At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d

Størrelse: px
Begynne med side:

Download "At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i d"

Transkript

1 Lsningsforslag til utvalgte ogaver i kaittel I dette kaittelet har mange av ogavene et mindre teoretisk reg enn i de foregaende kaitlene, og jeg regner derfor med at lrebokas eksemler og fasit er dekkende for de rent regnemessige ogavene. Jeg har derfor rioritert a lage lsningsforslag til ogaver som tester din geometriske forstaelse av de komlekse tallene (ogave..7 og..10) og gir velse i matematisk argumentasjon (ogave.1.10,..1 og..15). Du vil likevel ogsa nne enkle eksemler a hvordan du oversetter frem og tilbake mellom kartesisk form og olarform (ogave..,..5,..1 og..), hvordan du nner tredjertter (ogave..), og hvordan du kan lse komlekse annengradsligninger (ogave..9 og..11). Ogave..8 viser en tyisk anvendelse av De Moivres formel, mens ogave..1 gir deg god trening i a lse en komleks annengradsligning og uttrykke lsningen bade a kartesisk og olar form. Ogave.1.5 Vi skal lse de ogitte ligningene. a) iz + i z + i i ( + i)( i) i( i) 6i 8i i b) (1 + i)z + 1 i (1 + i)z i z i 1 + i ( i)(1 i) (1 + i)(1 i) i + i + i i Ogave.1.10 Anta at z + w og zw er reelle. Vi skal vise at da er enten begge tallene z og w reelle eller sa er de konjugerte av hverandre. La z a + ib og w c + id. Da har vi z + w (a + c) + i(b + d) zw (ac bd) + i(ad + bc) 1

2 At z + w og zw er reelle betyr at deres imaginrdeler er lik null, det vil si at b + d 0 ad + bc 0 Den frste ligningen gir b d. Setter vi dette inn i den andre ligningen, far vi d(a c) 0, som er ofylt nar d 0 og nar a c. Hvis d 0 har vi b d 0, det vil si at z og w er reelle. Hvis a c har vi z a + ib og w c + id a ib, det vil si at z og w er konjugerte. Ogave.. b) Vi skal nne modulusen og argumentet til z i. Modulusen er r j ij 0 + ( 1) 1 Argumentet er bestemt ved at og Dette betyr at cos Re(z) sin Im(z) r r e) Vi skal nne modulusen og argumentet til z 1 + i. Modulusen er r Re(z) + Im(z) 1 + Argumentet er bestemt ved at og Dette betyr at cos Re(z) 1 r sin Im(z) r 1

3 Ogave..5 Vi skal skrive de komlekse tallene a formen z a + ib. a) r og. z r(cos + i sin ) (cos + i sin ) (0 + i) i b) r 1 og. z 1 cos + i sin i c) r og 6. z cos 6 + i sin 6 ( 1 + i 1 ) + i d) r 1 og. z 1 cos + i sin 1 (0 i) 1 i Ogave..7a Gitt tallene z cos 1 + i sin 1 og w cos i sin 1 Iflge teorem.. har roduktet zw modulus r 6 og argument Altsa blir zw 6 cos + i sin 6i Ogave..10 Vi skal skissere de ogitte omradene i det komlekse lanet. a) fz : jzj 1g Dette er alle unkter z som har avstand lik 1 fra origo, det vil si alle unkter a enhetssirkelen. b) fz : jz 1j < g Dette er alle unkter z som har avstand mindre enn fra unktet (1; 0), det vil alle unkter i det indre av en sirkel med radius om unktet (1; 0). c) fz : jz (i + 1)j 1 g 1

4 Dette er alle unkter z som har en avstand a minst 1 fra unktet i + 1 (1; 1), det vil si alle unkter a og utenfor en sirkel med radius 1 om unktet (1; 1). d) fz : jz j < jz i + jg fz : jz j < jz (i )jg Dette er alle unkter z som har kortere avstand til unktet (; 0) enn til unktet i ( ; 1), det vil si alle unkter som ligger ekte under linjen y x + 1. Dette kan vi enten se geometrisk (tegn gur), eller ved flgende utregning. La z x + iy. Kvadrerer vi den gitte ulikheten, far vi jz j < jz i + j (x ) + y < (x + ) + (y 1) x x + + y < x + x + + y y + 1 y < 8x + 1 y < x + 1 Ogave..1 Vi skal vise at (vektorene tilsvarende) de to komlekse tallene z og w star normalt a hverandre hvis og bare hvis zw er et rent imaginrt tall. Dersom z og w har argumenter 1 og henholdsvis, far zw argument 1. Tallet zw er rent imaginrt hvis og bare hvis argumentet er et odde multilum av, det vil si 1 (k + 1); k Z. Men det betyr jo netto at z og w star normalt a hverandre, da 1 er vinkelen mellom vektorene z og w. Pa samme mate ser vi at z og w er arallelle hvis og bare hvis zw er reell. At zw er reell betyr at argumentet er et multilum av, det vil si 1 k; k Z. Men det betyr at vektorene z og w enten eker i samme retning eller i motsatt retning, det vil si at de er arallelle. Ogave..15 Vi skal vise at jz + wj + jz wj jzj +jwj. Benytter vi at zz jzj, far vi: jz + wj + jz wj (z + w)(z + w) + (z w)(z w) (z + w)(z + w) + (z w)(z w) (zz + zw + wz + ww) + (zz zw wz + ww) jzj + jwj + jzj + jwj jzj + jwj 15

5 Tegner vi et arallellogram utsent av vektorene som tilsvarer de komlekse tallene z og w, vil diagonalene i dette arallellogrammet vre z + w og z w. Utregningen ovenfor viser da at summen av kvadratene til sidene i et arallellogram er lik summen av kvadratene til diagonalene. Ogave..1 b) Vi skal skrive tallet e i a formen a + ib. e i e cos 0 +i sin cos i sin 1 1 i Ogave.. b) Vi skal skrive tallet z i a formen re i. r + ( ) 16 Siden Re(z) Im(z) ser vi at. Altsa har vi z e i Ogave..8 Vi skal regne ut (1 + i) 80 og ( i) 17 ved hjel av de Moivres formel. Da 1 + i har modulus og argument (1 + i) 80 cos + i sin 80 cos 80 far vi 80 + i sin 80 (0) (cos 01 + i sin 01) 0 cos(00 + ) + i sin(00 + ) 0 (cos + i sin ) 0 Og da i har modulus og argument 6 ( i) 17 cos + i sin cos far vi 17 + i sin 17 6

6 cos cos 5 6 i sin i 17 ( + i) Lsningsforslag ved Klara Hveberg i sin Ogave..b Vi skal nne alle tredjerttene til z i og skrive dem a formen re i og a + ib. z i e i +ki z 1 e i 6 + ki Setter vi na etter tur k 0, k 1 og k, far vi de tre tredjerttene w 0 e i 6 cos( 6 ) + i sin( 6 ) 1 1 i w 1 e i 6 + i e i 6 e i i w e i 6 + i e 7i i Ogave..9a Annengradsligningen z + z + 0 har lsningene z i i det vil si z i z 1 i Ogave..11b Annengradsligningen z + iz har lsningene z i (i)

7 i i i 6 i i 6 det vil si z 1 i( 6 1) z i( 6 + 1) Ogave..1 Ligningen z + (1 i)z + 7i 0 har lsningene z (1 i) (1 i) 1 7i (1 i) (1 i) 7i (1 i) (1 i) i 9i Da i e i har vi i e i 1 (1 i), slik at uttrykket ovenfor videre blir (1 i) 1 (1 i) 1 (1 i) det vil si z 1 z 1 i 1 1 (1 i) i (i 1) Da 1 i e i og i 1 e i, blir lsningene a olar form e z 1 1 i i ( )e e z + 1 i ( + )e i Vektoren z 1 har lengde og argument, og eker altsa nedover i. kvadrant. Vektoren z har lengde + og argument, og eker altsa oover i. kvadrant (tegn gur). Ogave.5.5 a) Vi skal vise at i er en rot i olynomet P (z) z + z + z + z +. P (i) i + i + i + i + 1 i + i

8 b) Siden i en rot i olynomet P (z), vet vi ved lemma.5. at i i ogsa er en rot i dette olynomet. Men det betyr at P (z) er delelig med (z i)(z + i) z + 1. Vi utfrer olynomdivisjon: z + z + z + z + : z + 1 z + z + z + z z + z + z + z + z z + z + Det gjenstar bare a faktorisere z + z + : 0 z + z + 0 z 1 8 z i z 1 i i De komlekse og reelle faktoriseringene av P (z) blir dermed: z + z + z + z + (z + i)(z i)(z + 1 i)(z i) (z + z + )(z + 1) 19

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x <

Fra skolematematikken husker vi at kvadratroten til et tall a er det ositive tallet som har kvadrat lik a. Men det betyr at x2 = n x for x 0 x for x < Lsningsforslag til utvalgte ogaver i kaittel 2 I seksjon 2.1 far du velse i a lse ulikheter hvor tallverdier inngar (ogave 2.1.5) og enkel trening i a fre matematiske resonnementer ved a kombinere bruk

Detaljer

Oppgavehefte om komplekse tall

Oppgavehefte om komplekse tall Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller

Detaljer

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < ", far vi 7 ialt jf(x) f()j = jx + jjx j < 7 " 7 = " Dette blir flgelig ofylt for alle x sl

jx + j < 7. Hvis vi i tillegg srger for at faktoren jx j < , far vi 7 ialt jf(x) f()j = jx + jjx j < 7  7 =  Dette blir flgelig ofylt for alle x sl Lsningsforslag til utvalgte ogaver i kaittel 5 I kaittel 5 har mange av ogavene et mer teoretisk reg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt a a lage lsningsforslag til ogaver

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo K A L K U L U S Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Forord Dette er en samling løsningsforslag som jeg opprinnelig

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Forord Dette er en samling lsningsforslag som jeg opprinnelig utarbeidet til gruppeundervisningen i kurset MAT00A ved Universitetet i Oslo hsten 2000.

Forord Dette er en samling lsningsforslag som jeg opprinnelig utarbeidet til gruppeundervisningen i kurset MAT00A ved Universitetet i Oslo hsten 2000. K A L K U L U S Lsningsforslag til utvalgte oppgaver fra Tom Lindstrms lrebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Copyright c 2006 Klara Hveberg Forord Dette er en samling lsningsforslag

Detaljer

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5. Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form

Et Komplekst tall på kartesisk(standard), polar(eksponentialform) og trigonometrisk form Kapittel Komplekse tall.1 Kompleksetall-Oppsummering Kvadratroten av 1 må være en løsning til ligningen x = 1, om den finnes. Tallet i kalles den imaginære enheten og er det vi trenger for å definere de

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum.

Wavelet P Sample number. Roots of the z transform. Wavelet P Amplitude Spectrum. NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK SIG Geofysisk Signalanalyse Lsningsforslag ving Oppgave a) Vi har Amplitudespekteret er da Y (!) =

Detaljer

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall 4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1

Detaljer

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved

Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både

Detaljer

Komplekse tall: definisjon og regneregler

Komplekse tall: definisjon og regneregler Komplekse tall: definisjon og regneregler Eugenia Malinnikova, NTNU, Institutt for matematiske fag 22. august 2011 Komplekse tall fra Wikipedia Et komplekst tall er tall på formen x + iy, der x og y er

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. For å kunne skrive det komplekse tallet følgende endringer foretas på uttrykket. 3 3, hvor 3 og 3 på formen, hvor og, må For å kunne skrive det komplekse tallet på polarformen, må vi først finne

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

Løysingsforslag for TMA4120, Øving 9

Løysingsforslag for TMA4120, Øving 9 Løysingsforslag for TMA4, Øving 9 October, 6 7..5) La z = x + iy og w = a + bi. Biletet til x = c, c konstant, under mappinga w = z,erallepunktidetkomplekseplanetpåforma w = z =(c + iy) = c y +ciy, det

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Høgskolen i Gjøvik Avd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving Exercise (a), (c) - j yim() j - - - 0 xre() Merk! I oppgaven skal vi merke av punktene (angitt med ), men de komplekse

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.

Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4. Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.

Finn volum og overateareal til følgende gurer. Tegn gjerne gurene. Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Løsningsforslag Matematikk 2MX - AA mai 2006

Løsningsforslag Matematikk 2MX - AA mai 2006 Løsningsforslag Matematikk 2MX - AA6516-3. mai 2006 eksamensoppgaver.org September 21, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan

Løsningsforslag til utvalgte oppgaver i Kalkulus. Øyvind Ryan Løsningsforslag til utvalgte oppgaver i Kalkulus Øyvind Ryan. november 4 Innhold Kapittel 3 Seksjon.................................. 3 Seksjon.................................. 3 Seksjon.4.................................

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

OPPGAVESETT MAT111-H16 UKE 34

OPPGAVESETT MAT111-H16 UKE 34 OPPGAVESETT MAT111-H16 UKE 34 Avsnittene (og appendiksene) viser til utgave 8 av læreboken, som er like i utgavene 7 og 6 når ikke annet er oppgitt. Gruppene starter opp i uke 35. Hver student er satt

Detaljer

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04

Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04 Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl

Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl. 09-13 BOKMAL Tillatt hjelpemiddel: Kalkulator med tomt minne i samsvar

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor

eksamensoppgaver.org x = x = x lg(10) = lg(350) x = lg(350) 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor eksamensoppgaver.org 5 oppgave1 a.i.1) 2 10 x = 700 10 x = 700 2 x lg(10) = lg(350) x = lg(350) a.i.2) Vibrukerfortegnsskjema 5 x x + 1 > 0 Avfortegnsskjemaetkanvileseatulikhetenstemmerfor x 1, 5 a.ii.1)

Detaljer

Innlevering i Matematikk Obligatorisk Innlevering 2 Innleveringsfrist 12. november 2010 kl Antall oppgaver 9. Oppgave 1.

Innlevering i Matematikk Obligatorisk Innlevering 2 Innleveringsfrist 12. november 2010 kl Antall oppgaver 9. Oppgave 1. Innlevering i Matematikk Obligatorisk Innlevering 2 Innleveringsfrist 12. november 2010 kl. 13.00 Antall oppgaver 9 Løsningsforslag Oppgave 1 a) sin A = BC AC 3, 2 cm = = 0, 627 5, 1 cm A = sin 1 0, 627

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 1 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel A. c) tan + sin0 + d) sin60 tan0 A. B. A y sin0 0 sin0 cos0 y 0 y cos0 C 60 D cos AD 0 6 B AD 0 cos 0 CD AD B.6 A tan60 CD BD BD BD tan60 6 AB AD

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org

Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008. eksamensoppgaver.org Løsningsforslag for eksamen i AA6526 Matematikk 3MX - 5. desember 2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikkeksamen i 3MX er gratis, og det er

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 5. mai eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004

LØSNINGSFORSLAG EKSAMEN TMA4105 MATEMATIKK 2 Lørdag 14. aug 2004 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag ide av LØNINGFOLAG EKAMEN TMA4 MATEMATIKK 2 Lørdag 4. aug 24 Oppgave Grenseverdien eksisterer ikke. For eksempel er grenseverdien

Detaljer

Hva du skal kunne: «Prisoverveltning», «Skatteoverveltning» («tax incidence»)

Hva du skal kunne: «Prisoverveltning», «Skatteoverveltning» («tax incidence») «Prisoverveltning», «Skatteoverveltning» («ta incidence») Hvor mye øker risen å brus dersom myndighetene legger å en avgift å 5 kroner er liter? Svaret avhenger av risfølsomheten i tilbud og ettersørsel.

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile 1 Kroppsutvidelser og geometriske konstruksjoner 1.1 Hva har kroppsutvidelser med geometriproblemer å gjøre? Avsnitt 29: Kroppsutvidelser Stoff: Utvidelseskropper

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

R2 Eksamen høsten 2014 ( )

R2 Eksamen høsten 2014 ( ) R Eksamen høsten 0 (8..) Løsningsskisser Versjon:.05.6 (Rettet feil i del i oppgave ) Del I - Uten hjelpemidler Oppgave a) Kjerneregel: f x cosu, u x f x 6 sin x b) Produktregel: g x 5e x sin x 5e x cos

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007

Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 Løsningsforslag Matematikk 2MX - AA6516-9. mai 2007 eksamensoppgaver.org September 17, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

HJEMMEOPPGAVER (utgave av 12-7-2005):

HJEMMEOPPGAVER (utgave av 12-7-2005): HJEMMEOPPGAVER (utgave av 12-7-2005: Ogave 1 til 31. januar: La f 1, f 2,... være Fibonacci tallene, det vil si f 1 f 2 1 og f n f n 1 + f n 2 for n 3. Vis: (1 f 1 + f 2 + + f n f n+2 1. (2 f n+1 f n 1

Detaljer

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04.

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04. Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 004. Hans Petter Hornæs Versjon per 6.10.04. I Matematikk 10 er en kort innføring i komplekse tall pensum. Dette er dekket i Lorentzen,

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

3Geometri. Mål. Grunnkurset K 3

3Geometri. Mål. Grunnkurset K 3 Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet

Detaljer

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014

Kortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014 Kortfattet løsningsforslag til ekstra prøveeksamen i MAT, høsten 4 DEL Oppgave. 3 poeng Hvis f, y = ye y, er f y lik: A y 3 e y B y e y C e y ye y D e y y e y E e y ye y Riktig svar: D e y y e y Oppgave.

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

Kjeglesnitt. Harald Hanche-Olsen. Versjon

Kjeglesnitt. Harald Hanche-Olsen. Versjon Kjeglesnitt Harald Hanche-Olsen hanche@math.ntnu.no Versjon 1.0 2013-01-25 Innledning Kjeglesnittene sirkler, ellipser, parabler og hyperbler er klassiske kurver som har vært studert siden antikken. Kjeglesnittene

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 27. oktober 2014

Oppgaver MAT2500. Fredrik Meyer. 27. oktober 2014 Oppgaver MAT2500 Fredrik Meyer 27. oktober 201 Oppgave 1. Finn sentrum og halvakser til kjeglesnittet med ligningen 25x 2 + 9y 2 18x + 2y = 0. Løsning 1. Vi vet at alle ikke degenererte kjeglesnitt er

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

FIE Signalprosessering i instrumentering

FIE Signalprosessering i instrumentering FIE 8 - Signalprosessering i instrumentering Øvelse #4: Z-transform, poler og nullpunkt Av Knut Ingvald Dietel Universitetet i Bergen Fysisk institutt 5 februar Innhold FIE 8 - Signalprosessering i instrumentering

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer