Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø

Størrelse: px
Begynne med side:

Download "Alg. Dat. Øvingsforelesning 3. Grafer, BFS, DFS og hashing. Børge Rødsjø rodsjo@stud.ntnu.no"

Transkript

1 Alg. Dat Øvingsforelesning 3 Grafer, BFS, DFS og hashing Børge Rødsjø

2 Dagens tema Grafer Terminologi Representasjon av grafer Bredde først søk (BFS) Dybde først søk (DFS) Hashing Hashfunksjoner, hashtabeller Kollisjonshåndtering Øving 2: Redd Ratatosk Øving 3: Kobra lærer å stave

3 Terminologi: Grafer Node Kant Nabo Sykel Rettet graf DAGs Trær

4 Generelle grafer vs. trær Grafer er en overordnet, generell struktur Et tre er en graf som er sammenhengende, asyklisk og urettet I graftraversering er farging nyttig I en graf kan man oppdage grå eller svarte noder på nytt Vi må huske hvilke noder vi har sett

5 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

6 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

7 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

8 Representasjon av grafer En graf består av noder og relasjoner G = (V, E). V er alle nodene, E er relasjoner mellom nodene (i dagligtale: kanter)

9 Nabolister Hver node har en liste over sine naboer Nyttigst hvis det er få kanter i forhold til antall noder (en sparse graf). Node a b c d e f Naboer c, d c, e d a f NIL

10 Nabomatrise En nxn matrise der en nabo er representert med en verdi Nyttig hvis grafen er tett (dense graf) a b c d e f a b c d e f

11 Bredde først søk (BFS) En enkel algoritme for å søke i en graf Har en kø over oppdagede (grå) elementer Vi har en mengde/liste av besøkte(ferdige) noder Se side 531 i Cormen

12 Bredde først søk (BFS) Begynn med å legge startnoden i kø Så lenge det finnes noder i køen: Plukk ut en node x fra starten av køen Legg alle naboer som ikke er besøkte eller oppdagede inn i køen (vi oppdager/gråfarger dem) Legg x inn i besøkt-mengden (farge den sort)

13 Kode for BFS def bfs(root): queue = Queue() queue.put(root) while len(queue) > 0: node = queue.get() # gjør noe fancy med noden her node.colour = Black for adj in node.adjacent: if adj.colour == White: adj.colour = Grey queue.add(adj)

14 Bruk av BFS Finne korteste vei fra en node til alle andre, i en uvektet graf Kan sjekke om en graf er bipartitt BFS er en viktig grunnstein for mer avanserte algoritmer

15 Kjøretid BFS Med naboliste: O(V + E) Må besøke alle noder (V), og sjekke alle kanter (E) Med nabomatrise: O(V 2 ) Må besøke alle noder (V), og sjekke alle kanter (V 2 )

16 Dybde først søk (DFS) Også en enkel algoritme for å søke i en graf Starter i en node og søker i dybden så langt det går Se side 541 i Cormen

17 Implementere DFS Kan implementeres via både rekursjon og iterasjon Med rekursjon så kaller metoden seg selv Dette er en treg måte å gjøre det på Med iterasjon har man nodene i en stakk Kjappere, behøver ikke rekursive kall

18 Kode for rekursiv DFS def dfs(node): node.colour = Grey for adj in node.adjacent: if adj.colour == White: dfs(adj) # gjør noe fancy med noden her node.colour = Black

19 Iterativ DFS Tar vare på nodene i en stakk. Alle noder er hvite før man oppdager dem Når en node blir oppdaget blir den fargelagt grå, og lagt til i stakken. En node er ferdig når alle dens barn er ferdigbehandlet; da taes noden ut av stakken og fargelegges svart

20 Bruk av DFS Brukes i mange andre algoritmer Strongly connected components (neste gang) Topologisk sortering (neste gang) Kjøretid: O(V + E) Alle noder(v) må besøkes, og alle kanter(e) må sjekkes

21 Hashing og hashtabeller Problemet vi søker en løsning på: Man har et lite/moderat antall elementer, i et stort verdiområde. Hvordan lagre og søke etter disse effektivt? Eks: Telefonnummer og navn på ansatte. Direkte-adressering vil kreve altfor stor plass.

22 Hvordan løser hashing dette? Hashing er en måte å konvertere verdier fra et stort utfallsrom til et som er mye mindre. Hashing gir en form for fingeravtrykk av en verdi. Vi kan bruke dette til å lagre og hente data effektivt fra en liten og kompakt tabell

23 Hashtabeller: Fordelene Oppslag i O(1) tid Innsetting i O(1) tid Sletting i O(1) tid O(1) betyr konstant tid Dvs. at hastigheten på operasjonene ikke er avhengig av antall elementer i tabellen NB! Dette er average-case, ikke worst case

24 Hashtabeller En tabell hvor vi får en hash av dataene til å beskrive hvor vi lagrer dem.

25 Hashing Hashfunksjon: h(k) = x h er hashfunksjonen vi har valgt oss k er hashnøkkelen, hele eller deler av dataene x er hashen av nøkkelen, dvs. posisjonen der vi plasserer dataene i en hashtabell

26 Valg av hashfunksjon Mål: transformere potensielt store data til en indeks i en tabell Påkrevd egenskap: Deterministisk Ønsket egenskap: Uniform fordeling Ønsket egenskap: Kjapp å utføre

27 Valg av hashfunksjon Noen eksempler på enkle, gode funksjoner (Se Cormen kap. 11): Divisjonsmetoden ( modulo-metoden ) h(k) = k mod m Multiplikasjonsmetoden h(k) = m (k A mod 1)

28 Valg av hashfunksjon Noen eksempler på dårlige hashfunksjoner: En konstant funksjon: h(k) = 20 Java 1.1 (før 1998): java.lang.string.hashcode() benyttet kun de første 16 bokstavene i en string til å generere hashen.

29 Håndtering av kollisjoner Kjeding ( chaining ) Lagrer en lenket liste i hver hash-bøtte Hvis vi får mange kollisjoner tar det tid å lete etter elementene Fordel: Enkelt å implementere Ulempe: Kan bli tregt, og kan bli en del overhead

30 Håndtering av kollisjoner Lineær søking Hvis det er en kollisjon, prøv neste plass i tabellen Ulempe: Primary clustering yter enda dårligere enn kjeding hvis man har mange kollisjoner

31 Håndtering av kollisjoner Kvadratisk søking Hvis det er en kollisjon, prøv å hoppe videre slik: For hopp i: Posisjon = (h(k) + a*i + b*i 2 ) mod m Fordel: Yter bedre enn de to forrige Ulempe: Secondary clustering kan fremdeles bli problemer hvis mange elementer hasher til samme posisjon

32 Håndtering av kollisjoner Dobbel hashing Bruker 2 hashfunksjoner, h 1 (k) og h 2 (k) Prøv først plass h 1 (k) i tabellen Hvis det oppstår kollisjon, prøv å hoppe h 2 (k) posisjoner videre helt til vi når en åpen plass Fordel: Enkel og kjapp å implementere

33 Øving 2: Redd Ratatosk Hvorfor vil BFS være bedre enn DFS her? Ratatosk har lik sjanse til å være på hvert nivå Færre noder per nivå nært roten av treet BFS sjekker da først de mest sannsynlige nodene Løsningsforslag ligger ute BFS bruker kø DFS bruker stakk

34 Øving 2: Redd Ratatosk Tweak-løsning Vi vet allerede hvilken node Ratatosk er i Trenger ikke å lese all input, og konstruere tre Husk koblinger barn->forelder, fremfor andre veien La Ratatosk klatre ned treet ved å følge koblingene Denne spesifikke løsningen er ikke eksamensrelevant

35 Øving 3: Kobra lærer å stave

36 Øving 3: Kobra lærer å stave def bygg(ordliste): Skal bygge et tre ut fra ei liste av (ord, posisjon) Skal returnere rot-noden def posisjoner(ord, indeks, node): Skal returnere ei liste av posisjoner der ord matcher Hvis man møter spørsmålstegn, må man sjekke alle subtrær rekursivt, ved å spesifisere indeks og node i nye kall til posisjoner

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth

Øvingsforelesning 2 - TDT4120. Grafer og hashing. Benjamin Bjørnseth Øvingsforelesning 2 - TDT4120 Grafer og hashing Benjamin Bjørnseth Informasjon Studasser algdat@idi.ntnu.no Program Presentasjon av øving 2 Grafer og traverseringsalgoritmer BFS, DFS Hashing Gjennomgang

Detaljer

INF1020 Algoritmer og datastrukturer

INF1020 Algoritmer og datastrukturer Dagens plan Hashing Hashtabeller Hash-funksjoner Kollisjonshåndtering Åpen hashing (kap. 5.3) Lukket hashing (kap. 5.4) Rehashing (kap. 5.5) Sortering ut fra en hashing-ide (side 66-68) Bøttesortering

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Hashtabeller Lars Vidar Magnusson 12.2.2014 Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Dictionaries Mange applikasjoner trenger dynamiske sett som bare har dictionary oparsjonene

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer

Innhold. Innledning 1

Innhold. Innledning 1 Innhold Innledning 1 1 Kompleksitetsanalyse 7 1.1 Innledning.............................. 8 1.2 Hva vi beregner........................... 8 1.2.1 Enkle operasjoner...................... 8 1.2.2 Kompleksitet........................

Detaljer

Algdat - øvingsforelesning

Algdat - øvingsforelesning Algdat - øvingsforelesning Topologisk sortering og minimale spenntrær Nils Barlaug Dagens plan 1. 2. 3. 4. 5. Praktisk og dagens plan Topologisk sortering Minimale spenntrær a. Kruskal b. Prim Tips til

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF2220 28.09.2016 1 / 30 Dagens plan: Dijkstra fort.

Detaljer

Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon

Magnus Moan (Undertegnede) Enkle datastrukturer, trær, traversering og rekursjon 1 Enkle datastrukturer, trær, traversering og rekursjon Magnus Moan (Undertegnede) algdat@idi.ntnu.no Enkle datastrukturer, trær, traversering og rekursjon 2 Dagens plan Praktisk Enkle datastrukturer Stack

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array

Maps og Hashing. INF Algoritmer og datastrukturer. Map - ADT. Map vs Array Maps og Hashing INF0 - Algoritmer og datastrukturer HØSTEN 00 Institutt for informatikk, Universitetet i Oslo INF0, forelesning : Maps og Hashing Map - Abstrakt Data Type Hash-funksjoner hashcode Kollisjonshåndtering

Detaljer

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller

Hashing. INF Algoritmer og datastrukturer HASHING. Hashtabeller Hashing INF2220 - Algoritmer og datastrukturer HØSTEN 200 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning : Hashing Hashtabeller (kapittel.) Hash-funksjoner (kapittel.2) Kollisjonshåndtering

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 3: Maps og Hashing Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 3 1 / 25 Maps

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning 5 1 / 49

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

... HASHING. Hashing. Hashtabeller. hash(x)

... HASHING. Hashing. Hashtabeller. hash(x) HASHING Hashing Hashtabeller (kapittel.) Hash-funksjoner (kapittel.) Kollisjonshåndtering Åpen hashing (kapittel.) Lukket hashing (kapittel.) Anta at en bilforhandler har ulike modeller han ønsker å lagre

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 6 1 / 31 Dagens plan:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 5: Grafer I Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning 5 1 / 55

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

SIF8010 ALGORITMER OG DATASTRUKTURER

SIF8010 ALGORITMER OG DATASTRUKTURER SIF8010 ALGORITMER OG DATASTRUKTURER KONTINUASJONSEKSAMEN, 1999; LØSNINGSFORSLAG Oppgave 1 (12%) Anta at du skal lage et støtteprogram som umiddelbart skal varsle om at et ord blir skrevet feil under inntasting

Detaljer

Notater til INF2220 Eksamen

Notater til INF2220 Eksamen Notater til INF2220 Eksamen Lars Bjørlykke Kristiansen December 13, 2011 Stor O notasjon Funksjon Navn 1 Konstant log n Logaritmisk n Lineær n log n n 2 Kvadratisk n 3 Kubisk 2 n Eksponensiell n! Trær

Detaljer

Definisjon av binært søketre

Definisjon av binært søketre Binære søketrær Definisjon av binært søketre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer

Uke 5 Disjunkte mengder

Uke 5 Disjunkte mengder Uke 5 Disjunkte mengder MAW, kap.. 8 September 19, 2005 Page 1 Hittil Forutsetninger for og essensen i faget Metodekall, rekursjon, permutasjoner Analyse av algoritmer Introduksjon til ADT er Den første

Detaljer

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar

Uretta grafar (1) Mengde nodar Mengde kantar som er eit uordna par av nodar Kapittel 13, Grafar Uretta grafar (1) Ein uretta graf Mengde nodar Mengde kantar som er eit uordna par av nodar To nodar er naboar dersom dei er knytta saman med einkant Ein node kan ha kant til seg sjølv.

Detaljer

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-)

O, what a tangled. Fjerde forelesning. Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) Dagens oppvarming 1 O, what a tangled Fjerde forelesning Robot-eksemplet som ikke ble gjennomgått sist blir frivillig selvstudium (ut fra foilene :-) O, what a tangled web we weave / When first we practice

Detaljer

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G

Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). Innsetting og søk. Rekursjon igjen. A C E G TLDR RTFM Innsetting og søk. Rekursjon igjen. Evt. forklar på tavla. Diskuter kjøretid (best-/ worst-case). D B F A C E G reduksjon! rekursjon dekomp. induksjon gjenbruk travers. Søk i søketre uten balansering

Detaljer

Vi skal se på grafalgoritmer for:

Vi skal se på grafalgoritmer for: Grafalgoritmer Vi skal se på grafalgoritmer for: Traversering: Oppsøk alle nodene i grafen en og bare en gang, på en eller annen systematisk måte Nåbarhet: Finnes det en vei fra en node til en annen node?

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) REPETISJON: ALGORITMER OG STOR O 2 REPETISJON RØD-SVARTE TRÆR 7 Rød-svarte trær Et rød-svart

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved

... Når internminnet blir for lite. Dagens plan: Løsning: Utvidbar hashing. hash(x) katalog. O modellen er ikke lenger gyldig ved Dagens plan: Utvidbar hashing (kapittel 5.6) B-trær (kap. 4.7) Abstrakte datatyper (kap. 3.1) Stakker (kap. 3.3) Når internminnet blir for lite En lese-/skriveoperasjon på en harddisk (aksesstid 7-12 millisekunder)

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf.

Detaljer

INF2220: Forelesning 3

INF2220: Forelesning 3 INF2220: Forelesning 3 Map og hashing Abstrakte datatyper (kapittel 3.1) Map (kapittel 4.8) Hashing (kapittel 5) ABSTRAKTE DATATYPER 2 Abstrakte datatyper En ADT består av: Et sett med objekter. Spesifikasjon

Detaljer

Korteste vei i en vektet graf uten negative kanter

Korteste vei i en vektet graf uten negative kanter Dagens plan: IN - Algoritmer og datastrukturer HØSTEN 7 Institutt for informatikk, Universitetet i Oslo IN, forelesning 7: Grafer II Korteste vei, en-til-alle, for: Vektet rettet graf uten negative kanter

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Innledning Grafer. Grafer / Nettverk. Hva er en graf? Hva er en graf? Eksempler på grafer? Hva er en graf? Elementære Graf-Algoritmer

Innledning Grafer. Grafer / Nettverk. Hva er en graf? Hva er en graf? Eksempler på grafer? Hva er en graf? Elementære Graf-Algoritmer rafer / ettverk nnledning rafer lementære raf-lgoritmer ernt ngvald Sunde 1 ernt ngvald Sunde 2 va er en graf? e fleste applikasjoner involverer vanligvis ikke bare et sett elemeter, men også et sett med

Detaljer

Hashing: Håndtering av kollisjoner

Hashing: Håndtering av kollisjoner Hashing: Håndtering av kollisjoner Innsetting av dataelement i hashtabell Algoritme: 1. Bruk en hashfunksjon til å beregne hashverdi basert på dataelementets nøkkelverdi 2. Sett inn dataelementet i hashtabellen

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning

Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning Litt om grafer og traversering, og om hashing. Jeg gikk en tur i Tredje forelesning Ikke la dere lure av ordet reduksjon her! X? Det er jo bare å Y. Hvilken vei gir informasjon? Hvis jeg vil vise at A

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF0 - Algoritmer og datastrukturer HØSTEN 05 Institutt for informatikk, Universitetet i Oslo Forelesning 6: Grafer II Ingrid Chieh Yu (Ifi, UiO) INF0.09.05 / 8 Dagens plan: Minimale spenntrær Prim Kruskal

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg

Dagens plan: INF Algoritmer og datastrukturer. Grafer vi har sett allerede. Det første grafteoretiske problem: Broene i Königsberg Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 6: Grafer Definisjon av en graf Grafvarianter Intern representasjon

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Definisjon av en graf (kapittel 9.1) Grafvarianter Intern representasjon av grafer (kapittel 9.1.1) Topologisk sortering (kapittel 9.2) Korteste vei, en-til-alle, for: uvektet graf

Detaljer

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1

Kapittel 14, Hashing. Tema. Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Kapittel 14, Hashing Tema Definere hashing Studere ulike hashfunksjoner Studere kollisjonsproblemet 17-1 Hashing Hashing er en effektiv metode ved lagring og gjenfinning (søking) av informasjon Søkemetoder

Detaljer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer Praktiske opplysninger INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Tid og sted: Mandag kl. 12:15-14:00 Store auditorium, Informatikkbygningen Kursansvarlige

Detaljer

Det første grafteoretiske problem: Broene i Königsberg

Det første grafteoretiske problem: Broene i Königsberg Dagens plan: INF0 - Algoritmer og datastrukturer HØSTEN 007 Institutt for informatikk, Universitetet i Oslo INF0, forelesning 6: Grafer Denisjon av en graf (kap. 9.1) Grafvarianter Intern representasjon

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl

Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl SIF8010 2003-08-09 Stud.-nr: Antall sider: 1 Eksamen i fag SIF8010 Algoritmer og datastrukturer Lørdag 9. august 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 41661982; Magnus Lie

Detaljer

INF1010 Hashing. Marit Nybakken 8. mars 2004

INF1010 Hashing. Marit Nybakken 8. mars 2004 INF1010 Hashing Marit Nybakken marnybak@ifi.uio.no 8. mars 2004 Til nå har vi trodd at en HashMap var en mystisk uendelig stor samleeske der vi på magisk vis kan putte inn objekter og ta ut objekter ved

Detaljer

Anvendelser av grafer

Anvendelser av grafer Grafer Anvendelser av grafer Passer for modeller/datastrukturer med usystematiske forbindelser Ikke-lineære og ikke-hierarkiske koblinger mellom dataobjektene Modellering av nettverk: Veisystemer/rutekart

Detaljer

Algoritmer og Datastrukturer IAI 21899

Algoritmer og Datastrukturer IAI 21899 Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt

Detaljer

INF1020 Algoritmer og datastrukturer GRAFER

INF1020 Algoritmer og datastrukturer GRAFER GRAFER Dagens plan: Minimale spenntrær Prim Kapittel 9.5.1 Kruskal Kapittel 9.5.2 Dybde-først søk Kapittel 9.6.1 Løkkeleting Dobbeltsammenhengende grafer Kapittel 9.6.2 Å finne ledd-noder articulation

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 171 A EKSAMENSDATO: 19. august 1999 KLASSE: 97HINDA / 97HINDB ( 2DA / 2DB ) TID: 09.00-14.00 FAGLÆRER: Frode Haug ANT.

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB / 2EA / DESY )

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 11. desember HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB / 2EA / DESY ) Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 11. desember 2000 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB / 2EA

Detaljer

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 9. mai 2016 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet består

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland

Algdat-ninja på 60 minutter: Et galskapsprosjekt. Magnus Lie Hetland Algdat-ninja på 60 minutter: Et galskapsprosjekt Magnus Lie Hetland 15. november, 2002 Advarsel: Tettpakkede og overfladiske foiler forut! 1 Algtdat i 6 punkter 1. Grunnbegreper og basisverktøy 2. Rekursjon

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 10 1 / 27

Detaljer

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke?

Søkeproblemet. Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Søking Søkeproblemet Gitt en datastruktur med n elementer: Finnes et bestemt element (eller en bestemt verdi) x lagret i datastrukturen eller ikke? Effektiviteten til søkealgoritmer avhenger av: Om datastrukturen

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Definisjon av binær relasjon Definisjon av ekvivalens

Detaljer

All good things. Fjortende forelesning

All good things. Fjortende forelesning All good things Fjortende forelesning Div notater finnes på http://www.idi.ntnu.no/~algdat Foiler finnes på http://www.idi.ntnu.no/~mlh/algdat/latitudinary Spørsmål? algdat@idi.ntnu.no Sjekkliste Dette

Detaljer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer

EKSAMENSOPPGAVE. IAI20102 Algoritmer og datastrukturer EKSAMENSOPPGAVE Fag: Lærer: IAI00 Algoritmer og datastrukturer André A. Hauge Dato:..005 Tid: 0900-00 Antall oppgavesider: 5 med forside Antall vedleggssider: 0 Hjelpemidler: Alle trykte og skrevne hjelpemidler,

Detaljer

GRAFER. Hva er en graf? Det første grafteoretiske problem: Broene i Königsberg. Grafer vi har sett allerede

GRAFER. Hva er en graf? Det første grafteoretiske problem: Broene i Königsberg. Grafer vi har sett allerede Dagens plan: GRAFER Definisjon av en graf (kapittel 9.) Grafvarianter Intern representasjon av grafer (kapittel 9..) Topologisk sortering (kapittel 9.) Korteste vei en-til-alle uvektet graf (kapittel 9..)

Detaljer

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting

Lars Vidar Magnusson Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Lars Vidar Magnusson 21.2.2014 Kapittel 13 Rød-Svarte (Red-Black) trær Rotasjoner Insetting Sletting Rød-Svarte Trær Rød-Svarte trær (red-black trees) er en variasjon binære søketrær som

Detaljer

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap.

Søk i tilstandsrom. Backtracking (Kap. 10) Branch-and-bound (Kap. 10) Iterativ fordypning. Dijkstras korteste sti-algoritme A*-søk (Kap. Søk i tilstandsrom Backtracking (Kap. 10) DFS i tilstandsrommet. Trenger lite lagerplass. Branch-and-bound (Kap. 10) BFS Trenger mye plass: må lagre alle noder som er «sett» men ikke studert. Kan også

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl

Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl Student nr.: Side 1 av 5 Løsningsforslag for eksamen i fag SIF8010 Algoritmer og Datastrukturer Tirsdag 18. Desember 2000, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 13. desember 2011 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 7 sider. Vedlegg: INF2220 lgoritmer og datastrukturer

Detaljer

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer

Detaljer

KONTINUASJONSEKSAMEN

KONTINUASJONSEKSAMEN Høgskolen i Gjøvik Avdeling for Teknologi KONTINUASJONSEKSAMEN FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. august 2001 KLASSE: 99HINDA / 99HINDB / 99HINEA / 00HDESY ( 2DA / 2DB

Detaljer

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan

Generelle Tips. INF Algoritmer og datastrukturer. Åpen og Lukket Hashing. Hashfunksjoner. Du blir bedømt etter hva du viser at du kan Generelle Tips INF2220 - lgoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo Du blir bedømt etter hva du viser at du kan Du må begrunne svar Du må ikke skrive av bøker

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer IN2220 - lgoritmer og datastrukturer HØSTN 2016 Institutt for informatikk, Universitetet i Oslo orelesning 7: rafer III Ingrid hieh Yu (Ifi, UiO) IN2220 05.10.2016 1 / 28 agens plan: evis for Prim ybde-først

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer N0 - lgoritmer og datastrukturer ØSTN 0 nstitutt for informatikk, Universitetet i Oslo orelesning : rafer ngrid hieh Yu (fi, UiO) N0 0.0.0 / 0 agens plan: ybde-først søk Strongly connected components jesteforelesning:

Detaljer

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)!

Repetisjon: Binære. Dagens plan: Rød-svarte trær. Oppgave (N + 1)! Repetisjon: Binære søketrær Dagens plan: Rød-svarte trær (kap. 12.2) B-trær (kap. 4.7) bstrakte datatyper (kap. 3.1) takker (kap. 3.3) For enhver node i et binært søketre gjelder: lle verdiene i venstre

Detaljer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer Hva er en datastruktur? Datastrukturer Elementære Datastrukturer En datastruktur er en systematisk måte å lagre og organisere data på, slik at det er lett å aksessere og modifisere dataene Eksempler på

Detaljer

Løsnings forslag i java In115, Våren 1999

Løsnings forslag i java In115, Våren 1999 Løsnings forslag i java In115, Våren 1999 Oppgave 1a Input sekvensen er: 9, 3, 1, 3, 4, 5, 1, 6, 4, 1, 2 Etter sortering av det første, midterste og siste elementet, har vi følgende: 2, 3, 1, 3, 4, 1,

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

En litt annen måte å forklare traversering på. Traversering

En litt annen måte å forklare traversering på. Traversering En litt annen måte å forklare traversering på Traversering 2 def walk(g, s): # Walk the graph from node s P, Q = dict(), set() # Predecessors + "to do" queue P[s] = None # s has no predecessor Q.add(s)

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

O, what a tangled. Fjerde forelesning. O, what a tangled web we weave / When first we practice to deceive! Sir Walter Scott, *Marmion*

O, what a tangled. Fjerde forelesning. O, what a tangled web we weave / When first we practice to deceive! Sir Walter Scott, *Marmion* O, what a tangled Fjerde forelesning O, what a tangled web we weave / When first we practice to deceive! Sir Walter Scott, *Marmion* 1 Bruk av verktøy som rekursjon, induksjon, etc. er mer implisitt denne

Detaljer

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær

Dagens plan: INF2220 - Algoritmer og datastrukturer. Repetisjon: Binære søketrær. Repetisjon: Binære søketrær Dagens plan: INF2220 - lgoritmer og datastrukturer HØTEN 2007 Institutt for informatikk, Universitetet i Oslo (kap. 4.7) (kap. 12.2) Interface ollection og Iterator (kap. 3.3) et og maps (kap. 4.8) INF2220,

Detaljer

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag E K S A M E N. EKSAMENSDATO: 12. desember 1995 TID:

Høgskolen i Gjøvik. Avdeling for elektro- og allmennfag E K S A M E N. EKSAMENSDATO: 12. desember 1995 TID: Høgskolen i Gjøvik vdeling for elektro- og allmennfag E K S M E N FGNVN: FGNUMMER: lgoritmiske metoder LO 64 EKSMENSDTO:. desember 995 TID: 09.00-4.00 FGLÆRER: Frode Haug KLSSE: / E NTLL SIDER UTLEVERT:

Detaljer

Løsningsforslag. Oppgave 1.1. Oppgave 1.2

Løsningsforslag. Oppgave 1.1. Oppgave 1.2 Løsningsforslag Oppgave 1.1 7 4 10 2 5 9 12 1 3 6 8 11 14 13 Oppgave 1.2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Oppgave 1.3 Rekursiv løsning: public Node settinn(person ny, Node rot) if (rot == null) return

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer

Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer Python: Rekursjon (og programmering av algoritmer) Python-bok: Kapittel 12 + teoribok om Algoritmer TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Forstå, og kunne bruke, algoritmer

Detaljer

MAT1030 Forelesning 25

MAT1030 Forelesning 25 MAT1030 Forelesning 25 Trær Dag Normann - 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) Forelesning 25 Litt repetisjon Vi har snakket om grafer og trær. Av begreper vi så på var følgende: Eulerstier

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 12. desember 2014 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann

Forelesning 25. MAT1030 Diskret Matematikk. Litt repetisjon. Litt repetisjon. Forelesning 25: Trær. Dag Normann MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo Forelesning 25 27. april 2010 (Sist oppdatert: 2010-04-27 14:16) MAT1030 Diskret Matematikk 27. april

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning

Litt om grafer og traversering, og om hashing. Jeg gikk en tur i. Tredje forelesning Litt om grafer og traversering, og om hashing. Jeg gikk en tur i Tredje forelesning Først: Høyreregelen. Så: Rekursiv formulering. Bilde: Hver node er en person. Det sendes rundt en påmeldingsliste. Hver

Detaljer

København 20 Stockholm

København 20 Stockholm UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 Algoritmer og datastrukturer Eksamensdag: 26. mai 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Løsningsforslag - Korteste vei

Løsningsforslag - Korteste vei Sist endret: 17.08.2010 Hovedside FAQ Beskjeder Timeplan Ukeplan Øvinger Gruppeøving Eksamensoppgaver Pensum Løsningsforslag - Korteste vei [Oppgave] [Levering] [Løsningsforslag] Innleveringsfrist: 21.10.2011

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 25: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 27. april 2010 (Sist oppdatert: 2010-04-27 14:15) Forelesning 25 MAT1030 Diskret Matematikk 27. april

Detaljer

Definisjon: Et sortert tre

Definisjon: Et sortert tre Binære søketrær Definisjon: Et sortert tre For alle nodene i et binært søketre gjelder: Alle verdiene i nodens venstre subtre er mindre enn verdien i noden Alle verdiene i nodens høyre subtre er større

Detaljer