1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet.

Størrelse: px
Begynne med side:

Download "1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet."

Transkript

1 1.8 Binære tal Når vi reknar, bruker vi titalssystemet. Korleis det verkar, finn vi ut ved å sjå på til dømes talet = Dersom vi bruker potensar, får vi 2347 = Det siste sifferet er einarar, det nest siste er tiarar, det tredje siste hundrarar, osb. Dette talsystemet har ti talsymbol (0, 1, 2,, 9). I ein datamaskin eller lommereknar kan vi tenkje oss at alle tal blir lagra ved at ein brytar er av eller på. Då har vi berre to moglege talsymbol: 0 når brytaren er av, og 1 når han er på. Derfor må vi bruke eit talsystem med berre to symbol, 0 og 1. Det talsystemet kallar vi totalssystemet eller det binære talsystemet. Alle tal i dette systemet består dermed berre av nullar og einarar. Talet 1010 er eit døme på eit binært tal. Det er ikkje det same som tusen og ti. Når vi skal finne ut kva for eit tal det er, gjer vi slik: 1010 = = = 10 Det binære talet 1010 er det same som talet ti. Vi ser at det binære talsystemet verkar på same måten som titalssystemet. Skilnaden er at for binære tal bruker vi potensar av to i staden for potensar av ti. Alle datamaskinar og lommereknarar bruker totalssystemet til all rekning utan at vi oppdagar det. Når du skriv eit reknestykke ved hjelp av tastaturet, blir tala automatisk omsette til totalssystemet. Alle utrekningane blir så gjorde i totalssystemet. Svaret blir deretter omsett til titalssystemet før det blir skrive ut på skjermen. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet. Rekn om frå binære tal til vanlege tal. a) 101 b) 1101 c) a) 101 = = = 5 b) 1101 = = = 13 c) = = = 19 31

2 Oppgåve 1.80 Rekn om frå binære tal til vanlege tal. a) 110 b) 1110 c) d) Oppgåve 1.81 Fyll ut tabellen. Binærtal Vanlege tal Korleis skal vi omsetje frå vanlege tal til binære tal Vi tek då utgangspunkt i denne tabellen med potensar av Vi skal no skrive talet 23 som eit binært tal. Vi leitar oss fram til den største toarpotensen som er mindre enn 23. Det er 16. Vidare er 23 = No finn vi den største toarpotensen som er mindre enn 7. Det er 4. Ettersom 7 = 4 + 3, får vi Dermed er 23 = = = Talet 23 er dermed det same som det binære talet Skriv 37 som eit binært tal. 37 = = = = Oppgåve 1.82 Skriv tala som binærtal. a) 13 b) 23 c) 42 d) Sinus 1DH/1MK > Tal og einingar

3 Oppgåve 1.83 Skriv talet 241 som binærtal. Dei binære tala har mange siffer. Når vi skriv talet 211 som eit binærtal, blir det Det er fort gjort å gjere feil når vi skal skrive eit slikt tal, eller når vi skal seie dette talet til ein annan person. Det blir lettare når vi les fire og fire siffer om gongen. I tillegg bruker vi denne tabellen: Binært tal Vanleg tal Symbol Binært tal Vanleg tal Symbol A B C D E F Talet deler vi opp i to delar og les det på denne måten: = D3 D 3 Når vi så skal ha tilbake binærtalet, bruker vi tabellen og skiftar ut D med 1101 og 3 med Då får vi tilbake talet Når vi skal finne ut kva for eit tal D3 er, kan vi gjere slik: I tabellen ser vi at D er talet 13. Då er D3 det same som = 211 Talet har elleve siffer. Når vi skal lese dette talet, set vi ein 0 først slik at det blir tolv siffer = 5C9 5 C 9 Vi les talet som 5C9. Kva for eit tal er så det Vi skriv det ved hjelp av potensar av 16. Hugs at C er det same som 12. 5C9 = = = 1481 Talet 5C9 er skrive i 16-talssystemet (det heksadesimale talsystemet). 33

4 a) Skriv det binære talet i det heksadesimale tal - systemet. b) Skriv talet i det vanlege talsystemet. a) = = 2D9 2 D 9 b) Ettersom D er talet 13, blir dette 2D9 = = = 729 Oppgåve 1.84 a) Skriv det binære talet i det heksadesimale talsystemet. b) Kva for eit tal er det Oppgåve 1.85 a) Skriv det binære talet i det heksadesimale talsystemet. b) Kva for eit tal er det Oppgåve 1.86 a) Skriv talet 812 i det binære talsystemet. b) Skriv svaret i oppgåve a i det heksadesimale talsystemet. c) Kontroller om svaret i oppgåve b gir talet Nokre digitale einingar Datamaskinar gjer om alle tal til binære tal. Grunnen er at maskinen har mange elektriske «brytarar» som kan vere av eller på. Ein slik «brytar» kallar vi ein bit. Ein bit kan dermed vere anten 0 eller 1. Alle andre teikn og symbol blir òg skrivne ved hjelp av 0 og 1. Bokstaven A blir gjord om til og a til Kvart teikn og kvar bokstav har sin eigen kode som er samansett av åtte 0 eller 1. Koden inneheld altså åtte bitar. Vi kallar det ein byte. Ein byte er dermed lagerplass for eitt teikn. 1 byte = 8 bitar Sinus 1DH/1MK > Tal og einingar

5 a) Kor mange byte er det i teksten «Lykke til!» b) Kor mange bitar blir det a) Teksten vår har ti teikn. Mellomrommet er òg eit teikn. Det er 10 byte i teksten. b) Vi veit at 1 byte består av 8 bitar. Dermed er 10 byte = 10 8 bitar = 80 bitar Til saman må vi bruke åtti 0 og 1 for å lagre teksten «Lykke til!» Oppgåve 1.90 a) Kor mange bitar er det i 12 byte b) Ein tekst er skriven med 248 bitar. Kor mange teikn er det i denne teksten Oppgåve 1.91 a) Kor mange byte er det i teksten «Alt vel. Send meir pengar.» b) Kor mange 0 og 1 må vi bruke for å lagre denne teksten digitalt I talsystemet vårt (titalssystemet) har vi faste namn på nokre spesielle tal = 100 hundre 10 3 = 1000 tusen 10 6 = million 10 9 = milliard Vi ser at det er nokre potensar av ti som har eigne namn. Når vi bruker totalssystemet, har vi sett namn på nokre potensar av to = 1024 kilo (k) 2 20 = mega (M) 2 30 = giga (G) Til vanleg er kilo = Men i den digitale verda er altså kilo = På tilsvarande måte er mega = , men når det gjeld datateknikk, er mega = Vi bruker forkortinga B for byte og forkortinga b for bitar. Med denne skrivemåten er 1 kb = 1024 byte 1 kb = 1024 bitar 1 MB = byte 1 Mb = bitar 35

6 Vidare er 1 MB = 1024 kb 1 Mb = 1024 kb 1 GB = 1024 MB 1 Gb = 1024 Mb Til dagleg rundar vi ofte av og seier at 1 kb er 1000 byte, at 1 MB er 1000 kb, og at 1 GB er 1000 MB. Eit tekstdokument er på 2,7 kb. a) Kor mange teikn er det i dette dokumentet b) Kor mange 0 og 1 blir det a) 1 kb er 1024 byte, og éin byte er eitt teikn. Talet på teikn er 2, = 2765 Vi gjer ikkje nokon stor feil om vi seier at det er 2700 teikn. b) Ettersom kvar byte (kvart teikn) har åtte bitar (0 eller 1), er talet på 0 og = Oppgåve 1.92 Ein tekst er på 32 kb. a) Kor mange teikn er det b) Kor mange bitar blir det Oppgåve 1.93 Eit digitalt bilete blir òg lagra ved hjelp av berre 0 og 1. Eit bestemt bilete er på 1,2 MB. a) Kor mange kilobyte (kb) er det b) Kor mange byte blir det c) Kor mange 0 og 1 må vi bruke for å lagre dette biletet Når vi sender digitale tekstar, bilete eller musikk over telenettet, varierer farten veldig. Med ei vanleg analog (ikkje digital) telefonlinje kan vi sende kb per sekund. Det er altså ca bitar per sekund. Vi måler farten i kilobitar per sekund (kbps). Når farten er 46,6 kbps, kan vi sende 46,6 kb på eitt sekund Sinus 1DH/1MK > Tal og einingar

7 Med breiband er farten mykje større. Vanleg fart er nokre tusen kilobitar per sekund. Farten kan til dømes vere 2048 kbps. Det er det same som 2 Mbps.Vi overfører då ca. 2 millionar nullar og einarar på eitt sekund. Eit bilete er på 728 kb. a) Kor mange kilobitar er det b) Kor lang tid tek det å overføre biletet på ei linje med farten 46,6 kbps c) Kor lang tid tek det på breiband med farten 2048 kbps a) Ettersom 1 byte er 8 bitar, er 728 kb det same som kb = 5824 kb b) Med denne linja overfører vi 46,6 kb på eitt sekund. Talet på sekund blir ,6 = 125 Det tek 125 s (2 min 5 s) å overføre biletet. c) Med breiband overfører vi 2048 kb på eitt sekund. Talet på sekund blir då = 2,8 Det tek 2,8 sekund. Oppgåve 1.94 I ein stor tekst er det teikn. a) Kor mange kilobitar er det b) Kor lang tid tek det å overføre teksten på ei linje med farten 28,8 kbps c) Kor lang tid tek det å overføre teksten på breiband med 1024 kbps Oppgåve 1.95 Ein musikk-cd er på 25,7 MB. a) Kor lang tid tek det å overføre innhaldet på denne cd-en på ei linje med farten 46,6 kbps b) Kor lang tid tek det på breiband med farten 2048 kbps 37

1.8 Binære tall EKSEMPEL

1.8 Binære tall EKSEMPEL 1.8 Binære tall Når vi regner, bruker vi titallssystemet. Hvordan det virker, finner vi ut ved å se på for eksempel tallet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Hvis vi bruker potenser, får vi 2347 =

Detaljer

Tore Oldervoll Odd Orskaug Audhild Vaaje Finn Hanisch. Sinus 2P. Lærebok i matematikk for vg2. Studieførebuande program.

Tore Oldervoll Odd Orskaug Audhild Vaaje Finn Hanisch. Sinus 2P. Lærebok i matematikk for vg2. Studieførebuande program. Tore Oldervoll Odd Orskaug Audhild Vaaje Finn Hanisch Sinus P Lærebok i matematikk for vg Studieførebuande program Nynorsk CAPPELEN Innhald Potensar og talsystem....... 9. Potensar... 0. Potensane a 0

Detaljer

Tal og einingar. Mål. for opplæringa er at eleven skal kunne

Tal og einingar. Mål. for opplæringa er at eleven skal kunne 8 1 Tal og einingar Mål for opplæringa er at eleven skal kunne gjere overslag over svar, rekne med og utan tekniske hjelpemiddel i praktiske oppgåver og vurdere kor rimelege resultata er 1.1 Reknerekkjefølgje

Detaljer

1 Tal og einingar KATEGORI Reknerekkjefølgje. 1.2 Hovudrekning og overslagsrekning

1 Tal og einingar KATEGORI Reknerekkjefølgje. 1.2 Hovudrekning og overslagsrekning Oppgåver 1 Tal og einingar KATEGORI 1 1.1 Reknerekkjefølgje Oppgåve 1.110 7 8 9 6 ( ) 6 7 ( 9) Oppgåve 1.111 2 3 8 3 2 ( 2) 3 + 8 ( 3) ( 4) + 2 Oppgåve 1.112 3 6 + 2 3 6 + 2 4 7 8 6 e) 4 3 + 3 f) 3 6 4

Detaljer

FAKTA. ADDISJON ledd + ledd = sum. SUBTRAKSJON ledd ledd = differanse. MULTIPLIKASJON faktor faktor = produkt. DIVISJON dividend : divisor = kvotient

FAKTA. ADDISJON ledd + ledd = sum. SUBTRAKSJON ledd ledd = differanse. MULTIPLIKASJON faktor faktor = produkt. DIVISJON dividend : divisor = kvotient 196 FAKTA Dei naturlege tala har eitt eller eire si er: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,... Alle heile positive tal kallar vi naturlege tal, og talmengda skriv vi N. NÔr vi tek med 0 og dei heile negative

Detaljer

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149 Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018. Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar. Anne Fosse Tjørhom

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018. Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar. Anne Fosse Tjørhom ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018 Læreverk: Lærar: Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar Anne Fosse Tjørhom Mål for matematikkundervisinga på Sinnes skule:

Detaljer

MATEMATIKK 1 for 1R, 4MX130SR09-E

MATEMATIKK 1 for 1R, 4MX130SR09-E Skriftlig eksamen i MATEMATIKK 1 for 1R, 4MX130SR09-E 20 studiepoeng ORDINÆR EKSAMEN 7. juni 2010. Sensur faller innen 28.juni. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,

Detaljer

Kapittel 2 TALL. Tall er kanskje mer enn du tror

Kapittel 2 TALL. Tall er kanskje mer enn du tror Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning

Detaljer

Teknologi og fargar RGB

Teknologi og fargar RGB 1 Teknologi og fargar RGB RGB står for fargane raud, grøn og blå. Det er desse fargane som kan visast på ein fargeskjerm. I dette heftet skal du læra meir om korleis matematikk er eit verktøy i bruk av

Detaljer

Brukarrettleiing E-post lesar www.kvam.no/epost

Brukarrettleiing E-post lesar www.kvam.no/epost Brukarrettleiing E-post lesar www.kvam.no/epost Kvam herad Bruka e-post lesaren til Kvam herad Alle ansatte i Kvam herad har gratis e-post via heradet sine nettsider. LOGGE INN OG UT AV E-POSTLESAREN TIL

Detaljer

Kva er klokka? Kva er klokka? Kva er klokka?

Kva er klokka? Kva er klokka? Kva er klokka? er to er eitt er tolv er fem er fire er tre er åtte er sju er seks er elleve er ti er ni halv to halv eitt halv tolv halv fem halv fire halv tre halv åtte halv sju halv seks halv elleve halv ti halv ni

Detaljer

Terminprøve i matematikk for 8. trinnet

Terminprøve i matematikk for 8. trinnet Terminprøve i matematikk for 8. trinnet Hausten 2006 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Namn: DELPRØVE 1 Maks.

Detaljer

Potensar og prosent MÅL

Potensar og prosent MÅL Potensar og prosent MÅL for opplæringa er at eleven skal kunne rekne med potensar og tal på standardform med positive og negative eksponentar og bruke dette i praktiske samanhengar rekne med prosent og

Detaljer

Til deg som bur i fosterheim. 13-18 år

Til deg som bur i fosterheim. 13-18 år Til deg som bur i fosterheim 13-18 år Forord Om du les denne brosjyren, er det sikkert fordi du skal bu i ein fosterheim i ein periode eller allereie har flytta til ein fosterheim. Det er omtrent 7500

Detaljer

Årsplan i matematikk for 4.årssteg

Årsplan i matematikk for 4.årssteg Årsplan i matematikk for 4.årssteg Helland skule nyttar læreverket Abakus i matematikk på barnesteget. Grunnbok 4A og oppgåvebok 4A vert nytta før jul, medan grunnbok 4B og oppgåvebok 4B vert nytta etter

Detaljer

Å løyse kvadratiske likningar

Å løyse kvadratiske likningar Å løyse kvadratiske likningar Me vil no sjå på korleis me kan løyse kvadratiske likningar, og me tek utgangspunkt i ei geometrisk tolking der det kvadrerte leddet i likninga blir tolka geometrisk som eit

Detaljer

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE HOVUDEMNE UNDEREMNE MÅL KAP 1 Tal (s.9-62) Kap 2 Brøk (s.63-86) Kap 3 Prosent og promille (s.87-102) Kap 4 Teikning

Detaljer

Biletbruk på nettet 1 2

Biletbruk på nettet 1 2 Innleiing Denne vesle rettleiinga vil syne deg ein arbeidsflyt for å tilretteleggje bilete for publikasjon på internett. Desse operasjonane fordrar bruk av eit bilethandsamingsprogram. Slike er det mange

Detaljer

6-åringar på skuleveg

6-åringar på skuleveg 6-åringar på skuleveg Rettleiing til foreldre med barn som skal begynne på skulen Førsteklassingane som trafikantar Det er store forskjellar i modning og erfaring hos barn på same alder. Vi ser likevel

Detaljer

Nynorsk Institutt for lærerutdanning og skoleutvikling Universitetet i Oslo Hovudtest Elevspørjeskjema 8. klasse Rettleiing I dette heftet vil du finne spørsmål om deg sjølv. Nokre spørsmål dreier seg

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande

Detaljer

Årsplan i matematikk for 2.årssteg

Årsplan i matematikk for 2.årssteg Årsplan i matematikk for 2.årssteg Læreverk: Abakus Grunnbok 2A, grunnbok 2B, Oppgåvebok 2B. I stadenfor oppgåvebok 2A har vi brukt Tusen millionar oppgåvebok 2. Klassen nyttar nettsida til dette læreverket,

Detaljer

Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn

Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn Korleis møter vi born som spør og vil vita kvifor vi gjer det slik eller slik i matematikken? Korleis går det med elevane sine

Detaljer

Matematikk 1, 4MX15-10E1 A

Matematikk 1, 4MX15-10E1 A Skriftlig eksamen i Matematikk 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 19. desember 2011. BOKMÅL Sensur faller innen onsdag 11. januar 2012. Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

Eksamen i emnet INF100 Grunnkurs i programmering (Programmering I)

Eksamen i emnet INF100 Grunnkurs i programmering (Programmering I) Universitetet i Bergen Matematisk naturvitskapleg fakultet Institutt for informatikk Side 1 av 7 Nynorsk Eksamen i emnet INF100 Grunnkurs i programmering (Programmering I) Fredag 10. desember 2004 Tid:

Detaljer

Potensar og talsystem

Potensar og talsystem 1 Potensar og talsystem Mål for opplæringa er at eleven skal kunne rekne med potensar og tal på standardform med positive og negative eksponentar og bruke dette i praktiske samanhengar gjere greie for

Detaljer

No blir. innført I denne brosjyren finn du svar på dei vanlegaste spørsmåla om fastlegeordninga. Dersom du framleis lurer på.

No blir. innført I denne brosjyren finn du svar på dei vanlegaste spørsmåla om fastlegeordninga. Dersom du framleis lurer på. Svarfrist: 1. mars No blir fastlegeordninga innført I denne brosjyren finn du svar på dei vanlegaste spørsmåla om fastlegeordninga. Dersom du framleis lurer på noko, får du meir informasjon på internett:

Detaljer

ÅRSPLAN Hordabø skule 2015/2016

ÅRSPLAN Hordabø skule 2015/2016 ÅRSPLAN Hordabø skule 2015/2016 Fag: Matematikk Klassetrinn: 5 Lærar: Jannicke Blommedal Bauge Veke Veke Kompetansemål Tema Læringsmål Vurderingskriterier Forslag I startgropa Undervegs Eigenvurd. I mål

Detaljer

Årsplan i matematikk for 4.årssteg

Årsplan i matematikk for 4.årssteg Årsplan i matematikk for 4.årssteg Helland skule nyttar læreverket Abakus i matematikk på barnesteget. Grunnbok 4A og oppgåvebok 4A vert nytta før jul, medan grunnbok 4B og oppgåvebok 4B vert nytta etter

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2011 nynorsk Namn: Gruppe: Informasjon Oppgåvesettet består av to delar der du skal svare på alle oppgåvene. Del 1 og del 2 blir delte ut samtidig, men

Detaljer

Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Opprydding i mapper og filer

Opprydding i mapper og filer Opprydding i mapper og filer Office 2013/2016 1. Filer og mapper Ei fil inneheld informasjon, for eksempel tekst, bilde eller musikk. På datamaskina kan du vise filene som ikon, og kjenne att ei filtype

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgåver som kan løysast ved hjelp av lommereknar. Tid: 90 minutt.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgåver som kan løysast ved hjelp av lommereknar. Tid: 90 minutt. Nynorsk Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutt 15. april 2004 Gut Jente Oppgåver som kan løysast ved hjelp av lommereknar. Tillatne hjelpemiddel: lommereknar,

Detaljer

SKR-C. ORDINÆR/UTSATT EKSAMEN 06.06.08. Sensur faller innen 27.06.08.

SKR-C. ORDINÆR/UTSATT EKSAMEN 06.06.08. Sensur faller innen 27.06.08. Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Individuell skriftlig eksamen i MATEMATIKK, MX30SKR SKR-C 20 studiepoeng ORDINÆR/UTSATT EKSAMEN 06.06.08. Sensur faller innen 27.06.08. BOKMÅL

Detaljer

SENTRALT GITT SKRIFTLEG EKSAMEN FOR ELEVAR VÅREN 2003 OVERSIKT OVER TILLATNE HJELPEMIDDEL I VIDAREGÅANDE OPPLÆRING OG TEKNISK FAGSKOLE

SENTRALT GITT SKRIFTLEG EKSAMEN FOR ELEVAR VÅREN 2003 OVERSIKT OVER TILLATNE HJELPEMIDDEL I VIDAREGÅANDE OPPLÆRING OG TEKNISK FAGSKOLE Rundskriv LS-66-2002 Dato: 30.09.2002 Statens utdanningskontor Utdanningsetaten i fylkeskommunane SENTRALT GITT SKRIFTLEG EKSAMEN FOR ELEVAR VÅREN 2003 OVERSIKT OVER TILLATNE HJELPEMIDDEL I VIDAREGÅANDE

Detaljer

Rettleiing del 3. Oppfølging av. resultata frå. nasjonal prøve i rekning. 8. steget

Rettleiing del 3. Oppfølging av. resultata frå. nasjonal prøve i rekning. 8. steget Versjon 8. september 2009 Nynorsk Rettleiing del 3 Oppfølging av resultata frå nasjonal prøve i rekning 8. steget Hausten 2009 1 Dette heftet er del 3 av eit samla rettleiingsmateriell til nasjonal prøve

Detaljer

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Rettleiing for revisor sin særattestasjon

Rettleiing for revisor sin særattestasjon Rettleiing for revisor sin særattestasjon Om grunnstønad til nasjonalt arbeid til frivillige barne- og ungdomsorganisasjonar, statsbudsjettets kap. 857, post 70 (Jf. føresegn om tilskot til frivillige

Detaljer

Eksamen AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 16.05.2008 AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar

Detaljer

Årsrapport frå opplæringskontor i Hordaland om opplæring av lærlingar og lærekandidatar (Lærebedriftene skal bruka eit eige skjema.

Årsrapport frå opplæringskontor i Hordaland om opplæring av lærlingar og lærekandidatar (Lærebedriftene skal bruka eit eige skjema. 1 Oppdatert 16.05.09 Årsrapport frå opplæringskontor i Hordaland om opplæring av lærlingar og lærekandidatar (Lærebedriftene skal bruka eit eige skjema.) Velkommen til Hordaland fylkeskommune sin portal

Detaljer

Uke Tema Læreplanmål Læringsmål Læremiddel

Uke Tema Læreplanmål Læringsmål Læremiddel Uke Tema Læreplanmål Læringsmål Læremiddel 34-35 Data og statistikk - samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar, tabellar og søylediagram, med og utan digitale

Detaljer

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519

Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1... (4%) = 5 4 3 2 1 = 10 = 520 519 Eksamen 2. desember 2014 Eksamenstid 4 timar IR201712 Diskret Matematikk Ingen hjelpemiddel er tillatne. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve 1.......................................................................................

Detaljer

Elektronisk palliativ plan innføring og bruk i Acos CosDoc

Elektronisk palliativ plan innføring og bruk i Acos CosDoc Elektronisk palliativ plan innføring og bruk i Acos CosDoc Innhald 1 Tilretteleggje for bruk av palliativ plan (CosDoc systemansvarleg)... 2 1.1 Redigering av funksjonsområde... 2 1.2 Tilpasse tiltaks-/pleieplan

Detaljer

Refleksjon og skriving

Refleksjon og skriving Refleksjon og skriving I denne delen skal vi øve oss på å skrive ein reflekterande tekst om eit av temaa i boka om «Bomulv». Teksten skal presenterast høgt for nokre andre elevar i klassen. 1 Å reflektere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Kandidatnummer: NYNORSK UNIVERSITETET I OSLO Det matematisk-naturvitskaplege fakultet Eksamen i : INF1000 Grunnkurs i objektorientert programmering Eksamensdag : Onsdag 5. desember 2013 Tid for eksamen

Detaljer

Vi lærer om respekt og likestilling

Vi lærer om respekt og likestilling Vi lærer om respekt og likestilling I Rammeplanen står det at barnehagen skal tilby alle barn eit rikt, variert, stimulerande og utfordrande læringsmiljø, uansett alder, kjønn, funksjonsnivå, sosial og

Detaljer

Partifinansiering 2016, RA Rettleiing: Web-skjema. Finne ID og passord. Hente, fylle ut, signere og sende inn skjemaet elektronisk

Partifinansiering 2016, RA Rettleiing: Web-skjema. Finne ID og passord. Hente, fylle ut, signere og sende inn skjemaet elektronisk SSB, Partifinansiering rapport for 2016, 27.03.2017, s. 1 Partifinansiering 2016, RA-0604. Rettleiing: Web-skjema Finne ID og passord. Hente, fylle ut, signere og sende inn skjemaet elektronisk Innhald

Detaljer

LIKNINGA OM DEN VERDIFULLE PERLA

LIKNINGA OM DEN VERDIFULLE PERLA LIKNINGA OM DEN VERDIFULLE PERLA TIL LEKSJONEN Fokus: Kjøpmannen og den verdifulle perla. Tekst: Matt 13.45 Likning Kjernepresentasjon MATERIELL: Plassering: Hylle for likningar Deler: Gulleske med kvitt

Detaljer

Ny eksamensordning med nye utfordringar for elevar og lærarar?

Ny eksamensordning med nye utfordringar for elevar og lærarar? Ny eksamensordning med nye utfordringar for elevar og lærarar? Oslo, 03.05.13 Sigbjørn Hals Kjelde: www.clipart.com Ny eksamensordning med nye utfordringar Innhaldet i denne presentasjonen: 1. Kva kan

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Haust 2009 nynorsk Namn: Gruppe: Informasjon Oppgåvesettet består av to delar der du skal svare på alle oppgåvene. Del 1 og del 2 blir delte ut samtidig, men

Detaljer

Terminprøve i matematikk for 10. trinnet

Terminprøve i matematikk for 10. trinnet Terminprøve i matematikk for 10. trinnet Hausten 2005 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Delprøve 1 Maks. poengsum:

Detaljer

Spelet varer om lag ein dobbeltime og kan enkelt setjast opp i klasserommet. Talet på spelarar bør vere minst ti elevar.

Spelet varer om lag ein dobbeltime og kan enkelt setjast opp i klasserommet. Talet på spelarar bør vere minst ti elevar. Lærarrettleiing Kva er b.stem? b.stem er ein digital læringsressurs for skuleklasser. Han er lagd opp som eit rollespel der klassa får rolla som ungdomsrådet i Snasen ein fiktiv, mellomstor norsk kommune.

Detaljer

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s.

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 1 Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 9 Addisjon og subtraksjon med brøk s. 10 Multiplikasjon

Detaljer

Kartleggingsprøve K1, nynorsk. Del 1

Kartleggingsprøve K1, nynorsk. Del 1 Kartleggingsprøve K1, nynorsk. Del 1 Namn: Oppgåve 1 a) 2 3 = b) 4 = c) 1 0 = d) 3 = e) 4 7 = f) 9 = Oppgåve 2 a) 6 9 = b) 7 = c) 6 6 = d) 9 = e) 7 9 = f) 6 = 1 Oppgåve 3 a) 493 10 = b) 32 100 = c) 3000

Detaljer

Nasjonale prøver 2005. Matematikk 7. trinn

Nasjonale prøver 2005. Matematikk 7. trinn Nasjonale prøver 2005 Matematikk 7. trinn Skolenr.... Elevnr.... Gut Jente Nynorsk 9. februar 2005 TIL ELEVEN Slik svarer du på matematikkoppgåvene I dette heftet finn du nokre oppgåver i matematikk. Dei

Detaljer

Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016 ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016 FAGLÆRAR: LÆREBØKER: Grete Eiken Abakus av B.B. Pedersen, P. I. Pedersen og L. Skoogh. Grunnbok 5A og 5B og oppgåvebok 5A og 5B Veke Kompetansemål

Detaljer

Kompetansemål etter 2. steg (KL06)

Kompetansemål etter 2. steg (KL06) Telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper. Gjere overslag over mengder, telje opp, samanlikne tal og uttrykkje talstorleikar på varierte måtar. Utvikle og

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Skrive reiserekning i Visma Expense

Skrive reiserekning i Visma Expense Skrive reiserekning i Visma Expense Innhald Logge inn:... 1 Om reisa:... 2 Diett:... 4 Kjørebok:... 5 Utlegg:... 6 Samandrag og innsending... 11 Logge inn: I) På Intranett, klikk på «Støttesystem» og «Skrive

Detaljer

KappAbel 2010/11 Oppgåver 1. runde - Nynorsk

KappAbel 2010/11 Oppgåver 1. runde - Nynorsk Reglar for poenggjeving på oppgåvene (sjå konkurransereglane) : Rett svar gir 5 poeng. Galt svar gir 0 poeng Blank gir 1 poeng. NB: På oppgåvene 3, 4, 7 og 8 får ein 5 poeng for 2 rette svar. Eitt rett

Detaljer

ORDINÆR EKSAMEN FOR 1R BOKMÅL Sensur faller innen

ORDINÆR EKSAMEN FOR 1R BOKMÅL Sensur faller innen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Skriftlig eksamen i MATEMATIKK, MX30SKR-C 0 studiepoeng ORDINÆR EKSAMEN FOR R 03.06.09. BOKMÅL Sensur faller innen 4.06.09. Resultatet blir

Detaljer

FORELDREHEFTE. 6-åringar på skuleveg

FORELDREHEFTE. 6-åringar på skuleveg FORELDREHEFTE 6-åringar på skuleveg G J W Sjå til begge sider - og framover! Før vi kryssar vegen skal vi sjå til begge sider. Det veit både born og foreldre. Trafikkopplæring handlar likevel om meir enn

Detaljer

Spelet varer om lag ein dobbeltime og kan enkelt setjast opp i klasserommet. Talet på spelarar bør vere minst ti elevar.

Spelet varer om lag ein dobbeltime og kan enkelt setjast opp i klasserommet. Talet på spelarar bør vere minst ti elevar. Lærarrettleiing Kva er b.stem? b.stem er ein digital læringsressurs for skuleklasser. Han er lagd opp som eit rollespel der klassa får rolla som ungdomsrådet i Snasen ein fiktiv, mellomstor norsk kommune.

Detaljer

Innhald Pålogging... 2 Viktige knappar... 3 Fronter som rom... 3 Leggje inn ei oppgåve i Fronter... 4 Litt om nokre ulike format for tekstbehandling

Innhald Pålogging... 2 Viktige knappar... 3 Fronter som rom... 3 Leggje inn ei oppgåve i Fronter... 4 Litt om nokre ulike format for tekstbehandling 1 Innhald Pålogging... 2 Viktige knappar... 3 Fronter som rom... 3 Leggje inn ei oppgåve i Fronter... 4 Litt om nokre ulike format for tekstbehandling og visse konsekvensar:... 6 Ulike roller i Fronter...

Detaljer

MATEMATIKKVERKSTAD Mona Røsseland. GLASSMALERI (bokmål) Utstyr: Rammer (A3) i farga papp, pappremser, silkepapir, saks og lim

MATEMATIKKVERKSTAD Mona Røsseland. GLASSMALERI (bokmål) Utstyr: Rammer (A3) i farga papp, pappremser, silkepapir, saks og lim MATEMATIKKVERKSTAD Mona Røsseland GLASSMALERI (bokmål) Utstyr: Rammer (A3) i farga papp, pappremser, silkepapir, saks og lim Slik går du frem: 1. Velg deg en ramme. 2. Du skal nå lage et vakkert bilde

Detaljer

Elevundersøkinga 2016

Elevundersøkinga 2016 Utvalg År Prikket Sist oppdatert Undarheim skule (Høst 2016)_1 18.11.2016 Elevundersøkinga 2016 Symbolet (-) betyr at resultatet er skjult, se "Prikkeregler" i brukerveiledningen. Prikkeregler De som svarer

Detaljer

Lese snakke skrive. OS BARNESKULE, Os, Hordaland (1 7) Av Mari-Anne Mørk

Lese snakke skrive. OS BARNESKULE, Os, Hordaland (1 7) Av Mari-Anne Mørk Lese snakke skrive OS BARNESKULE, Os, Hordaland (1 7) Av Mari-Anne Mørk Som tittel på sitt ressursprosjekt har Os barneskule i Hordaland valt Lese snakke skrive, der den sentrale tanken er at elevane må

Detaljer

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06)

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06) Matematikk i skulen 5. - 7. årssteget Tal og algebra etter 7. steg Beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal, og prosent, og plassere dei på tallinja

Detaljer

Tilgangskontroll i arbeidslivet

Tilgangskontroll i arbeidslivet - Feil! Det er ingen tekst med den angitte stilen i dokumentet. Tilgangskontroll i arbeidslivet Rettleiar frå Datatilsynet Juli 2010 Tilgangskontroll i arbeidslivet Elektroniske tilgangskontrollar for

Detaljer

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsyn

Undervisningsopplegg for ungdomstrinnet om statistikk og sannsyn Undervisningsopplegg for ungdomstrinnet om statistikk og sannsyn Kjelde: www.clipart.com 1 Statistikk, sannsyn og kombinatorikk. Læraren sitt ark Kva seier læreplanen? Statistikk, sannsyn og kombinatorikk

Detaljer

Fedje skule LÆRINGSSTRATEGIAR

Fedje skule LÆRINGSSTRATEGIAR Fedje skule LÆRINGSSTRATEGIAR INFORMASJONSHEFTE FOR FORELDRE/FØRESETTE Fedje kommune 2015/2016 Læringsstrategiar handlar om å lære seg å lære! Innleiing "Læringsstrategiar er framgangsmåtar elevane brukar

Detaljer

I lov 17. juli 1998 nr. 61 om grunnskolen og den vidaregåande opplæringa er det gjort følgende endringer (endringene er markert med kursiv):

I lov 17. juli 1998 nr. 61 om grunnskolen og den vidaregåande opplæringa er det gjort følgende endringer (endringene er markert med kursiv): VEDLEGG 1 I lov 17. juli 1998 nr. 61 om grunnskolen og den vidaregåande opplæringa er det gjort følgende endringer (endringene er markert med kursiv): 2-12 tredje ledd skal lyde: For private grunnskolar

Detaljer

Forhold og prosent MÅL. for opplæringa er at eleven skal kunne. rekne med forhold, prosent, prosentpoeng og vekst faktor

Forhold og prosent MÅL. for opplæringa er at eleven skal kunne. rekne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringa er at eleven skal kunne rekne med forhold, prosent, prosentpoeng og vekst faktor arbeide med proporsjonale og omvendt proporsjonale storleikar i praktiske samanhengar

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Eksamen Del 1. MAT0010 Matematikk. Del 1 + ark frå Del 2. Nynorsk

Eksamen Del 1. MAT0010 Matematikk. Del 1 + ark frå Del 2. Nynorsk Eksamen 0.05.01 MAT0010 Matematikk Del 1 Skole: Nynorsk Kandidatnr.: Del 1 + ark frå Del Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Framgangsmåte og forklaring: 5 timar totalt. Del

Detaljer

Matematikk 1, 4MX25-10

Matematikk 1, 4MX25-10 Skriftleg eksamen i Matematikk 1, 4MX25-10 30 studiepoeng ORDINÆR EKSAMEN 31. mai 2013. Sensur fell innan tysdag 25. juni 2013. NYNORSK Resultatet blir tilgjengeleg på studentweb første kvardag etter sensurfrist,

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Innhald/Lærestoff Elevane skal arbeide med:

Innhald/Lærestoff Elevane skal arbeide med: Tid Kompetansemål Elevane skal kunne: 34-35 lese av, plassere og beskrive posisjonar i rutenett, på kart og i koordinatsystem, både med og utan digitale verktøy 36-39 beskrive og bruke plassverdisystemet

Detaljer

Overføre/kopiere bilde(filer) frå kamera/mobil til PC

Overføre/kopiere bilde(filer) frå kamera/mobil til PC Overføre/kopiere bilde(filer) frå kamera/mobil til PC Det finst mange bildeprogram som kan overføre bilde frå kamera nærmast automatisk. Også Windows har eit slikt alternativ. Men vi skal bruke ein metode

Detaljer

HØGSKULEN I VOLDA Avdeling for mediefag. Studieprogram for PR, kommunikasjon og media

HØGSKULEN I VOLDA Avdeling for mediefag. Studieprogram for PR, kommunikasjon og media HØGSKULEN I VOLDA Avdeling for mediefag Studieprogram for PR, kommunikasjon og media Den digitale innbyggjar kven er det? HØGSKULEN I VOLDA Avdeling for mediefag HØGSKULEN I VOLDA Avdeling for mediefag

Detaljer

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

FYS1120 Elektromagnetisme, vekesoppgåvesett 6

FYS1120 Elektromagnetisme, vekesoppgåvesett 6 FYS1120 Elektromagnetisme, vekesoppgåvesett 6 3. oktober 2016 I FYS1120-undervisninga legg vi meir vekt på matematikk og numeriske metoder enn det oppgåvene i læreboka gjer. Det gjeld òg oppgåvene som

Detaljer

Samarbeidsmeteorolog 2017: Kva tenkjer ungdomane i Vest-Telemark om eit felles ungdomsråd?

Samarbeidsmeteorolog 2017: Kva tenkjer ungdomane i Vest-Telemark om eit felles ungdomsråd? Samarbeidsmeteorolog 2017: Kva tenkjer ungdomane i Vest-Telemark om eit felles ungdomsråd? Gunhild Kvålseth 15.06.17 Innhald Innleiing... 3 Formålet med undersøkinga... 3 Status i dag... 3 Framgangsmåte...

Detaljer

FAKTA. Likeverdige brökar: BrÖkar som har same verdien: 2 = 2 4 = 3 6 = 4 8 = 5

FAKTA. Likeverdige brökar: BrÖkar som har same verdien: 2 = 2 4 = 3 6 = 4 8 = 5 FAKTA Likeverdige brökar: BrÖkar som har same verdien: = = 6 = 8 = 0 utvide ein brök: utvide ein brök vil seie Ô multiplisere teljaren og nemnaren med same talet. BrÖken endrar da ikkje verdi: = = 6 brøk

Detaljer

Den personlege økonomien din

Den personlege økonomien din 3 Eg og mitt Den personlege økonomien din Personleg økonomi: disponering av eigne pengar, det vil seie korleis vi skaffar oss inntekter og korleis vi prioriterer utgifter. Pengane du disponerer, kan brukast

Detaljer

Årsplan MATEMATIKK 1. klasse 2017/2018 Matemagisk. Veke KOMPETANSEMÅL DELMÅL VURDERING ARBEIDSMÅTAR

Årsplan MATEMATIKK 1. klasse 2017/2018 Matemagisk. Veke KOMPETANSEMÅL DELMÅL VURDERING ARBEIDSMÅTAR telja til 100, dela opp og byggja mengder opp til 10, setja saman og dela opp tiargrupper opp til 100 og dela tosifra tal i tiarar og einarar grunnboka. Introduksjon til læreverket GB: 6 Omgrep: telja,

Detaljer

1 Distrikts- og kvalitetstilskot til frukt og grøntproduksjon og til matpotetproduksjon i Nord-Noreg

1 Distrikts- og kvalitetstilskot til frukt og grøntproduksjon og til matpotetproduksjon i Nord-Noreg Rundskriv 2013/1 17 Til omsetningsledd Kontaktperson: Hilde Nordlid, tlf. 24131073 Vår dato: 03.01.2014 Vår referanse: 13/1 Rundskriv erstatter: rundskriv 38/12 Rettleiing - årsoppgåver frå omsetningsledd

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015 Lærer: Turid Nilsen Matematikkverket består av: Grunntall 1a + 1b Ressursperm Nettsted med oppgaver Grunnleggende ferdigheter Grunnleggjande ferdigheiter

Detaljer

DS er ansvarlig for at instruksen blir gjennomført og at sikkerheten blir averirl,oldt.

DS er ansvarlig for at instruksen blir gjennomført og at sikkerheten blir averirl,oldt. DIREKTIV TIL DISTRIKTSSTYRER SOM ER ANSVARLIG FUR DUDDISTRIBUSJON OM "INSTRUKS TIL DUDSJEFANE OM HANDSAMING AV ADDONENTLISTENE". DS er ansvarlig for at instruksen blir gjennomført og at sikkerheten blir

Detaljer

mmm...med SMAK på timeplanen

mmm...med SMAK på timeplanen mmm...med SMAK på timeplanen Eit undervisningsopplegg for 6. trinn utvikla av Opplysningskontora i landbruket i samarbeid med Landbruks- og matdepartementet. Smakssansen Grunnsmakane Forsøk 1 Forsøk 2

Detaljer

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

KORLEIS LEGGJE INN EI SAK PÅ WWW.SKOGSVAAG.NO

KORLEIS LEGGJE INN EI SAK PÅ WWW.SKOGSVAAG.NO KORLEIS LEGGJE INN EI SAK PÅ WWW.SKOGSVAAG.NO NY BRUKAR AV WWW.SKOGSVAAG.NO Nettsida har hatt om lag 892000 treff sidan år 2000. Både unge og gamle er faste besøkjarar av nettsida. Alle medlemmer kan leggje

Detaljer

Ditt val! Idrettsfag Musikk, dans og drama Studiespesialisering

Ditt val! Idrettsfag Musikk, dans og drama Studiespesialisering Ditt val! Vidaregåande opplæring 2007 2008 Idrettsfag Musikk, dans og drama Studiespesialisering Bygg- og anleggsteknikk Design og handverk Elektrofag Helse- og sosialfag Medium og kommunikasjon Naturbruk

Detaljer