Differensiallikninger definisjoner, eksempler og litt om løsning

Størrelse: px
Begynne med side:

Download "Differensiallikninger definisjoner, eksempler og litt om løsning"

Transkript

1 Differensiallikninger definisjoner, eksempler og litt om løsning MEK1100

2 Differensiallikninger Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning i formel 3-4 spesielle tilfeller Numeriske teknikker Kan nesten alltid benyttes Differensiallikninger er svært viktig for FAM, MIT og andre programmer Mesteparten av stoffet er hentet fra Kalkulus

3 Planlagt rekkefølge 1 Hva er en differensiallikning? 2 Noen eksempler på differensiallikninger fra kjemi og fysikk 3 Løsning av separable likninger av første grad 4 Løsning av lineær førsteordenslikning Kalkulus, kap Løsning av noen av eksemplene 6 Numerisk løsning av likninger av første orden Kalkulus, kap Sett av likninger 8 Partielle likninger Henvisninger til feks. sats i Kalkulus skrives K

4 NYTT TEMA Om likninger

5 Eksempler på likninger Algebraisk likning En algebraisk likning har ett (eller flere) tall som ukjente. Eksempel: x 2 x 6 = 0. Løsningene x = 2 og x = 3 er de verdiene for x som oppfyller relasjonen.

6 Hva er en differensialikning? En differensiallikning er en relasjon mellom en funksjon og dens deriverte. Funksjonen er den ukjente. Eksempel 1 y + y = 0 for x R En løsning y(x) oppfyller denne relasjonen for alle reelle x. Deriverte tom. orden 1 i relasjon førsteordenslikning Eksempel 2 y + y + xy = 0 for x R, x 0 Deriverte tom. orden 2 i relasjon andreordenslikning

7 Testing av ved innsetting, y + y = 0, x R Er y(x) = x en løsning? y (x) = 1 y + y = x = 0 Oppfylt bare for x = 1 y(x) = x er ikke løsning Er y(x) = e x en løsning? y (x) = e x y + y = 0 e x + e x = 0 0 = 0 Relasjon oppfylt for alle x y(x) = e x er en løsning NB: det finnes flere

8 NYTT TEMA Anvendelser av differensiallikninger. Eksempler fra kjemi og fysikk

9 Hvorfor studere differensiallikninger? Differensiallikninger er helt sentrale for fysiske fag og ingeniørfag. Viktig allerede i FYS-MEK 1110 Klasse av eksempler Hvordan en tilstand endrer seg i tiden avhenger av tilstanden selv. Kan tilstanden beskrives ved en funksjon av tiden, y(t), kan endringen beskrives ved y (t) siden dette er endringsraten av y mhp. t. Resultatet er en relasjon mellom y(t) og y (t). Navn på variabler: bruk av y for ukjent funksjon og t eller x for argument er tilfeldig. I anvendte eksempler velges ofte beskrivende navn.

10 Eksempel A: nedbrytning av radioaktivt stoff Vi har en masse M(t) av et radiokativt stoff. Hvert atom har en viss sannsynlighet for å forvandles (emmitere α eller β partikler) i et gitt tidsrom. Endringsraten av massen er da proposjonal med massen selv. Dersom vi starter med masse M 0 har vi det matematisk problemet M = km, M(0) = M 0 En differensiallikning for M i t og en initialbetingelse, eller startbetingelse, ved t = 0. Konstanten k beskriver hvor ustabilt stoffet er. Kalkulus, eksempel

11 ... Klassifisering: M = km eller M + km = 0 Første orden Lineær Konstante koeffisienter Homogen: alle ledd inneholder M (litt løst) Likninger av denne typen skal vi snart løse.

12 Eksempel B: Kjemisk reaksjon Oksydasjon av nitrogenmonoksyd (NO) til nitrogendioksyd (NO 2 ) Reaksjonslikning (viser omsetning i prosess) 2NO + O 2 2NO 2 To NO molekyler reagerer med ett O 2 til NO 2. Vi antar at alt foregår i et lukket volum, V, med god omrøring. Konsentrasjoner: C NO (t), C O2 (t), C NO2 (t). (molekyler per volum) Reaksjonsrate er proposjonal med C 2 NO C O 2 ( sannsynlighet for sammenstøt av 2 NO og ett O 2 molekyl). dc NO dt der k er en konstant. Det inngår ennå to ukjente. = kc 2 NO C O 2,

13 ... Bevaring av masse (V er totalt volum) Startkonsentrasjoner: C NO (0) = a, C O2 (0) = b Forbruk av NO = 2 (Forbruk av O 2 ) V(a C NO ) = 2V(b C O2 ) som gir C O2 = B C NO der B = b 1 2 a. Insatt i reaksjonslikning fra forrige lysark: dc NO dt = kc 2 NO (B C NO), C NO (0) = a Klassifisering: Første orden, ikkelineær, separabel (forklart senere) Denne kan vi også regne på (er litt slitsom ).

14 Eksempel C: Bevegelse av partikkel langs linje Newton s 2 lov, rettlinjet bevegelse ma = F, der m = masse, a = akselerasjon og F = kraft. Posisjon gis som y(t) Fart er endringsrate av posisjon dy dt Akselerasjon er endringsrate av fart a d dt (dy dt ) = d2 y dt 2. Hvis kraft kan uttrykkes ved posisjon, fart og tid: F = F(y, dy dt, t) Newton s 2 lov m d2 y dy = F(y, dt2 dt, t) Klassifisering: Differensiallikning av orden 2.

15 Eksempel C: Konkret tilfelle Legeme i fritt fall (y måles vertikalt nedover) ( y ) 2 F = mg C t, tyngde luftmotstand, Konstanten C avhenger av legemets størrelse og form. Innsetting i likning på forrige lysark d 2 y dt 2 = g C m Klassifisering: Andreordens, ikkelineær (Kan skrives om til separabel) ( ) dy 2 dt

16 NYTT TEMA Løsning av førsteordens lineær likning i formel

17 Førsteordenslikninger Generell førsteordenslikning y = F(x, y), der F er et gitt uttrykk av to variable (x og y). Separabel førsteordenslikning q(y)y = p(x), Svarer til F(x, y) = p(x)/q(y). Løsning i formel. Lineær førsteordenslikning y + f (x)y = g(x). Svarer til F(x, y) = g(x) f (x)y.løsning i formel.

18 Lineær, homogen likning av orden 1 Fellesnevner av de to nederste typer på forrige lysark y + f (x)y = 0 Vi skriver den om til (fri variabel x) som har form: 1 y y = f (x) Funksjon av y ganger y = funksjon av x Likninger som kan skrives slik kalles separabel Vi tar den videre regning i små steg

19 ... 1 y y = f (x) Vi integrerer begge sider mhp. x 1 y y dx = f (x)dx. Poenget er at vi med en gang kan subsitituere y dx = dy 1 y y dx = dy y = ln y + C, der C er en integrasjonskonstant. Derved ln y + C = f (x)dx

20 ... Vi anvender eksponensialfunksjonen på begge sider e ln y +C = e R f (x)dx, bruker e ln y = y og løser opp y får vi y = e C e R f (x)dx y = Ae R f (x)dx, ( ) der A = ±e C er en reell konstant, som kan være både positiv og negativ. Uttrykk svarer til K for g 0.

21 Initialbetingelse Entydig skrevet form av (*) kan vi få ved å velge det ubestemte integralet y = Ae for en gitt a. Initialbetingelsen y(a) = y a gir da y = y a e xr f (t)dt a, xr f (t)dt a Eksplisitt uttrykk dersom f kan integreres i formel.

22 Generell separabel likning (K. kap. 10.4) Form Integrasjon gir q(y)y = p(x). q(y)y dx q(y)dy = p(x)dx. Dersom Q og P er antideriverte av hhv. q og p Q(y) = P(x) + C (SI), der C er en integrasjonskonstant.

23 Initialbetingelse mm. Q(y) = P(x) + C (SI), Initialbetingelse y(a) = y a Q(y a ) = P(a) + C C = Q(y a ) P(a) Løsning i eksplisitt formel forusetter 1 Q og P kan finnes 2 y må kunne løses fra (SI). Trinn 1 og 2 kan alternativt utføres numerisk. Ofte kan viktig informasjon finnes fra løsningen skrevet på den implistte formen (SI).

24 Eksempel C; løsning Legeme i fall med luftmotstand ( fallskjermhopper ) d 2 y dt 2 = g C m ( ) dy 2 dt der y er posisjon. y selv inngår ikke, bytter avhengig variabel der u er farten. Likning blir da u = dy dt, du dt = g C m u2,

25 ... eller du dt g C = 1. mu2 Separabel likning q(y)y = p(x) med y u, x t, p 1, q = 1/(g C m u2 ). Denne gangen bytter vi ikke navn på variable! Initialbetingelse Ved t=0 starter vi fra ro u(0) = 0. Sammen med likningen ovenfor bestemmer denne betingelsen bevegelsen.

26 ... Integrasjon gir du dt g C m u2dt = dt = t + B, der B er en integrasjonskonstant. Integrasjon av venstresiden gir du dt g C m u2dt = = du g C m u2 1 g + C ln 2 g C gc m m u m u der B 1 kan settes lik 0. (utregning kommer senere)) + B 1,

27 gc m g + C m ln u = t + B, g C m u ( ) der vi har antatt g C/mu > 0. Innsetting u(0) = 0 gir B = 0. Vi kan løse u fra (**). Multiplikasjon med 2 gc, anvendelse av eksponentialfunksjonen på begge sider gir g + C m u q 2 gc = e m t g C m u Ganger vi opp med nevneren får vi en lineær likning i u som lett løses.

28 ... u = mg C e q gc m t Vi ser at u mg C og u 0 når t. Sjekk t Likning u = g C m u2. Insetting u = 0 gir u = mg C. Fysisk beskrivelse: farten øker inntil luftmotstand balanserer tyngden.

29 ... u mg C terminalhast. t Små t: tyngden dominerer u øker lineært. Store t: u går mot terminalhastighet. Vi kan finne y(t) ved å integrere u.

30 Utregning av integral* Delbrøkoppspalting du g C = 1 m u2 2 g = 1 2 = 1 2 gc m gc m du + g + C m u du g C m u ( C ) ln g + m u C ln g m u + B 1 g + C ln g C m u m u + B 1,

31 Inhomogen, lineær likning av orden 1 Alternativ til bruk av integrerende faktor i K. kap y + f (x)y = g(x) (IN) Knep: variasjon av parameteren Vi kjenner løsningen av den homogene delen nemlig y = u = e R f (x)dx Vi skriver løsningen av (IN) der v er den nye ukjente. y + f (x)y = 0, y(x) = v(x)u(x)

32 ... Substitusjon y(x) = v(x)u(x) i y + f (x)y = g(x) (IN) gir uv + u v + fuv = g Fordi u løser den homogene likningen kansellerer de siste to ledd på venstre side v = g u v = g(x)er f (x)dx dx

33 ... For y kan vi da skrive (K ) y = e R ( ) f (x)dx f (x)dx g(x)er dx + C, Alle løsninger må ha denne formen. Dersom (IN) skal løses med y(c) = d utføres integraler fra c til x (u = e R x c f (t)dt ) og eneste mulige løsning er (K ) xr y = e f (t)dt x R t c g(t)e c f (s)ds dt + d, c Vist: y + f (x)y = g(x), x I, y(c) = d har entydig løsning når f og g er integrerbare.

34 Alternativ løsning lineær likning av orden 1. Kalkulus, kap y + f (x)y = g(x) (IN) Skal oppfylles i et intervall Knep: integrerende faktor En integrerende faktor er en funksjon vi ganger likningen med, slik at vi kan integrere den opp direkte. Er oftest vanskelig (eller umulig) å finne. Opp av hatten kommer faktoren som virker for (IN) e F(x) der F er en antiderivert til f ; dvs. F = f.

35 Bruk av integrerende faktor Multipliserer (IN) med faktor e F(x) der F = f e F(x) y + e F(x) f (x)y = e F(x) g(x) For andre ledd har vi e F(x) f (x) = e F(x) F (x) = (e F(x) ) ( e F(x) y + e F(x)) y = e F(x) g(x) Produktregel, brukt baklengs, gir så Nå kan begge sider integreres ( e F(x) y) = e F(x) g(x)

36 ... Integrasjon gir e F(x) y = e F(x) g(x)dx + C Der C er en vilkårlig konstant Alle løsninger av likningen vår kan da skrives Setning K y = e F(x) ( ) e F(x) g(x)dx + C Merk: Det kan være umulig å løse integralet i K i formel; Likevel sier vi at differensiallikningen er løst

37 Eksempel A: løsning Nedbrytning av radioaktivt stoff M = km, M(0) = M 0 Klassifisering: Første orden, lineær, konst. koeff., homogen. Fri variabel: tid betegnes med x. Svarer til y + f (x)y = 0, med f k og y M. Kan bruke K , men starter fra Her:f (x) = k og y(x) = Ce kx. y = e R f (x)dx.

38 ... Løsning av differensiallikning M(x) = Ce kx Initialbetingelse gir M 0 = M(0) = C, M(x) = M 0 e kx Halveringstid, t 1, er definert ved M(T + t 1 = 2 2)/M(T) = M(T + t 1 ) 2 M(T) Bruk av logaritmen på begge sider t 1 2 Merk: svar uavhengig av T. = M 0e k(t+t 1 2 ) M 0 e kt = e kt 1 2 = log(2)/k

39 Kommentar til løsning av y + ky = 0 Homogen likning av første orden med konstant koeffisient har en eksponentialfunksjon y = Ce kx som løsning. Dette henger sammen med at eksponentialfunksjonen e αx har α ganger seg selv som derivert. Vi setter y = Ce αx inn i likning 0 = y + ky = Cαe αx + kce αx. Begge ledd har formen: konstant e αx. For α = k vil leddene nulle hverandre ut og vi har en løsning. Ekspontialfunksjonen (og sin og cos) spiller tilsvarende roller også for andre lineære likninger med konstante koeffisienter.

40 Likninger med konstante koeffissienter Andre ordens likning (behandlet i Kalkulus) y + by + cy = 0 Orden n: y (n) + b n 1 y (n 1) +...b 0 y = 0 Vi prøver y = e kx, der k C. Løsning når k n + b n 1 k n b 0 = 0, n ulike røtter n løsninger. k dobbel rot xe kx også løsning etc Kompleks k: k også rot; DeMoivres formel relle løsninger Lineær superposisjon

41 NYTT TEMA Numerisk løsning

42 Diskretsering Utgangspunkt: differensiallikning for y(x) y tilnærmes i diskrete punkter x n = nh: y(x n ) y n. Tilnærmelse til y representeres ved følge (sample). Settet av x-verdier {x n } kalles ofte gitter el. grid y y 3 y 0 y 1 y 2 h x x 0 x 1 x 2 x 3 y 1, y 2, y 3... beregnes helst en for en i rekkefølge

43 Eulers metode (K ) Likning: y (x) = f (x, y(x)), initialbetingelse: y(0) = y 0 I punkt x n = nh tilnærmer vi den deriverte med ensidig differens y y(x = lim n+ x) y(x n) x 0 x y n+1 y n h, og setter inn i likning for x = x n y n+1 y n h = f (x n, y n ) y n+1 = y n + hf (x n, y n ). Neste y er nåværende y pluss h ganger nåværende endringsrate I rekkefølge beregnes y 1, y 2, y 3... Eksempel på endelig differense metode (deriverte i likning byttes ut med differenser)

44 Demonstrasjonseksempel i figur Likningsett: y = ay, y(0) = y 0 Formelløsning: y(x) = y 0 e ax For hver y 0 får vi en unik løsning Utregningssekvens initialbet. y 0 er gitt y 1 = y 0 + hay 0 y 1 beregnes y 2 = y 1 + hay 1 y 2 beregnes... y i+1 = y i + hay i y i+1 beregnes... (Merk: ay i stigningsrate ved x i = ih.) Metoden er veldig enkel!

45 Eulers metode; geometrisk tolkning y y(x) y 3 y 0 y 1 y 2 h x x 0 x 1 x 2 x 3 Tynne blå linjer er løsninger av y = ay med andre startverdier. Numerisk løsning: skritter fram langs tangenter til løsningskurver. I illustrert tilfelle (y = ay) øker feil systematisk.

46 Midtpunktmetoder I Eulers metode bruker vi asymmetrisk differens for derivert Denne er unøyaktig. Midtpunktformel y(x n + h) y(x n ) h y (x n ) = f (x n, y n ). y(x n + h) y(x n ) h y (x n + 1 h) =? 2 er mer nøyaktig. Men, hvilket uttrykk skal inn på høyresiden?

47 Forsøk 1; ekte midtpunktmetode* Vi midler y n og y n+1 i utregning av endringsrate y (x n h) f (x n h, 1 2 (y n + y n+1 )) Derved y n+1 y n = f (x n + 1 h 2 h, 1 2 (y n + y n+1 )). Utregningssekvens initialbet. y 0 er gitt y 1 y 0 = hf ( 1 2 h, 1 2 (y 0 + y 1 )) Likning løses for y 1 y 2 y 1 = hf ( 3h 2, 1 2 (y 1 + y 2 )) Likning løses for y 2... Likninger for y 1, y 2,... løses lett bare dersom f er enkel, feks. lineær Generelt må likningene løses numerisk; tungvint!

48 Forsøk 2: Eulers midtpunktmetode (K ) Prosedyre for å regne ut y n+1 fra y n 1 Bruker Eulers metode 1 2 h fram: ŷ n = y n hf (x n, y n ) Vi kan si: ŷ n y(x n h) 2 Kvasi-midtpunktformel: y n+1 = y n + hf (x n h, ŷ n) Poeng: Vi løser ingen likninger. ŷ n, deretter y n+1 beregnes ved eksplisitte uttrykk. Bedre enn Eulers metode. Brukes ofte i forbindelse med partielle differensiallikninger (den ukjente er en funksjon av flere variable), men sjelden for ordinære differensiallikninger.

49 Eulers midpunktmetode; grafisk framstilling y y(x) y 1 y 0 ŷ 0 h x x 0 x 1 Eksempel: første steg. Eulers metode 1 2 h fram til ŷ 0 Stigning i løsningskurve gjennom ( 1 2 h, ŷ 0) brukes for å finne y 1. (Rødt + tilsvarer y 1 funnet ved Eulers metode)

50 Eulers metode for demonstrasjonseksempel (K ) Ser igjen på f (x, y) = ay dvs. likning og løsning y = ay, y(0) = y 0 y 0 e ax. Eulers metode gir y n+1 = y n + hf (x n, y n ) = (1 + ah)y n. y n bestemmes altså fra differenslikningen y n+1 = (1 + ah)y n. Klassifisering: Første orden, lineær, homogen; Løses lett i formel Generelt for endelig differens metoder: numerisk løsning av differensiallikninger innebærer å simulere differenslikninger

51 Eulers metode med forskjellige h y y(x) x y = 0.6y, y(0) = 1 simulert for x [0, 3] med 2, 4 og 20 punkter.

52 Andre metoder Slektninger av Eulers midtpunkt.metode Runge-Kutta metoder; mye brukt Adam Bashforth Moulton Siden vi nettopp har hatt Taylorutvikling... Eksempel y = e xy, Derivasjoner y = (e xy ) = e xy (xy) = e xy (y + xy ) y = (y ) = e xy (y + xy ) 2 + e xy (2y + xy )... Har vi y ved en x kan deriverte av økende orden regnes ut etter tur Taylorrekkeutvikling gir y n+1 = y(x n + h) = y(x n ) + hy (x n ) h2 y (x n ) +...

53 NYTT TEMA Sett av differensiallikninger

54 Koblede differensiallikninger med flere ukjente To likninger av første orden der ukjente er y(t) og z(t). M likninger av første orden der ukjente er y (1) (t)...y (M) (t). y = F(t, y, z), z = G(t, y, z), dy (1) dt = F (1) (t, y (1)...,y (M) ), dy (2) dt = F (2) (t, y (1)...,y (M) ),... dy (M) dt = F (M) (t, y (1)...,y (M) ),

55 Vektorform y = (y (1), y (2)...) Eksempel Hastighet v(t, r) Partikkelbaner y = F(t, y) r = v(t, r) Løses med initialbetingelse r(0) = r 0

56 Omskrivning; to førsteordens 1 andreordens* Eksempel; lineært sett, konst. koeff. y = ay + bz, z = cy + dz, Den øverste gir (b 0) z = (y ay)/b. Innsatt i den nederste z = cy + dz ( y ) ay ( y ) ay = cy + d b b y ay = (bc ad)y + dy y = (a + d)y + (bc ad)y

57 Differensiallikning av andre orden y = F(t, y, y ), y(0) = b 0, y (0) = b 1 (1) Vi har formler for løsning når likningen er lineær med konstante koeffisienter, dvs. F = f (t) py qy, der p og q er konstante. Kalkulus, kap. 10.5,6 Ellers: Numerisk løsning (stort sett)

58 Omskrivning til 2 likninger av orden 1 Definerer z = y da er z = y og Vi får da 2 førsteordenslikninger y = F(t, y, y ) z = F(x, y, z) y = z z = F(t, y, z) med y(0) = b 0, z(0) = y (0) = b 1. Generelt kan en likning av orden n gjøres om til n likninger av orden 1 Dette er standard framgangsmåte ved numerisk løsning med initialverdier; både Eulermetoder og Runge-Kutta kan lett generaliseres til sett av førsteordenslikninger

59 Numerisk løsning av sett av likninger Eulers metode for en ukjent y (t) = f (t, y(t)), diskretisering t n = nh, y(t n ) y n y n+1 = y n + hf (t n, y n ) Eulers metode for likningssett y (t) = f (t, y(t)), diskretisering t n = nh, y(t n ) y n y n+1 = y n + h f (t n, y n ) Mange metoder for førestordenslikninger generaliserer umiddelbart til sett av likninger. Likninger av høyere orden gjøres om til sett av førsteordens

60 Autonome likninger (t inngår ikke eksplisitt) Eksempler; partikkelbaner i stasjonær strøm Strømlinjer x (t) = u(x, y), y (t) = v(x, y), Reduksjon av autonome likninger: Velger, feks., x som fri variabel dy dx = y v(x, y) x = u(x, y) Førsteordenslikning for y(x). Kan skrives u(x, y)dy = v(x, y)dx Kan bare integreres opp for visse u, v. Feks. vil u = u(y), v = v(x) gi separabel likning

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

og variasjon av parameterene Oppsummering.

og variasjon av parameterene Oppsummering. Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

KAPITTEL 8 Differensialligninger

KAPITTEL 8 Differensialligninger KAPITTEL 8 Differensialligninger Svært mange fenomener i våre omgivelser kan modelleres matematisk ved hjelp av differensialligninger. De vanligste og mest kjente eksemplene på dette finner vi i de tradisjonelle

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Forelesning 1: Integrasjon. Separable differensiallikninger.

Forelesning 1: Integrasjon. Separable differensiallikninger. Forelesning 1: Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen 12. januar, 2010 Innhold Anbefalt lesning 1 1.1. Kort repetisjon av integrasjon 1 1.2. Hva er en differensiallikning?

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310)

FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310) FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310) TERJE SUND Innledning I matematisk optimering søker en å bestemme maksimums- og minimumspukter for funksjoner som avhenger av reelle variable og av andre

Detaljer

Lineære differensiallikninger.

Lineære differensiallikninger. Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI Forelesninger i MET4 Matematikk valgfag ved Handelshyskolen BI Forelesning : Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen. januar, Innhold Anbefalt lesning.. Kort repetisjon av

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

Kort innføring i polynomdivisjon for MAT 1100

Kort innføring i polynomdivisjon for MAT 1100 Kort innføring i polynomdivisjon for MAT 1100 I dette notatet skal vi se litt på polynomdivisjon. Mange vil kjenne denne teknikken fra før, men etter siste læreplanomlegning er den ikke lenger pensum i

Detaljer

Kapittel Flere teknikker

Kapittel Flere teknikker Innhold: Kapittel 6.7 - Flere teknikker H-P Ulven 22.04.09 Innledning Ligninger med potenser av y. ( Lærebok 6.7) Reduksjon av orden med variabelskiftet u y. (Lærebok 6.7) Innføring av u y 2 og u 2yy.

Detaljer

MA0003-8. forelesning

MA0003-8. forelesning Implisitt derivasjon og 31. august 2009 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2 Outline Implisitt derivasjon 1 Implisitt derivasjon 2

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 1. november 2013 Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise hva

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100

Areal mellom kurver Volum Forelesning i Matematikk 1 TMA4100 Areal mellom kurver Volum Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 27. september 20 Kapittel 5.6. Substitusjon og arealet mellom kurver 3 Areal mellom kurver Problem

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Kurveintegraler, fluks, sirkulasjon, divergens, virvling

Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kurveintegraler, fluks, sirkulasjon, divergens, virvling Kap 4 Matematisk Institutt, UiO MEK1100, FELTTEORI OG VEKTORANALYSE våren 2009 Framstilling Kommentarer, relasjon til andre kurs Kurveintegraler

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet

Fremdriftplan. I går. I dag. 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet 1 Fremdriftplan I går 2.5 Uendelige grenser og vertikale asymptoter 2.6 Kontinuitet I dag 2.7 Tangenter og derivasjon 3.1 Den deriverte til en funksjon 3.2 Derivasjonsregler 3.3 Den deriverte som endringsrate

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1.

Heldagsprøve R2. Våren Onsdag 6. Mai Løsningsskisser - Versjon Del 1 - Uten hjelpemidler - 3 timer. Oppgave 1. Heldagsprøve R Våren 015 Onsdag 6. Mai 09.00-14.00 Løsningsskisser - Versjon 1.05.15 Del 1 - Uten hjelpemidler - timer Oppgave 1 Deriver funksjonene: a) fx tanx Kjerneregel: fx tanu, u x f 1 x cos u x

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:

Detaljer

Simulering av differenslikninger

Simulering av differenslikninger Forelesning uke 37, 2007 Løsning av differenslikninger i formel Mulig for lineære likninger med konst. koeff. og enkelte inhomogeniteter. Eksempel: (b, c er konstante) x n+2 + bx n+1 + cx n = cos(n), x

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Tillegg A. Oppgaver. A.1 Kapittel 1. Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1.

Tillegg A. Oppgaver. A.1 Kapittel 1. Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1. Tillegg A Oppgaver A.1 Kapittel 1 Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1 b) f(x) = x2 +1 2x 1 c) f(x) = x 3 2 2x + 1 d) f(x) = ln x + 2 sin x e) f(x) = 2x 4 5 e

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1 LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Kap : Derivasjon 1.

Kap : Derivasjon 1. Ukeoppgaver, uke 36, i Matematikk 0, Kap. 3.-3.4: Derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 36 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/ing/allmennfag/emnesider/rea042

Detaljer

Formelsamling Kalkulus

Formelsamling Kalkulus Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer