Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?"

Transkript

1 Hva er størrelsen (n) av et proble? Algorite-Analyse Algoriter og Datastrukturer Antall linjer i et nettverk Antall tegn i en tekst Antall tall so skal sorteres Antall poster det skal søkes blant Antall noder i en trestruktur Antall eleenter i en konstruksjon Antall transistorer i en krets Antall kontaktpunkter so skal forbindes Bernt Ingvald Sunde Bernt Ingvald Sunde Asyptotisk ytelse Asyptotisk ytelse: Hvordan vil algoriten oppføre seg når problestørrelsen blir veldig stor? Kjøretid Minne/lagrings- krav Algorite-kopeksitet Nuer av steg Værste tilfelle Gjennosnittlig tilfelle Beste tilfelle N (input størrelse) Bernt Ingvald Sunde 3 Bernt Ingvald Sunde 4 Saenligning av kjøretid Saenligninger av kjøretid En algorite so kjører i O(n) tid er bedre enn en i O(n ) tid På sae åte er O(log n) bedre enn O(n) Vi har et hierarki av funksjoner Log n << n << n << n 3 << n Konstanter ot n Det er viktig å forstå forskjellen ello konstanter og n En konstant er en fast verdi, so ikke forandres Det spiller egentlig ingen rolle hva denne konstanten er n reflekterer størrelsen av probleet...n kan dered bli veldig stor Et eksepel Vi tar ikke hensyn når vi skal analysere 4(n- 6(n- ), de er begge av størrelse n ) ot Bernt Ingvald Sunde 5 Bernt Ingvald Sunde 6

2 Konstanter ot n Tabell over tidsforbruk OBS! Pass på! Vær forsiktig ed svært store konstanter. En algorite so har kjøretid n er fredeles O(n),...en kan være indre effektiv på datasettet ditt ed en en algorite ed kjøretid n, so også er O(n), derso n er liten nok Bernt Ingvald Sunde 7 Bernt Ingvald Sunde 8 Grafisk saenligning Valg av algorite f(n) = n f(n) = log(n) f(n) = n log(n) f(n) = n^ f(n) = n^3 f(n) = ^n En funksjon starter ed å være raskere enn den andre funksjonen for så verdier av n en når n passerer n 0 er den andre funksjonen alltid raskere Konklusjon, velg derfor T (n) før n=n o og T (n) når den n>n o Bernt Ingvald Sunde 9 Bernt Ingvald Sunde 0 Analyse av algoriter Analyse av algoriter Det er vanskelig å estiere kjøretiden presist... Beste tilfelle er avhengig av input Gjennosnittlig tilfelle er vanskelig å beregne Gir en spådo En fokuserer derfor ofte på værste tilfelle Lettere å regne ut Vanligvis nær den reelle kjøretiden Gir en garanti Strategi: prøv å finne øvre og nedre grense til funksjonen av værste tilfelle Øvre grense Reell funksjon Nedre grense Bernt Ingvald Sunde Bernt Ingvald Sunde

3 Analyse av Insertion Sort Stateent Effort InsertionSort(A, n) { for i = to n { c n key = A[i] c (n-) j = i - ; c 3 (n-) while (j > 0) and (A[j] > key) { c 4 T A[j+] = A[j] c 5 (T-(n-)) j = j - c 6 (T-(n-)) } 0 A[j+] = key c 7 (n-) } 0 } T = t + t t n der t i er antall ganger while-utrykk blir beregnet for den i-ende loop-iterationen Analyse av InsertionSort T(n) = c n + c (n-) + c 3 (n-) + c 4 T + c 5 (T - (n-)) + c 6 (T - (n-)) + c 7 (n-) = c 8 T + c 9 n + c 0 Hva kan T være? Beste tilfelle den indre loopen blir aldri kjørt t i = T(n) er en linjær funksjon (sortert array) Værste tilfelle den indre loopen er blir kjørt for alle tidligere eleent (usortert array) t i = i T(n) er en kvadratisk funksjon Average case n(n-)/4 O(n ) Bernt Ingvald Sunde 3 Bernt Ingvald Sunde 4 Øvre Grense Notasjon Øvre Grense Notasjon Vi sier at InsertionSort s kjøretid er O(n ) Les O so Big-O, værste tillfellet for å løse probleet I en generell funksjon f(n) er O(g(n)) hvis der eksisterer positive konstanter c og n 0 slik at f(n) c g(n) for alle n n 0 Bernt Ingvald Sunde 5 Bernt Ingvald Sunde 6 Nedre Grense Notasjon Nedre Grense Notasjon Vi sier at InsertionSort s kjøretid er Ω(n) Det er uulig å gjøre det bedre, nedre grense I en generell funksjon f(n) er Ω(g(n)) hvis alle positive konstanter c og n 0 er slik at 0 c g(n) f(n) for alle n n 0 Bernt Ingvald Sunde 7 Bernt Ingvald Sunde 8

4 Asyptotic Tight Bound Asyptotic Tight Bound En funksjon f(n) er Θ(g(n)) hvis alle positive konstanter c, c, og n 0 er slik at c g(n) f(n) c g(n) n n 0 Theore f(n) er Θ(g(n)) hvis f(n) både er O(g(n)) og Ω(g(n)) Bernt Ingvald Sunde 9 Bernt Ingvald Sunde 0 Oppsuering: Algorite-Analyse En etode for å bestee, på en abstrakt åte, den asyptotiske kjøretiden til en algorite Asyptotisk enes her at n blir svært stor Nyttig for å saenligne algoriter Nyttig også for å bestee edgjørlighet Med dette enes: å bestee o probleet er ulig å løse innen en hvis tidsrae Eksponentielle algoriter er so regel ikke edgjørlige Regne-regler Algorite-Analyse Bernt Ingvald Sunde Bernt Ingvald Sunde Regneregler for tidskopleksitet Regler O(c*f(n)) = O(f(n)), der c er konstant O(f(n) + g(n)) = O(f(n)), hvis g(n) f(n) for n n0 O(F(n) + c) = O(f(n)), der c er konstant Tilsvarende for Ω()- og Θ ()-notasjonene Bernt Ingvald Sunde 3 Bernt Ingvald Sunde 4

5 Analyse-Eksepel Algorite-Analyse Analyse Eksepel: Telefonkatalog Gitt: En fysisk telefonkatalog Organisert i alfabetisk rekkefølge Du har et navn du vil finne Du har en algorite so søker gjenno boken sekvensielt, fra første til siste side Hva er da Kjøretid til beste tilfelle? Kjøretid til værste tilfelle? Kjøretid til gjennosnittlig tilfelle? Finnes det en bedre algorite? Bernt Ingvald Sunde 5 Bernt Ingvald Sunde 6 Analyse Eksepel: Telefonkatalog Analyse av Binært Søk En bedre algorite vil være binært søk Hva er kjøretiden til denne? Først ser du i idten av de n eleentene Deretter ser du i idten av de n/ = ½*n eleentene Deretter ser du i idten av de ½ * ½*n eleentene Fortsett helt til der bare er eleent igjen La oss si du gjorde dette ganger: ½ * ½ * ½* *n Da vil antall repetisjoner være de inste heltallet slik at Bernt Ingvald Sunde 7 I det værste tilfellet, vil antall repetisjoner være de inste heltallet slik at Dette kan vi skrive o slik at: n = log n = Multipliser begge sider ed Ta log på begge sider Siden er tid til det værte tilfellet, er algoriten O(logn) Bernt Ingvald Sunde 8

Analyse av Algoritmer

Analyse av Algoritmer Analyse av Algoritmer Lars Vidar Magnusson 10.1.2014 Asymptotisk notasjon (kapittel 3) Kompleksitetsklasser Uløselige problem Asymptotisk Notasjon Asymptotisk analyse innebærer å finne en algoritmes kjøretid

Detaljer

Kjøretidsanalyse. Hogne Jørgensen

Kjøretidsanalyse. Hogne Jørgensen Kjøretidsanalyse Hogne Jørgensen Program Presentasjon/tips til Øving 5 Kompleksitetsanalyse Kahoot Rekurrensligninger Kahoot 2 Øving 5 Veibygging i Ogligogo Finne dyreste kant i minimalt spenntre Prim

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme* er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer Hva er en datastruktur? Datastrukturer Elementære Datastrukturer En datastruktur er en systematisk måte å lagre og organisere data på, slik at det er lett å aksessere og modifisere dataene Eksempler på

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for ateatiske fag Øving nuer, blokk I Løsningsskisse Oppgave a X kan eksepelvis være resultatet av en flervalgsoppgave ed 0 sp og svaralternativ

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller: 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle kalkulatortyper

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1 Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus martme@stud.ntnu.no Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14

Detaljer

Innføring i matematisk analyse av algoritmer

Innføring i matematisk analyse av algoritmer DUMMY Innføring i matematisk analyse av algoritmer Lars Sydnes September 2014 Dette er ment som et supplement til læreboka Algorithms, 4.utgave av Sedgewick & Wayne, heretter omtalt som læreboka. Etter

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Quicksort Lars Vidar Magnusson 29.1.2014 Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Om Quicksort Quicksort er en svært populær sorteringsalgoritme. Algoritmen har i verstefall en kjøretid

Detaljer

Om Kurset og Analyse av Algoritmer

Om Kurset og Analyse av Algoritmer Om Kurset og Analyse av Algoritmer Lars Vidar Magnusson 8.1.2014 Praktisk informasjon om kurset Hva er en algoritme? (kapittel 1) Hvordan analysere en algoritme? (kapittel 2) Praktisk Informasjon Introduction

Detaljer

Divide-and-Conquer II

Divide-and-Conquer II Divide-and-Conquer II Lars Vidar Magnusson 1712014 Kapittel 4 Analyse av divide-and-conquer algoritmer ved hjelp av rekursjonstrær Analyse av divide-and-conquer algoritmer ved hjelp av masterteoremet Løse

Detaljer

Algoritmer Teoribok, kapittel 5. Algorithms

Algoritmer Teoribok, kapittel 5. Algorithms Algoritmer Teoribok, kapittel 5. Algorithms TDT 4105 Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon av algoritmer Oppdagelse av algoritmer Iterative

Detaljer

Datastrukturer for rask søking

Datastrukturer for rask søking Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014 PG4200 Algoritmer og datastrukturer forelesning 3 Lars Sydnes 29. oktober 2014 Plan Måling av kjøretid (delvis repetisjon) Matematisk analyse av kjøretid Presentasjon av innlevering 1 I Innlevering 1 Innlevering

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

Læringsmål og pensum. Algoritmeeffektivitet

Læringsmål og pensum. Algoritmeeffektivitet 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå

Detaljer

Høgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson

Høgskoleni østfold EKSAMEN. 4 dobbeltsidige ark med notater Lars Magnusson Høgskoleni østfold EKSAMEN Emnekode: ITF 20006 Emne: Algoritmer og Datastrukturer Dato: 22.05.2015 Eksamenstid: kl 09.00 til kl 13.00 Hjelpemidler: Faglærer: 4 dobbeltsidige ark med notater Lars Magnusson

Detaljer

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet 1 A B D C Prim: Kruskal: AB, BD, DC DC, AB, BD 2 0 + 1 + + n 1; antall

Detaljer

Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling

Q-Q plott. Insitutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk. Kvantiler fra sannsynlighetsfordeling Q-Q plott Notat for TMA/TMA Statistikk Insitutt for ateatiske fag, NTNU. august En ønsker ofte å trekke slutninger o populasjonen til en stokastisk variabel basert på et forholdsvis lite antall observasjoner,

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert

Detaljer

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 3

Løsningsforslag for utvalgte oppgaver fra kapittel 3 Løsningsforslag for utvalgte oppgaver fra kapittel 3 3.3 1 Demo innsettingssortering..................... 1 3.5 1 Demo velgesortering........................ 2 3.5 2 Velgesortering...........................

Detaljer

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller: 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview

Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview TDT 4105 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon

Detaljer

LØSNING FOR EKSAMEN I FAG 75316, NUMERISK LØSNING AV DIFFERENSIALLIGNINGER, VÅR u t = u xx, < x <, t > 0 < x <

LØSNING FOR EKSAMEN I FAG 75316, NUMERISK LØSNING AV DIFFERENSIALLIGNINGER, VÅR u t = u xx, < x <, t > 0 < x < LØSNING FO EKSAMEN I FAG 756, NUMEISK LØSNING AV DIFFEENSIALLIGNINGE, VÅ 994. Oppgave Vi skal løse startverdiprobleet u t = u xx, < x 0 ux, 0) = fx), < x < og vi ønsker en eksplisitt forel ed diskretiseringsfeil

Detaljer

Inf 1020 Algoritmer og datastrukturer

Inf 1020 Algoritmer og datastrukturer Inf 1020 Algoritmer og datastrukturer Et av de mest sentrale grunnkursene i informatikkutdanningen... og et av de vanskeligste! De fleste 3000-kursene i informatikk bygger på Inf1020 Kurset hever programmering

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

Mot 6: Støy i felteffekttransistorer

Mot 6: Støy i felteffekttransistorer / Mot 6: Støy i felteffekttransistorer To typer av felteffekttransistorer: MOSFET: Kapasitiv kontroll av kanal JFET: Variasjon av bredden på en reversforspent diode hvor deplesjonssonen besteer bredden

Detaljer

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2

Binomisk fordeling. Hypergeometrisk fordeling. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi har følgende situasjon: = = 2 MAT0100V Sannsynlighetsregning og kobinatorikk Oppgaver o Binoisk og hypergeoetrisk fordeling Forventning varians og standardavvik Tilnæring av binoiske sannsynligheter Konfidensintervall Ørnulf Borgan

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00

Ny/utsatt EKSAMEN. Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Ny/utsatt EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 6. januar 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Kompleksitetsanalyse

Kompleksitetsanalyse :: Forside Kompleksitetsanalyse Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/ Først: studietips OpenCourseWare fra MIT Forelesninger tatt opp på video Algoritmekurset foreleses

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

OPPGAVE 1 Francis Turbin

OPPGAVE 1 Francis Turbin NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for Terisk Energi og Vannkraft Eksaen i fag TEP 95 TURBOMASKNER, Løsningsforslag. Juni 005 Tid: 5.00 9.00 Faglig kontakt under eksaen: Navn: Ole

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Materiebølger - Elektrondiffraksjon

Materiebølger - Elektrondiffraksjon FY100 Bølgefysikk Institutt for fysikk, NTNU FY100 Bølgefysikk, øst 007 Laboratorieøvelse 3 Materiebølger - Elektrondiffraksjon Oppgave Besteelse av Planck`s konstant ved elektrondiffraksjon. Forslag til

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A,

Detaljer

Minimum Spenntrær - Kruskal & Prim

Minimum Spenntrær - Kruskal & Prim Minimum Spenntrær - Kruskal & Prim Lars Vidar Magnusson 4.4.2014 Kapittel 23 Kruskal algoritmen Prim algoritmen Kruskal Algoritmen Kruskal algoritmen kan beskrives med følgende punkter. Vi har en en sammenkoblet

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

INF2810: Funksjonell Programmering. Trær og mengder

INF2810: Funksjonell Programmering. Trær og mengder INF2810: Funksjonell programmering INF2810: Funksjonell Programmering Trær og mengder Erik Velldal Universitetet i Oslo 19. februar 2015 Tema Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 8 (åtte) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side 1 av 8 Varighet: 3 timer Dato: 4.juni 2013 Fagansvarlig:

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

PQ: HEAP. Heap. Er disse heap er? Hvordan implementere heap:

PQ: HEAP. Heap. Er disse heap er? Hvordan implementere heap: PQ: HEAP Ingen sammenheng med memory heap Definisjon og data-invarianter for heap InsertKey og RemoveMin for heap Kompleksitet for operasjoner: O(log n) Prioritetskø impl vha Heap Heap En heap er et binært

Detaljer

INF2810: Funksjonell Programmering. Trær og mengder

INF2810: Funksjonell Programmering. Trær og mengder INF2810: Funksjonell Programmering Trær og mengder Stephan Oepen Universitetet i Oslo 16. februar 2016 Tema 2 Forrige uke Høyereordens prosedyrer lambda, let og lokale variabler Dataabstraksjon I dag Lister

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 3 Frist: 2014-02-07 Mål for denne øvinga:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 2220 Algoritmer og datastrukturer Eksamensdag: 8. desember 2016 Tid for eksamen: 09:00 13:00 (4 timer) Oppgavesettet er på:

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid Chieh Yu de Vibe (ingridcy@ifi.uio.no)

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

INF2220: Forelesning 1

INF2220: Forelesning 1 INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) Rekursjon (kapittel 1.3) (Binær)trær (kapittel 4.1-4.3 + 4.6) Praktisk informasjon 2 Praktisk informasjon Kursansvarlige Ingrid

Detaljer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer Binære heaper (Leftist) Prioritetskøer Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A, A*, D*, etc.), og i simulering. Prioritetskøer Prioritetskøer

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 7 (syv) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side av 7 Varighet: 3 timer Dato:.august 203 Fagansvarlig:

Detaljer

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger.

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. Hva slags kjøretid har denne sangen? Hvordan kan du formulere det som en rekurrensligning? Ninety-nine

Detaljer

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff

Algdat Oppsummering, eksamen-ting. Jim Frode Hoff Algdat Oppsummering, eksamen-ting Jim Frode Hoff November 18, 2012 1 Definisjoner 1.1 Ordliste Problem Probleminstans Iterasjon Asymtpoisk notasjon O(x) kjøretid Ω(x) kjøretid Θ(x) kjøretid T (x) kjøretid

Detaljer

Brannbeskyttelse av Bærende stålkonstruksjoner

Brannbeskyttelse av Bærende stålkonstruksjoner Brannbeskyttelse av Bærende stålkonstruksjoner Isover FireProtect NOVEMBER 12 Teknisk isolasjon 6 Nå dokuentert i henhold til ENV 13381-4 Ny diensjoneringstabell for frittstående stålsøyler og bjelker

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Kondisjonstest. Algoritmer og datastrukturer. Repetisjonsoppgaver - LF. Onsdag 6. oktober 2004

Kondisjonstest. Algoritmer og datastrukturer. Repetisjonsoppgaver - LF. Onsdag 6. oktober 2004 Algoritmer og datastrukturer Kondisjonstest Repetisjonsoppgaver - LF Onsdag 6. oktober 2004 Dette oppgavesettet er for det meste ment å drille på konsepter. Det er ikke representativt for vanskelighetsgraden

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering

PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering Lars Sydnes, NITH 22.januar 2014 I. Rekursjon commons.wikimedia.org Rekursjon i naturen En gren er et tre som sitter fast på et tre.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer