Analyse av luktedata

Størrelse: px
Begynne med side:

Download "Analyse av luktedata"

Transkript

1 Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 6 Analyse av luktedata Sarpsborg Log GKS Log, GKS Ny oppgave MK MK MK Rev. Dato. Beskrivelse. Skrevet av Kontrollert Godkjent Fil : Skrevet ut av : i :18 Antall sider : 10

2 Labkjøring: Alle gruppene må senest ha kjørt oppgaven i uke 8. Presentasjon og skriftlig innlevering etter gjennomført laboppgave. Dette er likt for alle laboppgavene med mindre annet er beskrevet særskilt i oppgaven. Presentasjonsdel: Straks etter at gruppen har gjennomført laben, skal gruppen gi en muntlig presentasjon, en slags miniforelesning (trening mot hovedprosjekt), av laboppgaven. Maks. 30 min. Gruppen avtaler tidspunkt og sted med faglærer. Alle i gruppen skal delta i presentasjonen! Pass på at i presentasjonen inngår tilstrekkelig mange illustrasjoner (se også skriftlig del). Alle spørsmål i oppgaveteksten skal besvares (se også skriftlig del). Følgende spørsmål skal også besvares under presentasjonen: Hvilke problemer møtte dere på underveis? Hvilke forbedringer, eventuelt ny løsningsstrategi, ville bli gjort dersom oppgaven skulle være løst på nytt? Oppgavens vanskelighetsgrad? (1 (lett) 5 (meget vanskelig)). Skriftlig del: Denne delen skal være en skriftlig labbesvarelse i kortversjon. Alle aktuelle presentasjoner skalinngå. Pass på at de kommer i kronologisk rekkefølge. Alle spørsmål i laboppgaveteksten skal besvares. Dersom gruppen har skrevet egne MatLabprogrammer, så skal de vedlegges. Til slutt skal rapporten inneholde en konklusjon som oppsummerer oppgaven: hva dere har lært, hvilke problemer oppsto underveis og hvilke forbedringer bør gjøres. Innføring i bildebehandling - HIØ side 2

3 Innledning. Oppgaven tar for seg en fullstendig analyseprosess og klassifisering av data innsamlet fra en elektronisk nese. Formål. Få forståelse for hvordan en elektronisk nese fungerer. Benytte prinsipal komponentanalyse (PCA) som verktøy for databehandling. Bruke et nevralt nettverk på egne innhentete data. Utstyr. Datamaskin med installert Mat Lab med toolboksene Image Processing Toolbox (IPC), Signal Processing Toolbox (SPT) og Neural Network Toolbox (NNT). En elektronisk nese. Generelt om oppgaven. I dette prosjektet skal vi gjøre en fullstendig beslutningsprosess basert på data innhentet fra en elektronisk nese. Først skal vi øve på å bruke en preprosesseringsmetode som kalles prinsipal komponentanalyse. Deretter skal vi ta for oss hvordan data fra den elektroniske nesen er representert. I siste fase skal vi selv innhente våre egne lukteprøver som vi så skal klassifisere ved bruk av et nevralt nettverk. Innføring i bildebehandling - HIØ side 3

4 Del 1 Prinsipal komponentanalyse (PCA) Prinsipal komponentanalyse, eller forkortet PCA, er en velbrukt metode som ofte brukes for å bearbeide rådata før videre klassifisering eller mønstergjenkjenning skjer. Kort fortalt brukes PCA som et verktøy for å øke spredningen/standardavviket mellom forskjellige klynger av mønstre og for å fjerne støy. Hvis vi oppfrisker litt kunnskap fra statistikk, husker vi at standardavviket sier noe om hvordan en variabel varierer rundt middelverdien sin. Jo større standardavvik, jo lengre vekk fra middelverdien vil dataene være. Dette kan enten skyldes støy, eller at variabelen faktisk har en variasjon som beskrives ved bruk av standardavviket. Av den grunn er vi interessert i å finne ut hvilke variasjonsretninger som er viktige og hvilke som er støy. Et lite eksempel Den enkleste måten å forstå bruken av PCA på er ved å betrakte et eksempel. Figur 1 viser to normalfordelte klynger i et xy-plan. Siden dataene er todimensjonale, kan de variere i to retninger, langs x- eller y-aksen. Fra figuren kan vi se at x- og y-aksen ikke er de best egnede retningene til å beskrive variasjonen til de to klyngene. De to sentrale variasjonsretningene er inntegnet i det ekstra aksesystemet på figuren i tillegg til fordelingsfunksjonene langs disse nye aksene. Dette systemet er rotert i forhold til de opprinnelige aksene, men gir en bedre beskrivelse av de to variasjonskomponentene. Disse skal vi fra nå av kalle prinsipale komponenter. Av de to prinsipale komponentene som vises i figur 1, ser vi at den lengste komponenten (kalt den første prinsipale komponenten) er den aksen hvor de to klyngene best kan skilles fra hverandre. En normal trukket fra denne aksen et passende sted mellom de to klyngene vil gi den beste lineære separeringen som er mulig for disse dataene. Den andre prinsipale komponenten som viser den nest sterkeste variasjonen innad i dataene er strengt tatt ikke nødvendig, siden denne ikke bringer ny informasjon inn i separasjonen. Innføring i bildebehandling - HIØ side 4

5 En datamengde har like mange prinsipale komponenter som det finnes dimensjoner i dataene. Jobber vi med mer enn tre dimensjoner i dataene våre får vi problemer med å visualisere disse komponentene. Vi er da interessert i å finne de komponentene som angir den største variasjonen for dataene, siden det er her vi har størst mulighet til å skille mellom forskjellige mønsterklasser. På denne måten brukes også PCA til å redusere dimensjonaliteten. Irisdata For å få øvelse i hvordan PCA fungerer, skal vi prøve oss på et kjent datasett, irisdatasettet, som ligger i filen iris.data.txt. Denne filen og andre aktuelle filer for oppgaven ligger på følgende adresse: //Leia / fag/ bildeb /Lab6 / Filen inneholder informasjon om tre irisblomster: Iris-setosa, Iris-versicolor og Iris-virginica. Det er femti blomster av hver type. Informasjon om hver blomst er stengelens lengde og tykkelse og kronbladets lengde og bredde. Filen inneholder fem kolonner: disse nevnte fire datakolonner og en kolonne med blomsternavn. Filen kan leses inn ved for eksempel kommandoen [x1, x2, x3, x4, navn] = textread( iris.data.txt, %f, %f, %f, %f, %s ). Blomstenes talldata har fire egenskaper og dermed også fire prinsipale komponenter. Legg inn dataene i en matrise X slik at hver trekkverdi utgjør en rad i matrisen. Gi deretter følgende sekvens i MatLab: X = prestd(x); [transmatrix, pca, egenverdier] = princomp(x); (*) Matrisen pca inneholder nå alle irisdataene etter at de er transformert over i rommet utspent av de prinsipale komponentene, mens transmatrix er matrisen som utfører selve transformasjonen, slik at pca = X * transmatrix. (**) Hvis du tester dette, vil du oppdage at MatLab også trekker fra middelverdiene, slik at det blir en forskyvning i løsningen.(dette komme klart fram regner ut differansen mellom pca gitt i (*) og den i (**). Hver kolonne i transmatrix er en retningsvektor for en prinsipal komponent i sortert rekkefølge. Den første kolonnen inneholder den største komponenten, den andre kolonnen den nest største, osv. Matrisen pca inneholder derfor irisdataene projisert ned på hver av de prinsipale komponentene. Den første kolonnen er projeksjonene på den første prinsipale komponenten, osv. Variabelen egenverdier inneholder størrelsen på de tilhørende egenverdiene som korresponderer med de prinsipale komponentene. Disse kan brukes til å se hvor mye hver enkelt egenverdi bidrar til det totale standardavviket. Innføring i bildebehandling - HIØ side 5

6 Plott de transformerte mønstrene (radene i matrisen pca) i planet for de forskjellige komponentene, f.eks. mønstrene projisert ned på komponent 1 mot mønstrene projisert ned på komponent 2. Figur 2 viser irisdataene for de to største prinsipale komponentene. På denne måten kan du finne ut hvor mange av de fire variasjonskomponentene som er interessante. Trenger vi alle de fire prinsipale komponentene for å gjøre en fornuftig gjenkjenning? I tilfelle nei, hvor mange trenger vi? Finn også ut hvorfor vi må benytte funksjonen prestd før vi utfører PCA. Del 2 Elektronisk nese og lukt som signal (teoridel) Den gjeldende definisjonen på en elektronisk nese er et sensorsystem med delvis spesifikke sensorer og et påfølgende gjenkjenningssystem som benyttes til å sanse luktmolekyler på samme måte som den menneskelige nesen. Selve sensorene er kort beskrevet transistorer som har varierende ledningsevne når luktmolekyler er i nærheten, eller rettere sagt i kontakt med halvledermaterialet i transistorens kløft. Disse transistorene finnes i dag i ulike varianter med forskjellige stoffer som de reagerer på. Sensorene endrer også karakteristikk avhengig av temperaturen som de er innstilt på. Ved å danne et array av transistorer med flere forskjellige egenskaper og arbeidstemperaturer, dannes grunnlaget for videre bearbeidelse av luktedata innhentet av sensorene. Utstyrets oppstilling Modellen gjør bruk av fire ulike sensorer som hver arbeider på fire forskjellige temperaturer, i alt 16 sensorer. Nesen benytter et nesehus i rustfritt stål formet som et rør med kvadratisk tverrsnitt. På hver av de fire sidekantene - som hver har fire åpninger - sitter et kretskort som holder et sett med fire ulike sensorer som arbeider på en bestemt temperatur. I enden av nesehuset er det plassert en vifte som danner gjennomstrømning av lukten, eller selve "sniffet". Dermed strømmer lukten gjennom nesehuset og inn til de 16 sensorene som dermed begynner å variere i ledningsevne. En forenklet skisse av dette oppsettet vises i figur 3. Innføring i bildebehandling - HIØ side 6

7 Informasjonsbehandling Sensorene som reagerer på lukten i nesehuset reagerer med gradvis å øke spenningen over transistoren etter hvert som en lukt brer seg i det sensitive området hos transistoren. Dette gjør at responsen fra en sensor varierer i tid, slik at vi ikke enkelt kan lese av en eller annen verdi for så å klassifisere lukten, men vi må ta hensyn til et lengre tidsforløp for hvordan sensoren reagerte mens lukten var tilstede. I tillegg er nesen utstyrt med flere forskjellige sensorer som hver gir et forskjellig tidsforløp for at vi skal kunne fange inn forskjellige lukter. Figur 4 viser typisk hvordan en elektronisk nese reagerer ved eksponering av en lukt. De ulike kurvene er spenningsforløpene til 24 forskjellige sensorer. Vi ser at for denne lukten reagerer sensorene svært ulikt og opererer på forskjellige nivåer. (Luktmålingene er gjort ved KTH i Sverige.) Noen av sensorene viser en ganske aktiv respons, mens andre igjen ikke viser tegn til aktivitet. Informasjonen som har blitt registrert fra en elektronisk nese, må så ordnes på en slik måte at vi kan gjøre oss opp en formening om hvilken lukt vi faktisk har registrert. Innen forskning på biologiske lukteorganer arbeider man ofte ut fra at en lukteopplevelse er bestemt både ut fra en tidsmessig komponent så vel som hvilke luktesensorer som er aktive. Dermed kan lukt sees i sammenheng med både synets to romlige komponenter og lydens avhengighet av både tid og frekvens. Dersom vi drar en parallell til vår elektroniske nese, kan vi betrakte den registrerte informasjonen som et signal varierende i to dimensjoner, nemlig tid og sensornummer. Innføring i bildebehandling - HIØ side 7

8 Mønstergjenkjenning Gjenkjenning av lukter må ut fra det som tidligere er nevnt skje på grunnlag av det todimensjonale signalet som sensorene har registrert. Dersom vi har 16 sensorer som hver har entidsregistrering på 1000 punkter er det naturlig at vi ikke kan benytte oss av hele råmaterialet til klassifisering. Vi må derfor lete etter trekkverdier eller egenskaper hos disse signalene som vi har tilgjengelige. En måte å gjøre dette på, er å velge ut en bestemt egenskap hos spenningskurvene til sensorene. Det kan også vise seg at bestemte tidspunkt, som for eksempel tidspunktet for et knekkpunkt på kurvene, eller et annet tidspunkt hvor sensorene går i metning er av interesse. Dermed kan vi redusere datamengden til å gjelde et signal med like mange komponenter som sensorer, og den videre klassifiseringen kan gjennomføres. I den påfølgende prosesseringen er det vanlig at man benytter seg av PCA, slik at klassifisering for et nevralt nettverk blir lettere. Avlesning av måledata på den kunstige nesen Her benyttes skriptet enose_read_dde_data.m. Innføring i bildebehandling - HIØ side 8

9 Del 3 Luktgjenkjenning fra registrerte prøver Filen lukteprover.mat inneholder fem lukteprøver. To og to er sprengstoffprøver, mens den siste er en bakgrunnsmåling. Dataene er justert slik at alle kurvene har samme referanseverdi. Last dataene fra filen inn i MatLab ved: load lukteprover (forsøk gjerne også load lukteprover, who) Lukteprøvene er her lagret i 3-dimensjonale arrays. Plott de fem prøvene hver for seg. (Blant de fem prøvene vil du også finne prøven vist i figur 4.) For å få til et 2-D plott av et 3-D array må dataene konverteres til et array med kun to dimensjoner. Dette kan du gjøre for eksempel ved kommandoen: prove(:, :) = Explosive1(1, :, :); Ser det ut til at det er noen synlig forskjell på luktene ut fra responskurvene? Ved å velge den samme trekkverdien for alle lukteprøvene, for eksempel verdien til hver sensors responskurve ved sampleverdien n = 200, blir lukteprøven redusert til et sett med 24 punkter for hver av de fem lukteprøvene. Velg selv en slik trekkverdi og dann en datamatrise hvor trekkverdien representerer lukteprøven. Utfør PCA på datamatrisen din slik som beskrevet i deloppgave 1 og plott de to største prinsipale komponentene mot hverandre. Figur 5 viser et slikt PCA-plott for de fem lukteprøvene når responskurvene ble avlest ved n = 200. Tren opp et nevralt nettverk som gjenkjenner de fem lukteprøvene basert på PCAdataene. Her må du selv velge hvordan nettverket skal se ut og hvordan du skal organisere utgangene. Innføring i bildebehandling - HIØ side 9

10 Del 4 Luktgjenkjenning fra egne registrerte prøver I denne siste, men viktigste deloppgaven skal vi selv innhente lukteprøver som vi skal analysere. Begynn med å velg ut mellom 3 ulike luktkilder etter eget ønske, bruk fantasien La to lukter være klart forskjellige, mens den tredje er ikke så forskjellig fra de to andre. Pass på at en luktkilde avgir lukt for eksempel ved avgassing. Benytt den elektroniske nesen til å registrere seks målinger fra hver av lukteprøvene i tillegg til seks målinger uten lukt (bakgrunnslukt). o Her er det viktig å la nesen få hvile seg mellom hver serie, dvs. trekke frisk luft, slik at ikke lukt henger igjen fra forrige prøve. La nesen hvile minst 3 minutter mellom hver prøve. o Hver serie bør være av omtrent lik lengde, minst 45 sekunder, slik at sensorene stabiliserer seg og blir mettet. o For hver luktkilde skal dere fjerne den første av målingene, siden denne har en tendens til å avvike sterkt fra senere målinger når nesen har blitt mer vant til lukten. o Lagre deretter seriene i en fil slik at det lar seg gjøre å benytte prøvene i ettertid. Dere vil sikkert oppdage at sensorene ikke arbeider ut fra samme nullnivå når dere har registrert prøvene. Juster derfor dataene i etterkant slik at de korresponderer både i tid og i verdi ved tidspunktet da lukteprøven ble presentert, slik at dere får kurver i samme stil som i figur 4. Når dere føler at dere har fått nok datamateriale, skal dere gjennomføre tilsvarende PCA-analyse som i oppgaven med de ferdige prøvene. Bestem dere også for hvor mange prinsipale komponenter dere ønsker å bruke (vanligvis brukes 2-4). Dere vil oppdage at valget av trekkverdi er svært sentralt for gjenkjenningen. Eksperimenter dere derfor fram til en fornuftig verdi. Innføring i bildebehandling - HIØ side 10

Optisk lesing av en lottokupong

Optisk lesing av en lottokupong Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 4 Optisk lesing av en lottokupong Sarpsborg 03.02.2005 01.02.05 Ny oppgave Log LMN

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Sarpsborg 13.01.2005 12.01.05 Ny oppgave Log LMN Log,

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 24.08.2010 23.08.10 Revidert Log GKS 20.08.09

Detaljer

Frevensanalyse av signaler (del 2) og filtrering av bilder

Frevensanalyse av signaler (del 2) og filtrering av bilder Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 3 Frevensanalyse av signaler (del 2) og filtrering av bilder Sarpsborg 28.01.2005

Detaljer

Optisk lesing av en lottokupong

Optisk lesing av en lottokupong Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 4 Optisk lesing av en lottokupong Halden 22.10.2012 17.10.12 Mindre revisjon Log

Detaljer

Optisk lesing av en lottokupong

Optisk lesing av en lottokupong Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 4 Optisk lesing av en lottokupong Halden 20.10.2011 17.10.11 Mindre revisjon Log

Detaljer

Innføring i bildebehandling

Innføring i bildebehandling Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33506 Bildebehandling og mønstergjenkjenning Laboppgave nr 1 Innføring i bildebehandling Halden 27.08.2013 20.08.13 Revidert Log GKS 22.08.12

Detaljer

En mikrorobot skal følge en bane og løse bestemte utfordringer

En mikrorobot skal følge en bane og løse bestemte utfordringer Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer Laboppgave nr 2 En mikrorobot skal følge en bane og løse bestemte utfordringer Halden, Remmen

Detaljer

Navigering av en mobil mikrorobot

Navigering av en mobil mikrorobot Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer Laboppgave nr 1 Navigering av en mobil mikrorobot Halden, Remmen 25.01.2007 23.01.07 Ny oppgave

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

STK1000 Obligatorisk oppgave 1 av 2

STK1000 Obligatorisk oppgave 1 av 2 6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 17.12.2014 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 14H Ingeniørfaglig yrkesutøving og arbeidsmetoder

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Lab 5 Enkle logiske kretser - DTL og 74LS00

Lab 5 Enkle logiske kretser - DTL og 74LS00 Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 5 Enkle logiske kretser - DTL og 74LS00 Sindre Rannem Bilden 4. april 2016 Labdag: Tirsdag Labgruppe: 3 Oppgave 1: Funksjonstabell En logisk

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte. Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er

Detaljer

Analog til digital omformer

Analog til digital omformer A/D-omformer Julian Tobias Venstad ED-0 Analog til digital omformer (Engelsk: Analog to Digital Converter, ADC) Forside En rask innføring. Innholdsfortegnelse Forside 1 Innholdsfortegnelse 2 1. Introduksjon

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

INF1411 Oblig nr. 4 Vår 2011

INF1411 Oblig nr. 4 Vår 2011 INF1411 Oblig nr. 4 Vår 2011 Informasjon og orientering Alle obligatoriske oppgaver ved IFI skal følge instituttets reglement for slike oppgaver. Det forutsettes at du gjør deg kjent med innholdet i reglementet

Detaljer

Mal for rapportskriving i FYS2150

Mal for rapportskriving i FYS2150 Mal for rapportskriving i FYS2150 Ditt navn January 21, 2011 Abstract Dette dokumentet viser hovedtrekkene i hvordan vi ønsker at en rapport skal se ut. De aller viktigste punktene kommer i en sjekkliste

Detaljer

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent.

Høgskolen i Oslo og Akershus. c) Et annet likningssystem er gitt som. t Bestem parametrene s og t slik at likningssystemet blir inkonsistent. Innlevering i BYFE 000 Oppgavesett Innleveringsfrist: 0 oktober klokka :00 Antall oppgaver: 6 Noen av disse oppgavene løses ved hjelp av papir blyant, mens andre oppgaver løses ved hjelp av MATLAB til

Detaljer

MINIPROSJEKTOPPGAVE. (våren 2007)

MINIPROSJEKTOPPGAVE. (våren 2007) Avdeling for informasjonsteknologi HALDEN Høgskolen i Østfold Kristin Larsen Fag: INTELLIGENTE SYSTEMER (IAD32005) MINIPROSJEKTOPPGAVE (våren 2007) Tidsfrister: Utdelt: onsdag 13. mars. Innleveringsfrist:

Detaljer

TEK5020/TEK Mønstergjenkjenning

TEK5020/TEK Mønstergjenkjenning Sammendrag og eksempler Innledning UiO : Institutt for teknologisystemer Høsten 2018 (18. august 2018) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning Gjenkjenne objekter - tilordne objekter

Detaljer

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1

Løsningsforslag. Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6. Oppgave 1 Innlevering i BYFE 1000 Oppgavesett 1 Innleveringsfrist: 10. oktober klokka 14:00 Antall oppgaver: 6 Løsningsforslag Oppgave 1 x 1 +6x +x 3 = 8 x 1 +3x = 3x 1 +9x +x 3 = 10. a) Totalmatrise: 6 1 8 1 3

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 2/3

TMA Kræsjkurs i Matlab. Oppgavesett 2/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 2/3 28.02.2013 Oppgave 0: Bruk av fftshift og ifftshift Når du bruker fft i Matlab flyttes frekvensene over midten av spekteret, slik at får du ut frekvensdata

Detaljer

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00

Høgskoleni østfold EKSAMEN. ITD33506 Bildebehandling og monstergjenkjenning. Dato: Eksamenstid: kl 9.00 til kl 12.00 Or Høgskoleni østfold EKSAMEN Emnekode: Emne: ITD33506 Bildebehandling og monstergjenkjenning Dato: 25.11.2013 Eksamenstid: kl 9.00 til kl 12.00 Hjelpemidler: Læreboken, ett A4-ark skrevet på begge sider

Detaljer

EN LITEN INNFØRING I USIKKERHETSANALYSE

EN LITEN INNFØRING I USIKKERHETSANALYSE EN LITEN INNFØRING I USIKKERHETSANALYSE 1. Forskjellige typer feil: a) Definisjonsusikkerhet Eksempel: Tenk deg at du skal måle lengden av et noe ullent legeme, f.eks. en sau. Botemiddel: Legg vekt på

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

PROSJEKTOPPGAVE. Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer. Fag IAD32005 Intelligente systemer

PROSJEKTOPPGAVE. Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer. Fag IAD32005 Intelligente systemer Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer PROSJEKTOPPGAVE Halden, Remmen 28.02.2012 Fil : Skrevet ut av : sl 28.02.2012 08:36:00 Antall

Detaljer

Unik4590/Unik9590/TTK Mønstergjenkjenning

Unik4590/Unik9590/TTK Mønstergjenkjenning Sammendrag og eksempler UiO : Institutt for teknologisystemer Høsten 2017 (14. august 2017) Hva er mønstergjenkjenning? Formålet med mønstergjenkjenning ˆ Gjenkjenne objekter - tilordne objekter til én

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektet består av 4 arbeidspakker: 1. Litteraturstudie / teori Sett opp et generelt uttrykk for en sinusfunksjon

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

MINIPROSJEKTOPPGAVE. (våren 2012) Patrick Fallang. Fag: INTELLIGENTE SYSTEMER (IAD32005) Tidsfrister: Utdelt: mandag 27. februar.

MINIPROSJEKTOPPGAVE. (våren 2012) Patrick Fallang. Fag: INTELLIGENTE SYSTEMER (IAD32005) Tidsfrister: Utdelt: mandag 27. februar. Avdeling for informasjonsteknologi HALDEN Høgskolen i Østfold Patrick Fallang Fag: INTELLIGENTE SYSTEMER (IAD32005) MINIPROSJEKTOPPGAVE (våren 2012) Tidsfrister: Utdelt: mandag 27. februar. Innleveringsfrist:

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Soloball. Introduksjon. Steg 1: En roterende katt. Sjekkliste. Skrevet av: Geir Arne Hjelle

Soloball. Introduksjon. Steg 1: En roterende katt. Sjekkliste. Skrevet av: Geir Arne Hjelle Soloball Skrevet av: Geir Arne Hjelle Kurs: Scratch Tema: Blokkbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 1.-4. klasse, 5.-7. klasse, 8.-10. klasse Introduksjon Vi skal nå lære hvordan vi

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler

MATLAB for STK1100. Matematisk institutt Univeristetet i Oslo Januar Enkel generering av stokastiske variabler MATLAB for STK1100 Matematisk institutt Univeristetet i Oslo Januar 2014 1 Enkel generering av stokastiske variabler MATLAB har et stort antall funksjoner for å generere tilfeldige tall. Skriv help stats

Detaljer

Øving 1 ITD Industriell IT

Øving 1 ITD Industriell IT Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 13. september, 2018 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 27/9-2018, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

Fag ITD 33506 Bildebehandling og mønstergjenkjenning. mandag 28. oktober til fredag 15. november 2013

Fag ITD 33506 Bildebehandling og mønstergjenkjenning. mandag 28. oktober til fredag 15. november 2013 Høgskolen i Østfold Avdeling for informasjonsteknologi Fag ITD33506 Bildebehandling og mønstergjenkjenning PROSJEKTOPPGAVE Halden, Remmen 02.10.2013 Fil : Skrevet ut av : sl 02.10.2013 09:27:00 Antall

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual

Detaljer

Side 1 av 7 [BOKMÅL]

Side 1 av 7 [BOKMÅL] Side 1 av 7 [BOKMÅL] Side 2 av 7 [BOKMÅL] Oppgave 1 (Teknologihistorie; %) Denne oppgava inneholder fem flervalgsspørsmål. Alle spørsmåla har tre svaralternativ. Rett svar gir +2 poeng. Feil svar gir 1

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Soloball. Steg 1: En roterende katt. Sjekkliste. Test prosjektet. Introduksjon. Vi begynner med å se på hvordan vi kan få kattefiguren til å rotere.

Soloball. Steg 1: En roterende katt. Sjekkliste. Test prosjektet. Introduksjon. Vi begynner med å se på hvordan vi kan få kattefiguren til å rotere. Soloball Introduksjon Scratch Introduksjon Vi skal nå lære hvordan vi kan lage et enkelt ballspill med Scratch. I soloball skal du styre katten som kontrollerer ballen, slik at ballen ikke går i nettet.

Detaljer

Litt om rør og rørbehandling. Her er noen regler som vil hjelpe deg å finne den beste plasseringen.

Litt om rør og rørbehandling. Her er noen regler som vil hjelpe deg å finne den beste plasseringen. Litt om rør og rørbehandling En av de enkleste og beste måtene å få rørene til å spille bedre, er rett og slett ved å finne rett plassering på munnstykket. Riktig rørplassering kan gjøre en dramatisk forskjell

Detaljer

Obligatorisk oppgavesett 2 MAT1120 H16

Obligatorisk oppgavesett 2 MAT1120 H16 Obligatorisk oppgavesett 2 MAT1120 H16 Innleveringsfrist: torsdag 03.11.2016, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner

Detaljer

Dimensjonalitetsproblemer (3)

Dimensjonalitetsproblemer (3) Dimensjonalitetsproblemer Dimensjonalitetsproblemer (3) Ved å inkludere flere uavhengige egenskaper der µ i1 6= µ i2 i egenskapsvektoren vil r 2 øke og P(e) avta, slik at: P d+1 (e) apple P d (e). Dette

Detaljer

Forkurs i kvantitative metoder ILP 2019

Forkurs i kvantitative metoder ILP 2019 Forkurs i kvantitative metoder ILP 2019 Dag 2. Forkurs som arbeidskrav for kvantitativ deler av PED-3055 Gregor Maxwell og Bent-Cato Hustad Førsteamanuensis i spesialpedagogikk Hva lærte vi i går? Hva

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på

Detaljer

MINIPROSJEKTOPPGAVE. (våren 2012)

MINIPROSJEKTOPPGAVE. (våren 2012) Avdeling for informasjonsteknologi HALDEN Høgskolen i Østfold Thomas Gabrielsen Fag: INTELLIGENTE SYSTEMER (IAD32005) MINIPROSJEKTOPPGAVE (våren 2012) Tidsfrister: Utdelt: mandag 27. februar. Innleveringsfrist:

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Underveiseksamen i: STK1000 Innføring i anvendt statistikk. Eksamensdag: Fredag 13.10.2006. Tid for eksamen: Kl. 09.00 11.00. Tillatte hjelpemidler:

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals

Hva er nytt i GeoGebra 3.0? Sigbjørn Hals Hva er nytt i GeoGebra 3.0? Sigbjørn Hals 1 Dersom du vil ha en fullstendig oversikt over det som er nytt i versjon 3.0, kan du gå til denne nettsida: http://www.geogebra.org/static/geogebra_release_notes_prerelease.txt

Detaljer

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet

Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektoppgave i Ingeniørfaglig yrkesutøving og arbeidsmetoder - orientering om prosjektet Prosjektet består av 4 arbeidspakker: (versjon 14.09.2017) Prosjektet er et gruppearbeid og alle arbeidspakkene

Detaljer

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato:

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato: SENSORVEILEDNING Emnekode: IRF2004 Emnenavn: Matematikk 2 Eksamensform: Skriftlig Dato: 26..8 Faglærer(e): Tore August Kro Eventuelt: Dette er revidert versjon av sensorveiledningen. Denne sensorveiledningen

Detaljer

Lærerveiledning - Straffespark

Lærerveiledning - Straffespark Lærerveiledning - Straffespark Skrevet av: Geir Arne Hjelle Kurs: Scratch Tema: Blokkbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 1.-4. klasse, 5.-7. klasse, 8.-10. klasse Om oppgaven I denne

Detaljer

Elektronikk med vitensenteret

Elektronikk med vitensenteret Nordnorsk Vitensenter Elektronikk med vitensenteret Lag en løgndetektor Loddevarianten Heðinn Gunhildrud Bygg en løgndetektor Huden i hendene våre svetter mikroskopiske svettedråper når kroppen vår stresser

Detaljer

Eksamen MAT1015 Matematikk 2P Va ren 2015

Eksamen MAT1015 Matematikk 2P Va ren 2015 Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1010 Objektorientert programmering Eksamensdag: 6. juni 2013 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.)

Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Utførelse av programmer, funksjoner og synlighet av variabler (Matl.) Av Jo Skjermo (basert på Alf Inge Wang sin versjon om JSP). 1. Utførelse av kode i kommando/kalkulatormodus Et dataprogram består oftest

Detaljer

Utvalgte løsninger oppgavesamlingen

Utvalgte løsninger oppgavesamlingen P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Snitthøyden i 1910 lir 170,0 171, 4 170,7. I 1970 lir den 177,1 179, 4 178,3. Med som antall år etter 1900 og y som snitthøyden i entimeter

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2

TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 3 Versjon 1.2 07.03.2013 I dette oppgavesettet skal vi se på ulike måter fouriertransformasjonen anvendes i praksis. Fokus er på støyfjerning i signaler. I tillegg

Detaljer

Overvåking av transportbånd

Overvåking av transportbånd Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 5 Overvåking av transportbånd Sarpsborg 03.02.2005 05.02.05 Ny oppgave Log LMN Log,

Detaljer

Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010

Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010 Transistorkretser Laboratorieeksperimenter realfagseminar Sjøkrigsskolen 15. November 2010 1. Referanser http://wild-bohemian.com/electronics/flasher.html http://www.creative-science.org.uk/transistor.html

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene:

Høgskolen i Oslo og Akershus. a) Finn den deriverte av disse funksjonene: b) Finn disse ubestemte integralene: c) Finn disse bestemte integralene: Oppgave 1 a) Finn den deriverte av disse funksjonene: i) f(x) = x x 2 + 1 ii) g(x) = ln x sin x x 2 b) Finn disse ubestemte integralene: i) (2x + ) dx ii) 6 cos(x) sin 5 (x) dx c) Finn disse bestemte integralene:

Detaljer

Ridge regresjon og lasso notat til STK2120

Ridge regresjon og lasso notat til STK2120 Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle

Detaljer

Eksamen 2P MAT1015 Vår 2012 Løsning

Eksamen 2P MAT1015 Vår 2012 Løsning Eksamen 2P MAT1015 Vår 2012 Oppgave 1 (14 poeng) a) 20 elever blir spurt om hvor mange datamaskiner de har hjemme. Se tabellen ovenfor. Finn variasjonsbredden, typetallet, medianen og gjennomsnittet. Variasjonsbredden

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

Eksamensoppgave i ST0103 Brukerkurs i statistikk

Eksamensoppgave i ST0103 Brukerkurs i statistikk Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

MINIPROSJEKTOPPGAVE. (våren 2007)

MINIPROSJEKTOPPGAVE. (våren 2007) Avdeling for informasjonsteknologi HALDEN Høgskolen i Østfold Thanh Sang Tran Fag: INTELLIGENTE SYSTEMER (IAD32005) MINIPROSJEKTOPPGAVE (våren 2007) Tidsfrister: Utdelt: onsdag 13. mars. Innleveringsfrist:

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Snake Expert Scratch PDF

Snake Expert Scratch PDF Snake Expert Scratch PDF Introduksjon En eller annen variant av Snake har eksistert på nesten alle personlige datamaskiner helt siden slutten av 1970-tallet. Ekstra populært ble spillet da det dukket opp

Detaljer

TFEM, METODE OG INSTRUMENTBESKRIVELSE

TFEM, METODE OG INSTRUMENTBESKRIVELSE TFEM, METODE OG INSTRUMENTBESKRIVELSE 1 Metodebeskrivelse TFEM, (Time and Frequency Electro Magnetic) er en elektromagnetisk metode hvor målingene foregår både i tidsdomenet og i frekvensdomenet. Med NGUs

Detaljer

PROSJEKTOPPGAVE. Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer. Fag IAD32005 Intelligente systemer

PROSJEKTOPPGAVE. Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer. Fag IAD32005 Intelligente systemer Høgskolen i Østfold Avdeling for informasjonsteknologi Intelligente systemer Fag IAD32005 Intelligente systemer PROSJEKTOPPGAVE Halden, Remmen 25.02.2011 Fil : Skrevet ut av : sl 25.02.2011 13:13:00 Antall

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs MatLab: Filbehandling Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Læringsmål/pensum Filbehandling Mål: Forstå

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

LØSNINGSFORSLAG 2006

LØSNINGSFORSLAG 2006 LØSNINGSFORSLAG 2006 Side 1 Oppgave 1), vekt 12.5% 1a) Bruk Karnaughdiagram for å forenkle følgende funksjon: Y = a b c d + a b c d + a b cd + a bc d + a bc d + ab c d + ab cd ab cd 00 01 11 10 00 1 1

Detaljer

Sentralmål og spredningsmål

Sentralmål og spredningsmål Sentralmål og spredningsmål av Peer Andersen Peer Andersen 2014 Sentralmål og spredningsmål i statistikk I dette notatet skal vi se på de viktigste momentene om sentralmål og spredningsmål slik de blir

Detaljer