INF1400 Kap 1. Digital representasjon og digitale porter

Størrelse: px
Begynne med side:

Download "INF1400 Kap 1. Digital representasjon og digitale porter"

Transkript

1 INF4 Kap Digital representasjon og digitale porter

2 Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell Generelle porter Fysisk innpakning SSI teknologi - CMOS/TTL Logiske inngangsnivå CMOS/TTL

3 Desimale tall Et desimalt tall er representert ved symbolene,, 2,... 9 Kodingen er posisjons bestemt Eksempel: (7392) dec =

4 Binære tall Tall må generelt ikke representeres ved symboler (antall fingre) Eksempel: binære tall Et binært tall er representert ved symbolene og Kodingen er posisjons bestemt Eksempel: () bin =

5 Binær telling Tilrådighet: symbolene, Tallet 3 Binær rep. Desimal rep. Tilrådighet: symbolene 2 3,,2,3,4,5,6,7,8,9 Tallet

6 Oktale tall Et oktalt tall er representert ved symbolene,, 2,... 7 Kodingen er posisjonsbetinget med grunntall 8 Eksempel: (252) okt =

7 Heksadesimale tall Et heksadesimalt tall er representert ved symbolene,, 2,... 8, 9, A, B, C, D, E, F Eksempel: - Kodingen er posisjonsbetinget med grunntall 6 (2B9) heks =

8 Oktal og heksadesimal telling Heksadesimal A B C D EF Desimal Oktal Binær Tallet (2) des

9 Konvertering fra grunntall r til desimal Generelt: (...a 2 a a,a - a -2...) r =... + a 2 r 2 + a r + a r + a - r - + a -2 r Eksempel: (A5,C) 6 = = (42,33) des

10 Konvertering fra desimal til binær Prosedyre:. Del det desimale tallet på 2 2. Resten etter divisjon, multiplisert med 2 blir LSB 3. Del det nye desimale tallet på 2 4. Resten etter divisjon, multiplisert med 2 blir neste bit 5. Osv.

11 Konvertering fra desimal til binær Eksempel: Konverter tallet (4) des til binær 4/2 = 2 + /2 a = LSB 2/2 = + /2 a = /2 = 5 + /2 a 2 = 5/2 = 2 + /2 a 3 = 2/2 = + /2 a 4 = /2 = + /2 a 5 = Dermed: (4) des = () bin

12 Konvertering fra desimal til grunntall r Gjenta prosedyren fra forrige side. Bytt ut grunntallet 2 med r. Resten multiplisert med r blir det aktuelle sifferet

13 Digital hardvare-representasjon Eksempler på hardvare-representasjon PC og andre elektroniske systemer: representeres ved 5V på en ledning representeres ved V på samme ledning Harddisk: representeres ved tilstedeværelse av magnetisk felt i ett gitt område representeres ved fravær av magnetisk felt i samme område

14 Digital hardvare-representasjon Enda ett eksempel: CD plate representeres ved refleksjon av lys i ett gitt område representeres ved ikke refleksjon av lys i samme område

15 Digital representasjon Alt kan kodes som binære tall Eksempel: Bokstaver ASCII Table (7-bit) American Standard Code for Information Interchange Decimal Octal Hex Binary Value D = E > F? A B C D E F G H I A J B K C L D M E N F O

16 Digitale systemer Alt kan kodes som binære tall Eksempel: Lyd Sampling og kvantisering

17 Binær logikk - boolsk algebra Definerer: Variable: og, og binære operasjoner. Ender opp med en fullverdig algebraisk struktur Definerte basis operasjoner: AND OR + NOT Ved å kombinerer disse 3 operasjonene kan vi lage alle mulige digitale funksjoner

18 Sannhetstabell AND X Y Z X Y OR Z NOT X Y

19 Sannhetstabell Enda et par vanlige byggeblokker: NAND og NOR NAND X Y Z X Y NOR Z

20 Sannhetstabell Den siste, vanlige byggeblokken X Y XOR Z

21 2-inputs byggeblokker oversikt

22 Generelle porter Kan sette sammen 2-inputs porter til fler-inputs porter Eksempel: 3-input AND A B C F

23 SSI - Fysisk innpakning SSI Small scale Integration Overflate-montert Hull-montert

24 SSI - fysisk innpakning Eksempel: kretsen CD74HC8 2-inputs AND Spenningsforsyning: Vcc eller Vdd = 5V Jord: Gnd eller Vss = V

25 Vanlige pakker NOT (inverter) 2,3,4 input AND 2,3 input OR 2,3,4 input NOR 2,3,4,8 input NAND 2 input XOR

26 SSI teknologi To vanlige teknologier: TTL (transistor-transistor logikk) Bipolare transistorer Standard TTL (54/74), LS, F,S,AS CMOS logikk (Complementary MetalOxide Semiconduktor) Mos transistorer Standard 4, HC, AC, LV og HCT, ACT

27 Logiske inngangsnivå Hvilke inngangsspenninger oppfatter en port som og? Volts A,B TTL: V IH = 2V (min) V IL =.8V (max) CMOS: V IH = 3.3V (min) V IL =.5V (max) CMOS (HCT/ACT): V IH og V IL som for TTL V IH V IL

28 LSI - Fysisk innpakning LSI Large Scale Integration Eksempel: Programmerbar logikk 8 frie porter Flatpack

29 VLSI - Fysisk innpakning VLSI Large Scale Integration Eksempel: Flash-minne FUJITSU Flatpack

30 VLSI - Fysisk innpakning VLSI Large Scale Integration Eksempel: Intel Pentium4 Overside Underside

31 Oppsummering Desimale / binære tall Digital hardvare-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell Generelle porter Fysisk innpakning SSI teknologi - CMOS/TTL Logiske inngangsnivå CMOS/TTL

Hovedpunkter. Digital Teknologi. Digitale Teknologi? Digitale Teknologi? Forelesning nr 1. Tall som kun er representert ved symbolene 0 og 1

Hovedpunkter. Digital Teknologi. Digitale Teknologi? Digitale Teknologi? Forelesning nr 1. Tall som kun er representert ved symbolene 0 og 1 3 Digital Teknologi Forelesning nr Digitale Teknologi? Teknologi som opererer med digitale signaler, eller diskrete data. Vi skal se at det er mange fordeler med digitale systemer 4 Desimale / binære tall

Detaljer

Digital Teknologi. Forelesning nr 1

Digital Teknologi. Forelesning nr 1 Digital Teknologi Forelesning nr 1 Hovedpunkter Desimale / binære tall Digital hardware-representasjon Binær koding av bokstaver og lyd Boolsk algebra Digitale byggeblokker / sannhetstabell Generelle porter

Detaljer

INF1400. Karnaughdiagram

INF1400. Karnaughdiagram INF4 Karnaughdiagram Hvor er vi Vanskelighetsnivå Binær Porter Karnaugh Kretsdesign Latch og flipflopp Sekvensiell Tilstandsmaskiner Minne Eksamen Tid juleaften Omid Mirmotahari 2 Hva lærte vi forrige

Detaljer

Forelesning 4. Binær adder m.m.

Forelesning 4. Binær adder m.m. Forelesning 4 Binær adder m.m. Hovedpunkter Binær addisjon 2 er komplement Binær subtraksjon BCD- og GRAY-code Binær adder Halv og full adder Flerbitsadder Carry propagation / carry lookahead 2 Binær addisjon

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet INF1400 Digital teknologi Eksamensdag: 29. november 2011 Tid for eksamen: Vedlegg: Tillatte hjelpemidler: Oppgavesettet er på

Detaljer

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler

Dagens temaer. Dagens temaer er hentet fra P&P kapittel 3. Motivet for å bruke binær representasjon. Boolsk algebra: Definisjoner og regler Dagens temaer Dagens temaer er hentet fra P&P kapittel 3 Motivet for å bruke binær representasjon Boolsk algebra: Definisjoner og regler Kombinatorisk logikk Eksempler på byggeblokker 05.09.2003 INF 103

Detaljer

INF1400 Kap 0 Digitalteknikk

INF1400 Kap 0 Digitalteknikk INF1400 Kap 0 Digitalteknikk Binære tall (ord): Digitale signaler: Hva betyr digital? Tall som kun er representert ved symbolene 0 og 1 (bit s). Nøyaktighet gitt av antall bit. (avrundingsfeil) Sekvenser

Detaljer

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

EKSAMEN (Del 1, høsten 2015)

EKSAMEN (Del 1, høsten 2015) EKSAMEN (Del 1, høsten 2015) Emnekode: ITD13012 Emne: Datateknikk Dato: 02.12.2015 Eksamenstid: kl 0900 til kl 1200 Hjelpemidler: Faglærer: to A4-ark (fire sider) med egne notater Robert Roppestad "ikke-kommuniserende"

Detaljer

4 kombinatorisk logikk, løsning

4 kombinatorisk logikk, løsning 4 kombinatorisk logikk, løsning 1) Legg sammen følgende binærtall uten å konvertere til desimaltall: a. 1101 + 1001 = 10110 b. 0011 + 1111 = 10010 c. 11010101 + 001011 = 11100000 d. 1110100 + 0001011 =

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Forelesning 8. CMOS teknologi

Forelesning 8. CMOS teknologi Forelesning 8 CMOS teknologi Hovedpunkter MOS transistoren Komplementær MOS (CMOS) CMOS eksempler - Inverter - NAND / NOR - Fulladder Designeksempler (Cadence) 2 Halvledere (semiconductors) 3 I vanlig

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Enkoder/demultiplekser (avslutte fra forrige gang)! Kort repetisjon 2-komplements form! Binær addisjon/subtraksjon!

Detaljer

INF1400. Kombinatorisk Logikk

INF1400. Kombinatorisk Logikk INF4 Kombinatorisk Logikk Oversikt Binær addisjon Negative binære tall - 2 er komplement Binær subtraksjon Binær adder Halvadder Fulladder Flerbitsadder Carry propagation / carry lookahead Generell analyseprosedyre

Detaljer

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang

Dagens temaer. Architecture INF ! Dagens temaer hentes fra kapittel 3 i Computer Organisation and. ! Kort repetisjon fra forrige gang Dagens temaer! Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture! Kort repetisjon fra forrige gang! Kombinatorisk logikk! Analyse av kretser! Eksempler på byggeblokker! Forenkling

Detaljer

IN1020. Logiske porter om forenkling til ALU

IN1020. Logiske porter om forenkling til ALU IN2 Logiske porter om forenkling til ALU Hovedpunkter Utlesing av sannhetsverdi-tabell; Max og Min-termer Forenkling av uttrykk med Karnaugh diagram Portimplementasjon Kretsanalyse Adder og subtraktor

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Nesten alt elektrisk utstyr i dag inneholder digital elektronikk: PC er, mobiltelefoner, MP3-spillere, DVD/CD-spillere, biler, kjøleskap, TV, fotoapparater, osv osv. Hva betyr digital?

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Forelesning 2. Boolsk algebra og logiske porter

Forelesning 2. Boolsk algebra og logiske porter Forelesning 2 Boolsk algebra og logiske porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200

Høgskoleni østfold EKSAMEN. Dato: Eksamenstid: kl til kl. 1200 Høgskoleni østfold EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 3.12.2014 Eksamenstid: kl. 0900 til kl. 1200 Hjelpemidler: to A4-ark (fire sider) med egne notater "ikke-kommuniserende" kalkulator

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Kort repetisjon fra forrige gang. Kombinatorisk logikk Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Kort repetisjon fra forrige gang Kombinatorisk logikk Analyse av kretser Eksempler på byggeblokker Forenkling

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7

Detaljer

Repetisjon digital-teknikk. teknikk,, INF2270

Repetisjon digital-teknikk. teknikk,, INF2270 Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: Fredag 3. desember Tid for eksamen: kl. 14:30-18:30 (4 timer). Oppgavesettet er på side(r) 7 sider

Detaljer

Løsningsforslag INF1400 H04

Løsningsforslag INF1400 H04 Løsningsforslag INF1400 H04 Oppgave 1 Sannhetstabell og forenkling av Boolske uttrykk (vekt 18%) I figuren til høyre er det vist en sannhetstabell med 4 variable A, B, C og D. Finn et forenklet Boolsk

Detaljer

Løsningsforslag til 1. del av Del - EKSAMEN

Løsningsforslag til 1. del av Del - EKSAMEN Løsningsforslag til 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur

Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Datamaskiner og operativsystemer =>Datamaskinorganisering og arkitektur Lærebok: Computer organization and architecture/w. Stallings. Avsatt ca 24 timers tid til forelesning. Lærestoffet bygger på begrepsapparat

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 4

VEILEDNING TIL LABORATORIEØVELSE NR 4 VEILEDNING TIL LABORATORIEØVELSE NR 4 «SAMMENSATTE DIGITAL KRETSER» FY-IN 204 Revidert utgave 98-03-13 Veiledning FY-IN 204 : Oppgave 4 1 4 Sammensatte digitalkretser. Litteratur: Millman, Kap. 7. Oppgave:

Detaljer

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave

IT1101 Informatikk basisfag 4/9. Praktisk. Oppgave: tegn kretsdiagram. Fra sist. Representasjon av informasjon binært. Ny oppgave IT Informatikk basisfag 4/9 Sist gang: manipulering av bits I dag: Representasjon av bilde og lyd Heksadesimal notasjon Organisering av data i hovedminne og masselager (elektronisk, magnetisk og optisk

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 39 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Alf Inge Wang alfw@idi.ntnu.no Bidragsytere

Detaljer

ENKLE LOGISKE KRETSER

ENKLE LOGISKE KRETSER Kurs: FY-IN204 Elektronikk med prosjektoppgaver - 4 vekttall Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 3 Omhandler: ENKLE LOGISKE KRETSER Revidert utgave 28.02.2001 Utført dato: Utført av: Navn:

Detaljer

Digitalstyring sammendrag

Digitalstyring sammendrag Digitalstyring sammendrag Boolsk algebra A + A = 1 AA = 0 A + A = A AA = A A + 0 = A A 1 = A A + 1 = 1 A 0 = 0 (A ) = A A + B = B + A AB = BA A + (B + C) = (A + B) + C A(BC) = (AB)C A(B + C) = AB + AC

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

INF2270. Boolsk Algebra og kombinatorisk logikk

INF2270. Boolsk Algebra og kombinatorisk logikk INF227 Boolsk Algebra og kombinatorisk logikk Hovedpunkter Boolsk Algebra og DeMorgans Teorem Forkortning av uttrykk ved regneregler Utlesing av sannhetsverdi-tabell; Max og Min-termer Forkortning av uttrykk

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 37 Digital representasjon, del 1 - Digital representasjon - Tekst og tall - positive, negative, komma? Rune Sætre satre@idi.ntnu.no Slidepakke forberedt

Detaljer

TFE4101 Krets- og Digitalteknikk Høst 2016

TFE4101 Krets- og Digitalteknikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon TFE40 Krets- og Digitalteknikk Høst 206 Løsningsforslag Øving 5 Boolske funksjoner, algebraisk forenkling av

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er

Dagens temaer. Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er Dagens temaer Dagens temaer hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre INF2270 1/19

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer

Forelesning nr.10 INF 1411 Elektroniske systemer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer 1 Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Feedback-oscillatorer Dagens

Detaljer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer

Forelesning nr.10 INF 1411 Elektroniske systemer. Felteffekt-transistorer Forelesning nr.10 INF 1411 Elektroniske systemer Felteffekt-transistorer Dagens temaer Bipolare transistorer som brytere Felteffekttransistorer (FET) FET-baserte forsterkere Dagens temaer er hentet fra

Detaljer

TDT4160 Datamaskiner Grunnkurs 2011. Gunnar Tufte

TDT4160 Datamaskiner Grunnkurs 2011. Gunnar Tufte 1 TDT4160 Datamaskiner Grunnkurs 2011 Gunnar Tufte 2 Kapittel 3: Digital logic level 3 Nivå 0: Digtalekretsar Fundamentale komponentar AND, OR, NOT,NAND, NOR XOR porter D-vipper for lagring av ett bit

Detaljer

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1.

TALL. Titallsystemet et posisjonssystem. Konvertering: Titallsystemet binære tall. Det binære tallsystemet. Alternativ 1. TALL Dagens plan: Tallsystemer (kapittel 6) Titallsystemet Det binære tallsystemet Det heksadesimale tallsystemet Representasjon av tall (kapittel 7) Heltall Negative tall Reelle tall Gray-kode (les selv!)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO et matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 igital teknologi Eksamensdag: 3. desember 2008 Tid for eksamen: 14:30 17:30 Oppgavesettet er på 5 sider Vedlegg: 1 Tillatte

Detaljer

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem. Geir Ove Rosvold 23. august 2012 Opphavsrett: Forfatter og Stiftelsen TISIP Resymé: I denne leksjonen blir de viktigste tallsystemer presentert. Det gjelder det binære, heksadesimale og desimale tallsystem.

Detaljer

LØSNINGSFORSLAG 2006

LØSNINGSFORSLAG 2006 LØSNINGSFORSLAG 2006 Side 1 Oppgave 1), vekt 12.5% 1a) Bruk Karnaughdiagram for å forenkle følgende funksjon: Y = a b c d + a b c d + a b cd + a bc d + a bc d + ab c d + ab cd ab cd 00 01 11 10 00 1 1

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin INF Digital representasjon, høsten 25 Hvordan telle binært? Binære tall Skal

Detaljer

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram.

Dagens temaer. temaer hentes fra kapittel 3 i Computer Organisation. av sekvensielle kretser. and Architecture. Tilstandsdiagram. Dagens temaer 1 Dagens Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture logikk Flip-flop er Design av sekvensielle kretser Tilstandsdiagram Tellere og registre Sekvensiell

Detaljer

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form

Dagens temaer. Dagens temaer hentes fra kapittel 3 i læreboken. Oppbygging av flip-flop er og latcher. Kort om 2-komplements form Dagens temaer Dagens temaer hentes fra kapittel 3 i læreboken Oppbygging av flip-flop er og latcher Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4]

Løsningsforslag til regneøving 6. a) Bruk boolsk algebra til å forkorte følgende uttrykk [1] Fjerner 0 uttrykk, og får: [4] Løsningsforslag til regneøving 6 TFE4 Digitalteknikk med kretsteknikk Løsningsforslag til regneøving 6 vårsemester 28 Utlevert: tirsdag 29. april 28 Oppgave : a) Bruk boolsk algebra til å forkorte følgende

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er

Detaljer

INF1400. Digital teknologi. Joakim Myrvoll 2014

INF1400. Digital teknologi. Joakim Myrvoll 2014 INF1400 Digital teknologi Joakim Myrvoll 2014 Innhold 1 Forenkling av funksjonsuttrykk 3 1.1 Huntingtons postulater......................................... 3 1.2 DeMorgans...............................................

Detaljer

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form

Dagens tema. Dagens temaer hentes fra kapittel 3 i læreboken. Repetisjon, design av digitale kretser. Kort om 2-komplements form Dagens tema Dagens temaer hentes fra kapittel 3 i læreboken Repetisjon, design av digitale kretser Kort om 2-komplements form Binær addisjon/subtraksjon Aritmetisk-logisk enhet (ALU) Demo av Digital Works

Detaljer

DIGITALE kretser og systemer

DIGITALE kretser og systemer Lindem 4 mars 28 DIGITALE kretser og systemer Binære systemer består av kretser som bare arbeider med to mulige tilstander og Boolsk algebra er et system for matematisk analyse av binære systemer. En Boolsk

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

GRUNNLEGGENDE DIGITALTEKNIKK 4. Logiske Nivåer. 4. Logiske Grunnelementer. 4 OG (AND). 4 ELLER (OR). 4 NOG (NAND). 5 NELLER (NOR).

GRUNNLEGGENDE DIGITALTEKNIKK 4. Logiske Nivåer. 4. Logiske Grunnelementer. 4 OG (AND). 4 ELLER (OR). 4 NOG (NAND). 5 NELLER (NOR). GRUNNLEGGENDE DIGITALTEKNIKK 4 Logiske Nivåer. 4 Logiske Grunnelementer. 4 OG (AND). 4 ELLER (OR). 4 NOG (NAND). 5 NELLER (NOR). 5 Exklusiv ELLER (XOR). 5 Exklusiv NELLER (XNOR). 6 IKKE (NOT). 6 Invertering

Detaljer

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier

INF1040 løsningsforslag oppgavesett 7: Tall og geometrier INF1040 løsningsforslag oppgavesett 7: Tall og geometrier (Kapittel 7.1, 7.4-7.8, 8 + Appendiks B) Hvis du finner feil i løsningsforslaget er det fint om du gir beskjed om dette ved å sende en mail til

Detaljer

Digitale (binære) kretser og systemer en kort introduksjon

Digitale (binære) kretser og systemer en kort introduksjon Digitale (binære) kretser og systemer en kort introduksjon På kurset har vi så langt sett hvordan halvlederkomponenter som dioder, bipolare transistorer (BJ) og felteffekttransistorer (FE) kan brukes til

Detaljer

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9

Overordnet maskinarkitektur. Maskinarkitektur zoomet inn. I CPU: Kontrollenheten (CU) IT1101 Informatikk basisfag, dobbeltime 11/9 IT1101 Informatikk basisfag, dobbeltime 11/9 Hittil: sett på representasjon av informasjon og manipulering av bits i kretser Idag: hever oss til nivået over og ser på hvordan program kjører i maskinen

Detaljer

Digital representasjon

Digital representasjon Digital representasjon Om biter og bytes, tekst og tall Litt mer XHTML 30.08.2004 Webpublisering 2004 - Kirsten Ribu - HiO I dag Tallsystemer Om biter og bytes: hvordan tall og tekst er representert i

Detaljer

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre

Dagens tema. Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture. Sekvensiell logikk. Flip-flop er. Tellere og registre Dagens tema Dagens tema hentes fra kapittel 3 i Computer Organisation and Architecture Sekvensiell logikk Flip-flop er Tellere og registre Design av sekvensielle kretser (Tilstandsdiagram) 1/19 Sekvensiell

Detaljer

1. del av Del - EKSAMEN

1. del av Del - EKSAMEN 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 27. November 2012 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende kalkulator.

Detaljer

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til:

En mengde andre typer som DVD, CD, FPGA, Flash, (E)PROM etc. (Kommer. Hukommelse finnes i mange varianter avhengig av hva de skal brukes til: 2 Dagens temaer Dagens 4 Sekvensiell temaer hentes fra kapittel 3 i Computer Organisation and Architecture Design Flip-flop er av sekvensielle kretser Tellere Tilstandsdiagram og registre Sekvensiell Hvis

Detaljer

Notater: INF2270. Veronika Heimsbakk 10. juni 2014

Notater: INF2270. Veronika Heimsbakk 10. juni 2014 Notater: INF2270 Veronika Heimsbakk veronahe@student.matnat.uio.no 10. juni 2014 Innhold 1 Binære tall og tallsystemer 3 1.1 Tallsystemer............................ 3 1.2 Konvertering...........................

Detaljer

Datakonvertering. analog til digital og digital til analog

Datakonvertering. analog til digital og digital til analog Datakonvertering analog til digital og digital til analog Komparator Lindem 29.april. 2014 Signalspenningene ut fra en sensor kan variere sterkt. Hvis vi bare ønsker informasjon om når signal-nivået overstiger

Detaljer

Mer om representasjon av tall

Mer om representasjon av tall Forelesning 3 Mer om representasjon av tall Dag Normann - 21. januar 2008 Oppsummering av Uke 3 Mandag 14.01 og delvis onsdag 16.01 diskuterte vi hva som menes med en algoritme, og vi så på pseudokoder

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Eksamensdag: 5/12-2006 Tid for eksamen: 15:30 18:30 Oppgavesettet er på: 5 sider Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3

Oppsummering av Uke 3. MAT1030 Diskret matematikk. Binære tall. Oppsummering av Uke 3 Oppsummering av Uke 3 MAT1030 Diskret matematikk Forelesning 3: Mer om representasjon av tall Dag Normann Matematisk Institutt, Universitetet i Oslo 21. januar 2008 Mandag 14.01 og delvis onsdag 16.01

Detaljer

Husk å registrer deg på emnets hjemmeside!

Husk å registrer deg på emnets hjemmeside! IT Informatikk basisfag 28/8 Husk å registrer deg på emnets hjemmeside! http://it.idi.ntnu.no Gikk du glipp av øving? Gjør øving og få den godkjent på datasal av din lærass! Forrige gang: HTML Merkelapper

Detaljer

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her)

Repetisjon. Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) Hovedpunkter Pensumoversikt Gjennomgang av sentrale deler av pensum Div informasjon

Detaljer

Kapittel 2 TALL. Tall er kanskje mer enn du tror

Kapittel 2 TALL. Tall er kanskje mer enn du tror Tall er kanskje mer enn du tror Titallsystemet 123 = 1 100 + 2 10 + 3 1 321 = 3 100 + 2 10 + 1 1 1, 2 og 3 kaller vi siffer 123 og 321 er tall Ikke bare valg av siffer, men også posisjon har betydning

Detaljer

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, }

Tall. Ulike klasser tall. Læringsmål tall. To måter å representere tall. De naturlige tallene: N = { 1, 2, 3, } 1111 Tall 0000 0001 De naturlige tallene: N = { 1, 2, 3, } Ulike klasser tall 1101 1110-3 -2-1 0 1 2 3 0010 0011 De hele tallene: Z = {, -2, -1, 0, 1, 2, } 1100-4 4 0100 1011 1010-5 -6-7 -8 7 6 5 0110

Detaljer

Albregtsen og Skagestein: Digital representasjon Løsningsforslag til kapittel 2 Representasjon av tegn og tekster

Albregtsen og Skagestein: Digital representasjon Løsningsforslag til kapittel 2 Representasjon av tegn og tekster Albregtsen og Skagestein: Digital representasjon Løsningsforslag til kapittel 2 Representasjon av tegn og tekster Skulle du finne feil i et løsningsforslag, vennligst rapporter dette til ragnhilk@ifi.uio.no

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte

TDT4160 Datamaskiner Grunnkurs 2008. Gunnar Tufte 1 TDT4160 Datamaskiner Grunnkurs 2008 Gunnar Tufte 2 I dag Kva er inni 8051, P4 og UltraSparc Digital logic level (start kapitel 3) VIKTIG MELDING Alle som har brukt NTNU-passord for AoC pålogging må skifte

Detaljer

ITPE2400/DATS2400: Datamaskinarkitektur

ITPE2400/DATS2400: Datamaskinarkitektur ITPE2400/DATS2400: Datamaskinarkitektur Forelesning 6: Mer om kombinatoriske kretser Aritmetikk Sekvensiell logikk Desta H. Hagos / T. M. Jonassen Institute of Computer Science Faculty of Technology, Art

Detaljer

Høgskoleni Østfold. 1. del av Del - EKSAMEN. Datateknikk. Oppgavesettet består av 3 oppgaver. Alle sporsmal teller likt til eksamen.

Høgskoleni Østfold. 1. del av Del - EKSAMEN. Datateknikk. Oppgavesettet består av 3 oppgaver. Alle sporsmal teller likt til eksamen. Høgskoleni Østfold 1. del av Del - EKSAMEN Emnekode: ITD13012 Emne: Datateknikk Dato: 13. Desember 2013 Eksamenstid: kl 9:00 til kl 12:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Ikke-kummuniserende

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 14 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

Løsningsforslag DEL1 og 2 INF3400/4400

Løsningsforslag DEL1 og 2 INF3400/4400 Løsningsforslag L1 og 2 INF3400/4400 NGVR RG I. Oppgaver. Oppgave 1.3 Tegn en MOS 4-inngangs NOR port på transistor nivå..1 Løsningsforslag 0 0 1 0 1 0 11 0 1 0 0 Fig. 2. NOR port med fire innganger. Fig.

Detaljer

VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme. LSI (Large-Scale-Integrated-Circuits)

VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme. LSI (Large-Scale-Integrated-Circuits) Teknologier Repetisjon Sentrale temaer i kurset som er relevante for eksamen (Eksamen kan inneholde stoff som ikke er nevnt her) VLSI (Very-Large-Scale-Integrated- Circuits) it Mer enn porter på samme

Detaljer

INF1400 Kap4rest Kombinatorisk Logikk

INF1400 Kap4rest Kombinatorisk Logikk INF4 Kap4rest Kombinatorisk Logikk Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU FIFO Stack En minimal RISC - CPU Komparator Komparator sammenligner to tall A og B 3

Detaljer

VEILEDNING TIL LABORATORIEØVELSE NR 8

VEILEDNING TIL LABORATORIEØVELSE NR 8 VEILEDNING TIL LABORATORIEØVELSE NR 8 «DIGITALVOLTMETER» FY-IN 204 Revidert utgave 98-03-05 Veiledning FY-IN 204 : Oppgave 8 8 Digital voltmeter Litteratur: Skjema på fig. 1, Millmann side 717-720 Oppgave:

Detaljer

Organisering og ledelse av hardware-utvikling

Organisering og ledelse av hardware-utvikling Organisering og ledelse av hardware-utvikling INF5700 Organisering og ledelse av tekniske prosjekter, 2010.10.15 Snorre Aunet, sa@ifi.uio.no Dept. of Informatics, Nanoelectronics group, University of Oslo

Detaljer

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK

EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333

Detaljer

RAPPORT LAB 3 TERNING

RAPPORT LAB 3 TERNING TFE4110 Digitalteknikk med kretsteknikk RAPPORT LAB 3 TERNING av June Kieu Van Thi Bui Valerij Fredriksen Labgruppe 201 Lab utført 09.03.2012 Rapport levert: 16.04.2012 FAKULTET FOR INFORMASJONSTEKNOLOGI,

Detaljer

Forelesning 6. Sekvensiell logikk

Forelesning 6. Sekvensiell logikk Forelesning 6 Sekvensiell logikk Hovedpunkter Låsekretser (latch er) SR latch bygget med NOR S R latch bygget med NAN latch Flip-Flops Master-slave flip-flop JK flip-flop T flip-flop 2 efinisjoner Kombinatorisk

Detaljer

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6

Tall. Tallsystemer. Posisjonstallsystemer. Veiing med skålvekt titallsystemet 123 = = 7B 16. Lærebokas kapittel 6 Tall Tallsstemer - - - - = = 7B - - -7-8 7 Lærebokas kapittel INF-tall- INF-tall- Posisjonstallsstemer Vårt velkjente titallsstem er et posisjonssstem: 7 = + + + + 7 eller: 7 = ( * ) + ( * ) + ( * ) +

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslag til eksamen i INF227 Oppgave 9 Omid Mirmotahari Oppgave 6 Dag Langmyhr. juni 24 Eksamen INF227 Sensorveiledning Oppgave 2 Kretsforenkling Hva er funksjonsuttrykket for Output gitt av A

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 13. juni 2013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2270 Datamaskinarkitektur

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

Forelesning 5. Diverse komponenter/større system

Forelesning 5. Diverse komponenter/større system Forelesning 5 Diverse komponenter/større system Hovedpunkter Komparator Dekoder/enkoder MUX/DEMUX Kombinert adder/subtraktor ALU En minimal RISC - CPU 2 Komparator Komparator sammenligner to 4 bits tall

Detaljer

Den analoge verden blir digitalisert

Den analoge verden blir digitalisert Den analoge verden blir digitalisert Lindem 4. mai 2008 Med bestemte tidsintervall går vi inn og avleser (digitaliserer) den analoge verdien til signalet. Nyquist Shannon sampling theorem: Skal vi beholde

Detaljer

INF1400. Sekvensiell logikk del 1

INF1400. Sekvensiell logikk del 1 INF1400 Sekvensiell logikk del 1 Hovedpunkter Låsekretser (latch er) SR latch med NOR-porter S R latch med NAND-porter D-latch Flip-flop Master-slave D-flip-flop JK flip-flop T-flip-flop Omid Mirmotahari

Detaljer

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl

Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Fredag 21. mai 2004 Tid. Kl Side av NORGES TEKNSK- NATURVTENSKAPLGE UNVERSTET nstitutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Øystein Ellingsson tlf. 95373 Eksamen i emne TFE4 DGTALTEKNKK MED KRETSTEKNKK

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer