Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø

Størrelse: px
Begynne med side:

Download "Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no"

Transkript

1 Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø

2 Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering Øving 2: Redd Ratatosk Øving 3: Kobra lærer å stave

3 Terminologi: Grafer Node Kant Nabo Sykel Rettet graf DAGs Trær

4 Generelle grafer vs. trær Grafer er en overordnet, generell struktur Et tre er en graf som er sammenhengende, asyklisk og urettet I graftraversering er farging nyttig I en graf kan man oppdage grå eller svarte noder på nytt Vi må huske hvilke noder vi har sett

5 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

6 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

7 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

8 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

9 Nabolister Hver node har en liste over sine naboer Nyttigst hvis det er få kanter i forhold til antall noder (en sparse graf). Node a b c d e f Naboer c, d c, e d a f NIL

10 Nabomatrise En nxn matrise der en nabo er representert med en verdi Nyttig hvis grafen er tett (dense graf) a b c d e f a b c d e f

11 Bredde først søk (BFS) En enkel algoritme for å søke i en graf Har en kø over oppdagede (grå) elementer Vi har en mengde/liste av besøkte(ferdige) noder Se side 531 i Cormen

12 Bredde først søk (BFS) Begynn med å legge startnoden i kø Så lenge det finnes noder i køen: Plukk ut en node x fra starten av køen Legg alle naboer som ikke er besøkte eller oppdagede inn i køen (vi oppdager/gråfarger dem) Legg x inn i besøkt-mengden (farge den sort)

13 Kode for BFS def bfs(root): queue = Queue() queue.put(root) while len(queue) > 0: node = queue.get() # gjør noe fancy med noden her node.colour = Black for adj in node.adjacent: if adj.colour == White: adj.colour = Grey queue.add(adj)

14 Bruk av BFS Finne korteste vei fra en node til alle andre, i en uvektet graf Kan sjekke om en graf er bipartitt BFS er en viktig grunnstein for mer avanserte algoritmer

15 Kjøretid BFS Med naboliste: O(V + E) Må besøke alle noder (V), og sjekke alle kanter (E) Med nabomatrise: O(V 2 ) Må besøke alle noder (V), og sjekke alle kanter (V 2 )

16 Dybde først søk (DFS) Også en enkel algoritme for å søke i en graf Starter i en node og søker i dybden så langt det går Se side 541 i Cormen

17 Implementere DFS Kan implementeres via både rekursjon og iterasjon Med rekursjon så kaller metoden seg selv Dette er en treg måte å gjøre det på Med iterasjon har man nodene i en stakk Kjappere, behøver ikke rekursive kall

18 Kode for rekursiv DFS def dfs(node): node.colour = Grey for adj in node.adjacent: if adj.colour == White: dfs(adj) # gjør noe fancy med noden her node.colour = Black

19 Iterativ DFS Tar vare på nodene i en stakk. Alle noder er hvite før man oppdager dem Når en node blir oppdaget blir den fargelagt grå, og lagt til i stakken. En node er ferdig når alle dens barn er ferdigbehandlet; da taes noden ut av stakken og fargelegges svart

20 Bruk av DFS Brukes i mange andre algoritmer Strongly connected components (neste gang) Topologisk sortering (neste gang) Kjøretid: O(V + E) Alle noder(v) må besøkes, og alle kanter(e) må sjekkes

21 Hashing og hashtabeller Problemet vi søker en løsning på: Man har et lite/moderat antall elementer, i et stort verdiområde. Hvordan lagre og søke etter disse effektivt? Eks: Telefonnummer og navn på ansatte. Direkte-adressering vil kreve altfor stor plass.

22 Hvordan løser hashing dette? Hashing er en måte å konvertere verdier fra et stort utfallsrom til et som er mye mindre. Hashing gir en form for fingeravtrykk av en verdi. Vi kan bruke dette til å lagre og hente data effektivt fra en liten og kompakt tabell

23 Hashtabeller: Fordelene Oppslag i O(1) tid Innsetting i O(1) tid Sletting i O(1) tid O(1) betyr konstant tid Dvs. at hastigheten på operasjonene ikke er avhengig av antall elementer i tabellen NB! Dette er average-case, ikke worst case

24 Hashtabeller En tabell hvor vi får en hash av dataene til å beskrive hvor vi lagrer dem.

25 Hashing Hashfunksjon: h(k) = x h er hashfunksjonen vi har valgt oss k er hashnøkkelen, hele eller deler av dataene x er hashen av nøkkelen, dvs. posisjonen der vi plasserer dataene i en hashtabell

26 Valg av hashfunksjon Mål: transformere potensielt store data til en indeks i en tabell Påkrevd egenskap: Deterministisk Ønsket egenskap: Uniform fordeling Ønsket egenskap: Kjapp å utføre

27 Valg av hashfunksjon Noen eksempler på enkle, gode funksjoner (Se Cormen kap. 11): Divisjonsmetoden ( modulo-metoden ) h(k) = k mod m Multiplikasjonsmetoden h(k) = m (k A mod 1)

28 Valg av hashfunksjon Noen eksempler på dårlige hashfunksjoner: En konstant funksjon: h(k) = 20 Java 1.1 (før 1998): java.lang.string.hashcode() benyttet kun de første 16 bokstavene i en string til å generere hashen.

29 Håndtering av kollisjoner Kjeding ( chaining ) Lagrer en lenket liste i hver hash-bøtte Hvis vi får mange kollisjoner tar det tid å lete etter elementene Fordel: Enkelt å implementere Ulempe: Kan bli tregt, og kan bli en del overhead

30 Håndtering av kollisjoner Lineær søking Hvis det er en kollisjon, prøv neste plass i tabellen Ulempe: Primary clustering yter enda dårligere enn kjeding hvis man har mange kollisjoner

31 Håndtering av kollisjoner Kvadratisk søking Hvis det er en kollisjon, prøv å hoppe videre slik: For hopp i: Posisjon = (h(k) + a*i + b*i 2 ) mod m Fordel: Yter bedre enn de to forrige Ulempe: Secondary clustering kan fremdeles bli problemer hvis mange elementer hasher til samme posisjon

32 Håndtering av kollisjoner Dobbel hashing Bruker 2 hashfunksjoner, h 1 (k) og h 2 (k) Prøv først plass h 1 (k) i tabellen Hvis det oppstår kollisjon, prøv å hoppe h 2 (k) posisjoner videre helt til vi når en åpen plass Fordel: Enkel og kjapp å implementere

33 Øving 2: Redd Ratatosk Hvorfor vil BFS være bedre enn DFS her? Ratatosk har lik sjanse til å være på hvert nivå Færre noder per nivå nært roten av treet BFS sjekker da først de mest sannsynlige nodene Løsningsforslag ligger ute BFS bruker kø DFS bruker stakk

34 Øving 2: Redd Ratatosk Tweak-løsning Vi vet allerede hvilken node Ratatosk er i Trenger ikke å lese all input, og konstruere tre Husk koblinger barn->forelder, fremfor andre veien La Ratatosk klatre ned treet ved å følge koblingene Denne spesifikke løsningen er ikke eksamensrelevant

35 Øving 3: Kobra lærer å stave

36 Øving 3: Kobra lærer å stave def bygg(ordliste): Skal bygge et tre ut fra ei liste av (ord, posisjon) Skal returnere rot-noden def posisjoner(ord, indeks, node): Skal returnere ei liste av posisjoner der ord matcher Hvis man møter spørsmålstegn, må man sjekke alle subtrær rekursivt, ved å spesifisere indeks og node i nye kall til posisjoner

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Kapittel 14, Hashing Tema Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Hashing Hashing er en effektiv metode ved lagring og gjenfinning (søking) av informasjon Søkemetoder

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

Ordliste. Obligatorisk oppgave 1 - Inf 1020

Ordliste. Obligatorisk oppgave 1 - Inf 1020 Ordliste. Obligatorisk oppgave 1 - Inf 1020 I denne oppgaven skal vi tenke oss at vi vil holde et register over alle norske ord (med alle bøyninger), og at vi skal lage operasjoner som kan brukes til f.

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Diagnosekart for oblig 2, INF3/4130 h07

Diagnosekart for oblig 2, INF3/4130 h07 Diagnosekart for oblig 2, INF3/4130 h07 Dag Sverre Seljebotn 1. november 2007 Dette er et dokument jeg har skrivd for å gjøre det enklere å gi tilbakemelding på obligene, siden så mange ting går igjen

Detaljer

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf

Oppgave 3 a. Antagelser i oppgaveteksten. INF1020 Algoritmer og datastrukturer. Oppgave 3. Eksempelgraf Oppgave 3 3 a IN1020 Algoritmer og datastrukturer orelesning 15: Gjennomgang av eksamen vår 2001 oppgave 3 Arild Waaler Institutt for informatikk, Universitetet i Oslo 11. desember 2006 Oppgave 3 a. Antagelser

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 12

PG4200 Algoritmer og datastrukturer Forelesning 12 PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid

Detaljer

Algoritmer og Datastrukturer

Algoritmer og Datastrukturer Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 3. november 2, kl. 9. - 14. Hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

Detaljer

LO118D Forelesning 10 (DM)

LO118D Forelesning 10 (DM) LO118D Forelesning 10 (DM) Grafteori 03.10.2007 1 Korteste vei 2 Grafrepresentasjoner 3 Isomorfisme 4 Planare grafer Korteste vei I en vektet graf går det an å finne den veien med lavest total kostnad

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først

Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Køer Hva er en kø? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn først Et nytt element legges alltid til sist i køen Skal vi ta ut et element, tar vi alltid

Detaljer

Et eksempel: Åtterspillet

Et eksempel: Åtterspillet Trær Et eksempel: Åtterspillet To spillere som «trekker» annenhver gang I hvert trekk velges et av tallene 1, 2, 3, men ikke tallet som motspiller valgte i forrige trekk Valgte tall summeres fortløpende

Detaljer

UNIVERSITETET. Indeksering. Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Hashliknende strukturer.

UNIVERSITETET. Indeksering. Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Hashliknende strukturer. UNIVERSITETET IOSLO Indeksering Konvensjonelle indekser B-trær og hashing Flerdimensjonale indekser Treliknende strukturer Hashliknende strukturer Bitmapindekser Institutt for Informatikk INF30 22.2.2011

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Algoritmer og datastrukturer

Algoritmer og datastrukturer Algoritmer og datastrukturer Skrevet av: Are Nybakk Avgangsstudent Bachelor Ingeniør Datateknikk v/nith 2007-2008 Innhold Innledning...4 1 Matematikkgrunnlag... 1.1 Rekker og summer... 1.2 Funksjoner og

Detaljer

Metode for å lære ny algoritme. Dagens forelesingsplan : time 1. Dybde-Først-Søk : Labyrint. Dybde-Først-Søk : Krigsstrategi. Dybde-Først-Søk : Hva

Metode for å lære ny algoritme. Dagens forelesingsplan : time 1. Dybde-Først-Søk : Labyrint. Dybde-Først-Søk : Krigsstrategi. Dybde-Først-Søk : Hva agens orelesingsplan : time 1 Metoe or å lære ny algoritme Gjennomgang av ybe-først-søk 5-10 min, Sune Gjennomgang av teori-øving 2 5-10 min, Sanve Presentasjon av teori-øving 3 5-10 min, Sanve Se litt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

ITF20006 Algoritmer og datastrukturer Oppgavesett 7

ITF20006 Algoritmer og datastrukturer Oppgavesett 7 ITF Algoritmer og datastrukturer Oppgavesett 7 Av Thomas Gabrielsen Eksamen Oppgave. ) Det tar konstant tid å hente et gitt element fra en tabell uavhengig av dens størrelse, noe som med O-notasjon kan

Detaljer

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen

Korteste Vei II. Lars Vidar Magnusson 11.4.2014. Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Korteste Vei II Lars Vidar Magnusson 11.4.2014 Kapittel 24 Bellman-Ford algoritmen Dijkstra algoritmen Bellman-Ford Algoritmen Bellman-Ford er en single-source korteste vei algoritme. Den tillater negative

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL

HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL HØGSKOLEN I SØR-TRØNDELAG Avdeling for informatikk og e-læring - AITeL Kandidatnr: Eksamensdato:. desember 00 Varighet: timer (9:00 1:00) Fagnummer: LO117D Fagnavn: Algoritmiske metoder Klasse(r): DA DB

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes

Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes Fra Kap.10 Binære søketre (BS-tre) Sist oppdatert 20.03.10 Definere en abstrakt datastruktur binært søketre. Vise hvordan binær søketre kan brukes til å løse problemer. Undersøke ulike implementasjoner

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 Delkapittel 9.4 Splay-trær Side 1 av 7 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.4 9.4 Splay-trær 9.4.1 Splay-rotasjoner Et splay-tre er et sortert binætre der treet restruktureres på en

Detaljer

N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000

N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000 N-dronningproblemet Obligatorisk oppgave 1 I120, H-2000 Innleveringsfrist : Mandag, 2. Oktober, kl.10:00 Besvarelsen legges i arkivskapet på UA i skuff merket I120 Innhold: utskrift av godt dokumentert

Detaljer

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2

Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 Algoritmer og datastrukturer Kapittel 11 - Delkapittel 11.2 11.2 Korteste vei i en graf 11.2.1 Dijkstras metode En graf er et system med noder og kanter mellom noder. Grafen kalles rettet Notasjon Verdien

Detaljer

Løsningsforslag - Floyd-Warshall

Løsningsforslag - Floyd-Warshall Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon martme logget

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 2

PG 4200 Algoritmer og datastrukturer Innlevering 2 PG 4200 Algoritmer og datastrukturer Innlevering 2 Frist: Mandag 21.april 2014 kl 23.55 Utdelt materiale: Se zip-filen innlevering2.zip. Innlevering: Lever en zip-fil som inneholder følgende: PG4200_innlevering_2.pdf:

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på.

Go with the. Niende forelesning. Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Go with the Niende forelesning Mye matematikk i boka her ikke så komplisert, men mye å holde styr på. Fokuserer på de viktigste ideene i dagens forelesning, så det forhåpentligvis blir lettere å skjønne

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

Læringsmål for forelesningen

Læringsmål for forelesningen Læringsmål for forelesningen Objektorientering Bruk av grensesnitt og implementasjoner i Collection-klasser Java-prog, kap. 14-16 i Big Java Og side 990-997 i Appendix D Collection-rammeverket og iterasjon

Detaljer

TDT4165 PROGRAMMING LANGUAGES. Exercise 02 Togvogn-skifting

TDT4165 PROGRAMMING LANGUAGES. Exercise 02 Togvogn-skifting TDT4165 PROGRAMMING LANGUAGES Fall 2012 Exercise 02 Togvogn-skifting Problembeskrivelse Du er sjef for å skifte vognene til et tog. Vi antar at hver vogn selv har en motor og at toget ikke har noe lokomotiv.

Detaljer

Løsningsforslag EKSAMEN

Løsningsforslag EKSAMEN 1 Løsningsforslag EKSAMEN Emnekode: ITF20006 000 Dato: 18. mai 2012 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Faglærer: Gunnar Misund

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 12. januar 1995, Kl. 0900-1300.

Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 12. januar 1995, Kl. 0900-1300. UNIVERSITETET I TRONDHEIM NORGES TEKNISKE HØGSKOLE INSTITUTT FOR DATATEKNIKK OG TELEMATIKK 034 Trondheim Side 1 av 5 Eksamen i 45011 Algoritmer og Datastrukturer Torsdag 1. januar 1995, Kl. 0900-1300.

Detaljer

Tor Jarle Sagen Stig Runar Vangen

Tor Jarle Sagen Stig Runar Vangen Tor Jarle Sagen Stig Runar Vangen Søkemaskiner Høsten 2003 Avdeling for samfunn, næring og natur Forord Denne rapport er utarbeidet høsten 2003 ved HINT/ITU, som en del av faget CIT 510 Søkemaskiner. Personene

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 10 Denne øvingen er en to-ukers øving (prosjekt) og inneholder én

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik Avdeling for teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGKODE: Algoritmiske metoder I L 189 A EKSAMENSDATO: 15. august 00 KLASSE(R): 00HINDA / 00HINDB / 00HINEA ( DA / DB / EA ) TID:

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Algoritmer og datastrukturer Assignment 11 Side 1 av 5

Algoritmer og datastrukturer Assignment 11 Side 1 av 5 Assignment 11 Side 1 av 5 Oppgave 1 Utregning av ASCII summer, og hashfunksjon: Hashfunksjon: A(s) % n Nøkkel ASCII SUM (ASCII SUM) % 8 ANNE 290 2 PER 231 7 NINA 294 6 ANNI 294 6 ALI 214 6 KAREN 369 1

Detaljer

AlgDat 12. Forelesning 2. Gunnar Misund

AlgDat 12. Forelesning 2. Gunnar Misund AlgDat 12 Forelesning 2 Forrige forelesning Følg med på hiof.no/algdat, ikke minst beskjedsida! Algdat: Fundamentalt, klassisk, morsomt,...krevende :) Pensum: Forelesningene, oppgavene (pluss deler av

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel MAT1030 Diskret matematikk Forelesning 26: Trær Sist forelesning snakket vi i hovedsak om trær med rot, og om praktisk bruk av slike. rot Dag Normann Matematisk Institutt, Universitetet i Oslo barn barn

Detaljer

Løsningsforslag - Parallellitet og repetisjon

Løsningsforslag - Parallellitet og repetisjon Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Notater Kode/koding Ordliste Kontakt Eksterne ressurser IDI NTNU Utskriftsversjon Løsningsforslag

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF 4130: lgoritmer: Design og effektivitet Eksamensdag: 12. desember 2008 Tid for eksamen: Kl. 09:00 12:00 (3 timer) Oppgavesettet

Detaljer

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei

Korteste Vei I. Lars Vidar Magnusson 9.4.2014. Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei I Lars Vidar Magnusson 9.4.2014 Kapittel 24 Hvordan finne korteste vei Egenskaper ved korteste vei Korteste Vei Problemet I denne forelesningen skal vi se på hvordan vi kan finne korteste

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

Algoritmer og teknikker for sjakkprogrammer - teori og praksis

Algoritmer og teknikker for sjakkprogrammer - teori og praksis A Microsoft Subsidiary Algoritmer og teknikker for sjakkprogrammer - teori og praksis Rune Djurhuus, stormester i sjakk 22. oktober 2008 Innhold Sjakkspillets kompleksitet Historien til computersjakk Søketre

Detaljer

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre

Repetisjon, del 2. TDT 4110 IT Grunnkurs Professor Guttorm Sindre Repetisjon, del 2 TDT 4110 IT Grunnkurs Professor Guttorm Sindre Premieutdeling Kahoot Vinnere av enkeltrunder: Datamaskinens historie: mr.oyster (7311) Variable, aritmetiske op., etc.: Sha-ra (6155) if-setn.,

Detaljer

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014

Norsk informatikkolympiade 2014 2015 1. runde. Sponset av. Uke 46, 2014 Norsk informatikkolympiade 014 015 1. runde Sponset av Uke 46, 014 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

D130: SAMMENDRAG FRA SEDGEWICK.

D130: SAMMENDRAG FRA SEDGEWICK. D130: SAMMENDRAG FRA SEDGEWICK. 1. & 2. utelatt. 3. ELEMENTÆRE DATASTRUKTURER - En datatype er en mengde av verdier og en mengde av operasjoner på disse verdiene. - En abstrakt datatype er en datatype

Detaljer

OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik

OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik OPPGAVER for IMT2021 - Algoritmiske metoder Høsten 2015 Høgskolen i Gjøvik Forord Dette kompendie/hefte innholder oppgaveteksten for ulike ukeoppgaver i emnet Algoritmiske metoder ved Høgskolen i Gjøvik.

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG EKSAMENSOPPGAVE Fag: Lærer: IAD20003 Algoritmer og datastrukturer André Hauge Grupper: D2A Dato: 21.12.2004 Tid: 0900-1300 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle

Detaljer

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012

INF1000 - Uke 10. Ukesoppgaver 10 24. oktober 2012 INF1000 - Uke 10 Ukesoppgaver 10 24. oktober 2012 Vanlige ukesoppgaver De første 4 oppgavene (Oppgave 1-4) handler om HashMap og bør absolutt gjøres før du starter på Oblig 4. Deretter er det en del repetisjonsoppgaver

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja)

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja) Eirik Benum Reksten Hans Olav Norheim (ja, det kommer nok litt matte nå ja) Hva er lineærprogrammering? Vi har et problem hvor vi... 1. ønsker å minimere eller å maksimere et mål 2. kan spesifisere målet

Detaljer

Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015

Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015 Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015 Oppgave 1: Vi skal se på koden generert av TA-instruksjonene til høyre i figur 9.10 i det utdelte notatet, side 539 a) (repetisjon fra forelesningene)

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1

Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 Delkapittel 5.1 Binære trær side 1 av 71 Algoritmer og datastrukturer Kapittel 5 - Delkapittel 5.1 5.1 Binære trær 5.1.1 Binære trærs egenskaper Binære trær (eng: binary tree), og trær generelt, er en

Detaljer

INF2810: Funksjonell Programmering. Huffman-koding

INF2810: Funksjonell Programmering. Huffman-koding INF2810: Funksjonell Programmering Huffman-koding Stephan Oepen Universitetet i Oslo 1. mars 2016 Tema 2 Sist Trær som lister av lister Trerekursjon Mengder som trær I dag Hierarkisk og symbolsk data Eksempel:

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 9: 19. - 25. okt (INF1000 - Høst 2011) HashMap, innstikksortering, javadoc (kap. 9.1-9.11, m.m. i "Rett på Java" 3. utg.) NB! Legg merke til at disse er løsningsforslag. Løsningene

Detaljer

Naturlige nettverk. Martin Vatshelle 7. mars 2008. Masteroppgave i Algoritmer ved Universitetet i Bergen

Naturlige nettverk. Martin Vatshelle 7. mars 2008. Masteroppgave i Algoritmer ved Universitetet i Bergen Naturlige nettverk Martin Vatshelle 7. mars 2008 Masteroppgave i Algoritmer ved Universitetet i Bergen Sammendrag Hoveddelen av denne Masteroppgaven er en innføring i naturlige nettverk. Vi forklarer og

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oversikt over den delen av grafteorien som er gjennomgått i MAT1140 høsten 2013. Vekten er på den logiske oppbygningen, og jeg har utelatt

Detaljer

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess

Hva er en algoritme? Har allerede sett på mange algoritmer til nå i IT1101. Forholdet mellom en algoritme og et program. Algoritme program prosess IT1101 Informatikk basisfag, dobbeltime 2/10 Hva er en algoritme? Fremgangsmåte for noe Hittil: Datarepresentasjon Datamanipulasjon Datamaskinarkutektur hvordan maskinen jobber Operativsystem Program som

Detaljer

AlgDat notater. Einar Baumann. 2. desember 2012

AlgDat notater. Einar Baumann. 2. desember 2012 AlgDat notater Einar Baumann 2. desember 2012 Innhold 1 Sorteringsalgoritmer 5 1.1 Insertion sort................................... 5 1.1.1 Prinsipp.................................. 5 1.1.2 Pseudokode................................

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Eksamen i ALGORITMER OG DATASTRUKTURER Høgskolen i Østfold Avdeling for Informatikk og Automatisering Onsdag 11.desember, 1996 Kl. 9.00-15.00 Tillatte hjelpemidler: Alle trykte og skrevne. Kalkulator.

Detaljer

TDT4110 IT Grunnkurs Høst 2012

TDT4110 IT Grunnkurs Høst 2012 TDT4110 IT Grunnkurs Høst 2012 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 2 Navn: Linje: Brukernavn: Oppgavesettet inneholder 5 oppgaver.

Detaljer

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9

Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 Python: Oppslagslister (dictionaries) og mengder 3. utgave: Kapittel 9 TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå prinsippene for, og kunne bruke i praksis Mengder (sets)

Detaljer

Datastrukturer og Algoritmer

Datastrukturer og Algoritmer TOD 063 Datastrukturer og Algoritmer Forside fra lærebokens Nord Amerikanske utgave Tar for seg praktisk problemstilling: Hvordan håndtere containere som blir lastet fra containerskip i en travel havn

Detaljer

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet.

Oppgave 1a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. TDT445 Øving 4 Oppgave a Definer følgende begreper: Nøkkel, supernøkkel og funksjonell avhengighet. Nøkkel: Supernøkkel: Funksjonell avhengighet: Data i en database som kan unikt identifisere (et sett

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00 PG 4200 Algoritmer og datastrukturer Innlevering 1 Frist: 2.februar kl 21.00 Utdelt materiale: Alle filer som nevnes er inneholdt i zip-filen innlevering1.zip. Innlevering: Besvarelsen skal være i form

Detaljer

TDT4102 Prosedyre og Objektorientert programmering Vår 2015

TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap TDT4102 Prosedyre og Objektorientert programmering Vår 2015 Øving 4 Frist: 2014-02-14 Mål for denne øvinga:

Detaljer

En algoritme for permutasjonsgenerering

En algoritme for permutasjonsgenerering Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere

Detaljer

Eksamen i Internetteknologi Fagkode: IVA1379

Eksamen i Internetteknologi Fagkode: IVA1379 Høgskolen i Narvik Side 1 av 5 Eksamen i Internetteknologi Fagkode: IVA1379 Tid: Mandag, 07.06.04, 9:00-12:00 Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler tillatt. Eksamen består av 4 oppgaver

Detaljer

Løsningsforslag til eksamen i INF1000 våren 2006

Løsningsforslag til eksamen i INF1000 våren 2006 Løsningsforslag til eksamen i INF1000 våren 2006 Oppgave 1 a) -1 false 7 b) 30 c) Verdien til j er: 4Verdien til k er: 3Verdien til n er: 7 d) Andre if-test er true Tredje if-test er true e) k = 4 k =

Detaljer