativ til f.eks faste eller boltede søylekonsoller. enhetene

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 744 Dato: 1.01.016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.: 3.05.016 K5-10-744 Sign.: Kontr.: sss nb EKSEMPEL INNHOLD EKSEMPEL... 1 GRUNNLEGGENDE

Detaljer

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER

C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 207 9.1 TO-SKIPS INDUSTRIHALL Dette beregningseksemplet viser praktisk beregning av knutepunk t - ene i en to-skips industrihall, ved hjelp av tabellene

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

KAPASITETER OG DIMENSJONER TSS 102

KAPASITETER OG DIMENSJONER TSS 102 MEMO 53a Dato: Siste rev.: Dok. nr.: 04.10.2011 19.05.2016 K3-10/53a Sign.: Sign.: Kontr.: sss sss ps KAPASITETER OG DIMENSJONER PROSJEKTERING KAPASITETER OG DIMENSJONER enhetene skiller seg fra TSS 101

Detaljer

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering

MEMO 703a. Søyler i front - Innfesting i plasstøpt dekke Standard armering INNHOLD BWC 55-740 Dato: 15.05.2012 Side 1 av 19 FORUTSETNINGER...2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERRØR BRUKT I KOMBINASJON MED TSS... 2 TILLATT BRUDDLAST

Detaljer

STANDARD SVEISER OG ARMERING

STANDARD SVEISER OG ARMERING MEMO 733 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG STANDARD SVEISER OG ARMERING Siste rev.: Dok. nr.: 18.05.2016 K5-10/33 Sign.: Kontr.: sss jb STANDARD SVEISER

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 712 Dato: 11.02.2015 Sign.: sss BWC H60 / BWC HV80 - SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE STANDARD ARMERING Siste rev.: Dok. nr.: 18.05.2016 K5-10/712 Sign.: Kontr.: sss ps INNHOLD TILLATT

Detaljer

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet

C11 RIBBEPLATER. Figur C Typiske opplegg for ribbeplater. a) Benyttes når bjelken og bjelkens opplegg tåler torsjonsmomentet C11 RIBBEPLATER 225 I det følgende behandles typiske opplegg for ribbeplater, samt noen typiske sveiseforbindelser. Beregning av ribbeplater som horisontalskiver er behandlet i kapittel C13. Generell beregning

Detaljer

KAPASITETER OG DIMENSJONER RVK101

KAPASITETER OG DIMENSJONER RVK101 MEMO 52 Dato: Siste rev.: Dok. nr.: 26.10.2011 06.12.2016 K3-10/52 Sign.: Sign.: Kontr.: sss sss ps KAPASITETER OG DIMENSJONER RVK101 PROSJEKTERING KAPASITETER OG DIMENSJONER RVK101 RVK-enhetene består

Detaljer

Dato: Siste rev.: Dok. nr.: EKSEMPEL

Dato: Siste rev.: Dok. nr.: EKSEMPEL MEMO 74a Dato: 09.03.0 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG EKSEMPEL Siste rev.: Dok. nr.: 8.05.06 K5-0/3 Sign.: Kontr.: sss ps EKSEMPEL INNHOLD GRUNNLEGGENDE FORUTSETNINGER

Detaljer

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71

C2 BJELKER. Fra figuren kan man utlede at fagverksmodellen kan bare benyttes når Ø (h h u 1,41 y 1 y 2 y 3 ) / 1,71 32 C2 BJELKER 2.1.3 Dimensjonering for skjærkraft For å sikre bestandigheten bør spenningen f yd i armeringen ved ut - sparinger begrenses i henhold til tabell C 6.5. Små utsparinger Når utsparingen Ø

Detaljer

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT

BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT MEMO 742 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNSPENT I PLASSTØPT DEKKE BEREGNING AV FORANKRINGSPUNKT Siste rev.: Dok. nr.: 23.05.2016 K5-10-742 Sign.: Kontr.: sss nb BWC 30-U UTKRAGET

Detaljer

STANDARD SVEISER OG ARMERING

STANDARD SVEISER OG ARMERING MEMO 723b Dato: 09.03.2011 Sign.: sss BWC 40-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG STANDARD SVEISER OG ARMERING Siste rev.: Dok. nr.: 18.05.2016 K5-10/12 Sign.: Kontr.: sss ps INNHOLD STANDARD

Detaljer

Dimensjonering Memo 37. Standard armering av bjelke ender BCC

Dimensjonering Memo 37. Standard armering av bjelke ender BCC Side 1 av 7 Standard armering for BCC 250 (NB! Dette er den totale armeringen i bjelke enden) For oversiktens skyld er bjelkens hovedarmering ikke tegnet inn på opprisset. Mellom de angitte bøyler i hver

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål)

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl Faglærer: Jaran Røsaker (betong) Siri Fause (stål) EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 23.05.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 13.06.2019 Antall oppgavesider (inkludert forside): 5 Antall vedleggsider: 4 Faglærer:

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

MEMO 733. Søyler i front - Innfesting i stålsøyle i vegg Standard sveiser og armering

MEMO 733. Søyler i front - Innfesting i stålsøyle i vegg Standard sveiser og armering INNHOLD BWC 50-240 Side 1 av 9 FORUTSETNINGER... 2 GENERELT... 2 TILLATT BRUDDLAST PÅ KOMPLETT ENHET... 2 TILLATT BRUDDLAST PÅ YTTERØR BRUKT I KOMBINASJON MED TSS... 2 TILLATT BRUDDLAST VED BRUK AV INNERRØR

Detaljer

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset]

0,5 ν f cd [Tabell B 16.5, svært glatt, urisset] 12 KIVEYTEM kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten μ N Ed er

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste

b) Skjult betongkonsoll med horisontalfeste d) Stålkonsoll med horisontalfeste 328 14.4 FASADEOPPLEGG PÅ SØYLER OG DEKKER I figurene C 14.14 og C 14.15 er vist noen vanlige løsninger. Disse dimensjoneres som plant opplegg på grunnmur. Elementene settes vanligvis på innstøpte ankerplater

Detaljer

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter.

C3 DEKKER. Figur C 3.1. Skjæroverføring mellom ribbeplater. Figur C 3.2. Sveiseforbindelse for tynne platekanter. 57 600 50 Figur C.1. Skjæroverføring mellom ribbeplater. punktlaster og linjelaster som overføres til naboelementene avhenger av konstruksjonens stivhet i tverretningen. Dette må beregnes basert på påstøpens

Detaljer

sss BSF HOVEDDIMENSJONER OG Dato: sss MATERIALPARAMETRE Siste rev.: Dok. nr.: ps PROSJEKTERING

sss BSF HOVEDDIMENSJONER OG Dato: sss MATERIALPARAMETRE Siste rev.: Dok. nr.: ps PROSJEKTERING Dato: 06.10.2013 Sign.: sss BSF HOVEDDIMENSJONER OG Siste rev.: 08.11.2018 Sign.: sss MATERIALPARAMETRE Dok. nr.: K4-10/502 Kontr.: ps PROSJEKTERING BSF HOVEDDIMENSJONER OG MATERIAL- PARAMETRE FOR BJELKE

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 703a Dato: 15.05.2012 Sign.: sss BWC 55-740 SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE STANDARD ARMERING Siste rev.: Dok. nr.: 22.09.2016 K5-10/4a Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD FORUTSETNINGER...

Detaljer

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket

C11 RIBBEPLATER 231. Figur C Ribbeplater med strekkbånd. a) Strekkbånd i bjelken. b) Strekkbånd på opplegget. c) Strekkbånd på dekket C11 RIBBEPLATER 231 Lask a) Strekkbånd i bjelken b) Strekkbånd på opplegget c) Strekkbånd på dekket d) Armering og utstøping e) Innstøpt flattstål i plate res dette ofte med at den samme forbindelsen også

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 704 Dato: 8.0.0 Sign.: sss BWC 55-740 / BWC 55 LIGHT SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE EKSEMPEL Siste rev.: Dok. nr.:.09.06 K5-4/5 Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD GRUNNLEGGENDE

Detaljer

Dato: ps DIMENSJONERING

Dato: ps DIMENSJONERING MEMO 812 Dato: 16.08.2012 Sign.: sss BEREGNING AV ARMERING Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/12 Kontr.: ps DIMENSJONERING BEREGNING AV ARMERING DTF150/DTS150 INNHOLD GRUNNLEGGENDE

Detaljer

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg.

9.2 TRE-ETASJES KONTOR- OG FORRETNINGSBYGG Dette beregningseksemplet viser praktisk beregning av knutepunktene i et kontor- og forretningsbygg. C9 BEREGNINGSEKSEMPLER FOR SØYLE- OG BJELKEFORBINDELSER 211 Et alternativ er å sveise bjelken til søyletoppen som vist i figur C 9.6.b. Kraft i sveis på grunn av tverrlastmomentet alene: S Ed = M Ed /

Detaljer

7.1.4 Hylsefundament C7 SØYLER

7.1.4 Hylsefundament C7 SØYLER 148 C7 SØYLER Tabell C 7.5. Forankring av limte stenger uten forankringsfot. Forutsetninger: Kamstål B500NC: f yd = 500 / 1,15 = 435 MPa l bd = nødvendig forankringslengde for oppgitt strekkapasitet l

Detaljer

BETONGBOLTER HPM / PPM

BETONGBOLTER HPM / PPM BETONGBOLTER HPM / PPM INNHOLD 1 Boltenes funksjonsprinsipp...side 2 2 Konstruksjon HPM-bolter...side 2 PPM-bolter...side 3 3 Kapasiteter 3.1 Dimensjoneringsregler...side 4 3.2 Kapasiteter...side 4 4 Konstruksjonsanvisninger

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: MEMO 703b Dato: 15.05.2012 Sign.: sss BWC 55 LIGHT - SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE STANDARD ARMERING Siste rev.: Dok. nr.: 22.09.2016 K5-10/4B Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4.

C13 SKIVER HORISONTALE SKIVER Generell virkemåte og oversikt over aktuelle elementtyper finnes i bind B, punkt 12.4. 254 C13 SKIER I det følgende behandles typiske knutepunkter for skiver. All generell informasjon finnes i bind B. Beregning av minimumskrefter på forbindelser er spesielt viktig for skiver, og grunnlaget

Detaljer

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer.

B12 SKIVESYSTEM 125. Figur B Innføring av horisontalt strekk som bøying i planet av dekkeelementer. 12 KIEYTEM 125 Figur 12.53 viser plan av et stort dekke med tre felt (vindsug på gavl er ikke vist). Kreftene og spenningene som virker på elementene, og C er vist under planen av dekket. Trykkgurten er

Detaljer

Dato: Siste rev.: Dok. nr.:

Dato: Siste rev.: Dok. nr.: Dato: 15.05.2012 Sign.: sss BWC 55 LIGHT - SØYLER I FRONT INNFESTING I DEKKE EKSEMPEL FORANKRINGSARMERING Siste rev.: Dok. nr.: 17.06.2019 K5-10/4B Sign.: Kontr.: sss ps DIMENSJONERING INNHOLD EKSEMPEL

Detaljer

KAPASITETER OG DIMENSJONER TSS 41 / TSS 101

KAPASITETER OG DIMENSJONER TSS 41 / TSS 101 Dato: 26.04.2011 Sign.: sss KAPASITETER OG DIMENSJONER TSS 41 / TSS 101 Siste rev.: Dok. nr.: 20.06.2018 K3-10/53 Sign.: Kontr.: jb ps PROSJEKTERING KAPASITETER OG DIMENSJONER TSS 41 / TSS 101 Bortsett

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes.

7.1.2 Fotplater. Dimensjonering Følgende punkter må gjennomgås: Boltenes posisjon i forhold til søyletverrsnittet velges. Boltkraft beregnes. 133 Konklusjon Man ser at det er en rekke variable faktorer som inngår. Dette kompliserer beregningene og gjør dem noe usikre. Etter en samlet vurdering av regler, praksis og erfaring anbefales det å regne

Detaljer

Forankring av antennemast. Tore Valstad NGI

Forankring av antennemast. Tore Valstad NGI Forankring av antennemast Tore Valstad NGI 40 Antennemast på 3960 berggrunn 1400 1400 1400 2800 0 40 Antennemast på 3960 jordgrunn 1400 1400 1400 2800 0 BRUDD I KRAFTLINJEMAT BRUDD I KRAFTLINJEMAT FUNDAMENTERING

Detaljer

recostal type RSH Skjøtejernskassetter med trapesprofil

recostal type RSH Skjøtejernskassetter med trapesprofil recostal type RSH Eurokode 2 Geometrisk utformet trapesskjøt recostal trapesprofil møter de høyeste kravene gjeldende fortanning/skjærkraft I.h.h.t Eurokode 2 direktivene. Skjøtejernskassetter med trapesprofil

Detaljer

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl

Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2. Eksamenstid: kl EKSAMEN Emnekode: IRB22013 Emnenavn: Konstruksjonsteknikk 2 Dato: 02.01.2019 Eksamenstid: kl. 09.00 13.00 Sensurfrist: 23.01.2019 Antall oppgavesider: 4 Antall vedleggsider: 4 (inkl vedlegg for innlevering)

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

TSS/RVK - EN KORT INNFØRING

TSS/RVK - EN KORT INNFØRING MEMO 63 Dato: 22.01.2015 Sign.: sss TSS/RVK - EN KORT INNFØRING Siste rev.: 19.05.2016 Sign.: sss PROSJEKTERING Dok. nr.: K3-10/63 Kontr.: ps TSS/RVK - EN KORT INNFØRING Denne innføringen er ment å gi

Detaljer

STANDARD SVEISER OG ARMERING

STANDARD SVEISER OG ARMERING MEMO 723a Dato: 09.03.2011 Sign.: sss BWC 80-500 - SØYLER I FRONT INFESTING I BÆRENDE VEGG STANDARD SVEISER OG ARMERING Siste rev.: Dok. nr.: 18.05.2016 K5-10/11 Sign.: Kontr.: sss ps INNHOLD STANDARD

Detaljer

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM

B8 STATISK MODELL FOR AVSTIVNINGSSYSTEM igur B 8.10. Kombinasjon av skiver og rammer. a) Utkraget skive b) Momentramme ) Kombinasjon igur B 8.11. Eksempel på ramme/ skivekombinasjon Hovedramme igur B 8.12. (Lengst t.h.) Kombinasjon av rammer.

Detaljer

HRC T-Hodet armering Fordeler for brukerne

HRC T-Hodet armering Fordeler for brukerne HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Hodet armering Fordeler for brukerne HRC T-hodet armering har spesielle egenskaper som skiller den fra konvensjonell armering. HRC T-hoder forankrer den fulle

Detaljer

H5 DIMENSJONERINGSEKSEMPLER

H5 DIMENSJONERINGSEKSEMPLER H5 DIMENSJONERINGSEKSEMPLER 69 I dette kapittelet tar en praktisk i bruk de regler og anbefalinger som er omtalt i kapitlene H1 til H4. Eksemplene tar kun for seg dimensjonering for seismiske laster. Det

Detaljer

Schöck Isokorb type D 70

Schöck Isokorb type D 70 Schöck Isokorb type Schöck Isokorb type 70 Innhold Side Eksempler på elementoppsett og tverrsnitt/produktbeskrivelse 80 81 Planvisninger 82 Kapasitetstabeller 83 88 Beregningseksempel 89 Ytterligere armering

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING

Detaljer

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING

BEREGNING AV SVEISEINNFESTNINGER OG BALKONGARMERING MEMO 732 Dato: 07.06.2012 Sign.: sss BWC 50-240 - SØYLER I FRONT INFESTING I STÅLSØYLE I VEGG, BEREGNING AV SVEISEINNFESTNINGER Siste rev.: Dok. nr.: 18.05.2016 K5-10/32 Sign.: Kontr.: sss ps OG BALKONGARMERING

Detaljer

ARMERING AV TSS 20 FA

ARMERING AV TSS 20 FA MEMO 65 Dato: 04.10.2011 Sign.: sss TSS 20 FA Siste rev.: 20.05.2016 Sign.: sss ARMERING Dok. nr.: K3-10/60 Kontr.: ps DIMENSJONERING ARMERING AV TSS 20 FA INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG

Detaljer

BETONGBOLTER HPM / PPM

BETONGBOLTER HPM / PPM norge as BETONGBOLTER HPM / PPM www.peikko.no www.peikko.com Betongbolter INNHOLD 1 Boltenes funksjonsprinsipp...side 3 2 Konstruksjon HPM-forankringsbolter...side 3 PPM-fundamentbolter...side 4 3 Tilvirkning

Detaljer

Prosjektering MEMO 502 BSF HOVEDDIMENSJONER OG MATERIALPARAMETRE FOR BJELKE OG SØYLEENHETER 1)

Prosjektering MEMO 502 BSF HOVEDDIMENSJONER OG MATERIALPARAMETRE FOR BJELKE OG SØYLEENHETER 1) Side 1 av 7 BJELKE OG SØYLEENHETER 1.1 KVALITETER Armering 500C (EN 1992-1-1, Appendiks C): f yd = f yk/γ s = 500/1,15 = 435 MPa Stål Sxxx (EN 10025-2): Stål S355: Strekk/trykk: f yd = f y/ γ M0 = 355/1,1

Detaljer

Dimensjonering MEMO 54c Armering av TSS 41

Dimensjonering MEMO 54c Armering av TSS 41 Side av 9 INNHOLD GUNNLEGGENDE FOUTSETNINGE OG ANTAGELSE... GENEELT... STANDADE... KVALITETE... 3 DIMENSJONE OG TVESNITTSVEDIE... 3 LASTE... 3 AMEINGSBEEGNING... 4 LIKEVEKT... 4 Side av 9 GUNNLEGGENDE

Detaljer

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 41

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 41 MEMO 54c Dato: 26.04.2011 Sign.: sss ARMERING AV TSS 41 Siste rev.: 19.05.2016 Sign.: sss DIMENSJONERING Dok. nr.: K3-10/54c Kontr.: ps ARMERING AV TSS 41 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER...

Detaljer

Håndbok 185 Eurokodeutgave

Håndbok 185 Eurokodeutgave Håndbok 185 Eurokodeutgave Kapittel 5 Generelle konstruksjonskrav Kapittel 5.3 Betongkonstruksjoner Foredragsholder: Thomas Reed Thomas Reed Født i 1982 Utdannet sivilingeniør Begynte i Svv i 2007 Bruseksjonen

Detaljer

TEKNISKE SPESIFIKASJONER

TEKNISKE SPESIFIKASJONER MEMO 741 Dato: 12.01.2016 Sign.: sss BWC 30-U UTKRAGET BALKONG - INNFESTING I PLASSTØPT DEKKE TEKNISKE SPESIFIKASJONER Siste rev.: Dok. nr.: 23.05.2016 K5-10-741 Sign.: Kontr.: sss nb TEKNISKE SPESIFIKASJONER

Detaljer

05 Betong. Prosjektnummer 344013003 Prosjektnavn GE20 Lillestrøm hensetting Prosjektfil GE20 Lillestrøm hensetting Beskrivelse

05 Betong. Prosjektnummer 344013003 Prosjektnavn GE20 Lillestrøm hensetting Prosjektfil GE20 Lillestrøm hensetting Beskrivelse 25(555) 05 Betong 02.05.23.1.1 under terreng (grubevegger) Tykkelse vegg: 250 mm 42,3 m2 02.05.23.1.2 under terreng (grubevegger) Tykkelse vegg: 450 mm 19 m2 02.05.23.1.3 under terreng (grubevegger) Tykkelse

Detaljer

DIMENSJONER OG TVERRSNITTSVERDIER

DIMENSJONER OG TVERRSNITTSVERDIER MEMO 811 Dato: 16.08.2012 Sign.: sss TEKNISKE SPESIFIKASJONER Siste rev.: 13.05.2016 Sign.: sss DTF150/DTS150 Dok. nr.: K6-10/11 Kontr.: ps DIMENSJONERING TEKNISKE SPESIFIKASJONER DTF150/DTS150 DIMENSJONER

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Schöck Isokorb type K

Schöck Isokorb type K Schöck Isokorb type Schöck Isokorb type Innhold Side Eksempler på elementoppsett/tverrsnitt 36 Produktbeskrivelse 37 Planvisninger 38 41 apasitetstabeller 42 47 Beregningseksempel 48 49 Ytterligere armering

Detaljer

B10 ENKELT SØYLE BJELKE SYSTEM

B10 ENKELT SØYLE BJELKE SYSTEM 0. EN-ETASJES BYGNINGER Dette er bygninger som vist i figur B 0..b). Fordeling av horisontallaster Forutsettes det at alle søyler med horisontal last har lik forskyvning i toppen, har man et statisk bestemt

Detaljer

Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2?

Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2? Skjærdimensjonering av betong Hva venter i revidert utgave av Eurokode 2? Jan Arve Øverli Institutt for konstruksjonsteknikk NTNU 1 The never ending story of shear design Ritter, W., 1899, Die Bauweise

Detaljer

H12B02 Dimensjonering av pelehoder 18. april 2012

H12B02 Dimensjonering av pelehoder 18. april 2012 H12B02 Dimensjonering av pelehoder 18. april 2012 Deltakere: Prosjektgruppen: Joakim Sahlstrøm Marte Heen Lei Ruzelle Calumpit Sondre Reiersgaard Sweco: Jørn Inge Kristiansen Dato 16.april 2012 MØTEINNKALLING

Detaljer

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator.

! EmnekOde: i SO 210 B. skriftlige kilder. Enkel ikkeprogrammerbar og ikkekommuniserbar kalkulator. l Alle ~ høgskolen oslo Emne: DIMENSJONER ~Gruppe(ry 3 BK NG II! EmnekOde: i SO 210 B - Dato: 19. februar -04 I I Fagiig veiled-e-r:-- Hoel/Harung/Nilsen Eksamenstid: 0900-1400 I Anttrlsldre~kI. forsiden):

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

B18 TRYKKOVERFØRING I FORBINDELSER

B18 TRYKKOVERFØRING I FORBINDELSER B18 TRYKKOVERFØRIG I FORBIDELSER 201 18.1 VALG AV MELLOMLEGG Bjelker : t = 6 10 mm (enkelt) Stål: t = 6 10 mm (enkelt) Plast: t = 4 mm (dobbelt) Brutto oppleggslengde (betongmål): av stål: l 150 mm Andre:

Detaljer

Dato: sss BSF BEREGNING AV ARMERING, Siste rev.: sss T-FORBINDELSE BJELKE-BJELKE. ps DIMENSJONERING. Dok. nr.:

Dato: sss BSF BEREGNING AV ARMERING, Siste rev.: sss T-FORBINDELSE BJELKE-BJELKE. ps DIMENSJONERING. Dok. nr.: MEMO 56 Dato: 1.10.013 Sign.: sss BSF BEREGNING AV ARMERING, Siste rev.: 11.05.16 Sign.: sss T-FORBINDELSE BJELKE-BJELKE Dok. nr.: K4-10/56 Kontr.: ps DIMENSJONERING BSF BEREGNING AV ARMERING, T-FORBINDELSE

Detaljer

Dimensjonering MEMO 65 Armering av TSS 20 FA

Dimensjonering MEMO 65 Armering av TSS 20 FA Dato: 10.04.2015 sss Side 1 av 9 INNHOLD DEL 1 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 3 DIMENSJONER OG TVERRSNITTSVERDIER... 3 Rør: CFRHS 40x40x4, L=215mm.

Detaljer

Ankermasse. Ankermasse ECM

Ankermasse. Ankermasse ECM Ankermasse ECM Bruksområde ESSVE ECM Ankermasse er beregnet til forankring av ankerbolt, gjengestang eller armeringsjern i massive og porøse materialer som betong, naturstein, tegl, hulldekkelement og

Detaljer

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 101

Dato: Siste rev.: Dok. nr.: ARMERING AV TSS 101 MEMO 54d Dato: 6.04.011 Sign.: sss ARMERING AV TSS 101 Siste rev.: 19.05.016 Sign.: sss DIMENSJONERING Dok. nr.: K3-10/54d Kontr.: ps ARMERING AV TSS 101 INNHOLD ARMERING AV TSS 101... 1 GRUNNLEGGENDE

Detaljer