Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover."

Transkript

1 Lyd Hva er lyd? Sinuser, frekvenser, tidssignaler Hvordan representere lydsignaler matematisk? Litt praktisk informasjon Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lydeksemplene som avspilles på denne forelesningen ligger som WAV-filer på ~inf1040/www_docs/lydfiler/lyd1.wav... lyd23.wav. Du kan høre den med f.eks. programmet play. Hvordan illustrere lydsignaler grafisk? INF1040-Lyd1-1 INF1040-Lyd1-2 Litt fysikk Vi hører lyd når lufttrykket mot trommehinnene varierer på bestemte måter. Lyd som en funksjon av tid Trykkbølger lyd1.wav Trykkbølgene omdannes til nervesignaler. Mer på f.eks. Her ser vi hvordan lydstyrken eller amplituden endrer seg med tiden Legg merke til hvor raskt signalet endrer seg (millisekunder) INF1040-Lyd1-3 INF1040-Lyd1-4

2 Fra lyd til signaler Lydstyrke Lydbølgene er kontinuerlige (analoge) signaler. Hvor sterk en lyd er bestemmes av dens amplitude, som sier hvor sterke lufttrykk-variasjonene er. For å kunne lagre lyd på en CD eller PC, må vi representere signalet digitalt. Dette gjøres ved å sample det analoge signalet 10 ms av et musikkstykke Trykk-amplituden P måles i Pascal (Pa=N/m 2, 1 atm =101,325 Pa) Enheten intensitet I brukes også. I er energi/sekund/areal (J/s/m 2 =W/m 2 ). Sammenhengen mellom I og P er også avhengig av massetettheten og lydhastigheten : I = P 2 /(2ρv) (plukke ut verdier med bestemte intervaller). Signalets lydstyrke på et bestemt tidspunkt må også kvantiseres til et endelig antall ulike verdier. lyd2.wav Nye begreper: Analog til digital konvertering Sampling Kvantisering Vi bruker ofte enheten decibel (db) istedet. Verdien i db beregnes fra trykk-amplituden P eller fra intensiteten I ved (formelen er for spesielt interesserte): 2 P P I L p = 20log = 10log = 10log P0 P0 I0 log 10 (100)=2 fordi 100=10*10=10 2 Decibel kommer av enheten bel, oppkalt etter Alexander Graham Bell INF1040-Lyd1-5 INF1040-Lyd1-6 Mer om lydstyrke Noen eksempler på lydstyrke P 0 er satt til 2*10-5 N/m 2, som er nedre terskel for hva øret kan høre. Vi hører altså ned mot 0 db. Kilde Terskel for hørsel ved 1 khz (TH) Intensitet (W/m 2 ) 1*10-12 Intensitet i db 0 db #ganger sterkere enn TH Decibel måler hvor sterk en lyd er i forhold til den svakeste lyden vi kan høre. Blader som rasler i vinden Hvisking 1* * db 20 db =10 2 Hvis en lyd har styrke 10 db, er den 10 1 ganger sterkere enn den svakeste lyden vi kan høre. Hvis en lyd har styrke 40 db og en annen 60 db, er den andre lyden 10 2 ganger sterkere enn den første (i intensitet). Normal tale Rushtrafikk Støvsuger Symfoniorkester Walkman på max., hørselskader over lengre tid Rockekonserter (ved scenen) 1*10-6 1*10-5 1*10-4 1*10-3 1*10-2 1* db 70 db 80 db 98 db 100 db 110 db = Smerteterskel 1* db Jagerfly (takeoff) 1* db Trommehinnen sprekker 1* db INF1040-Lyd1-7 INF1040-Lyd1-8

3 Lydens svingninger Hvordan lyden høres ut, avhenger av hvor raske svingninger den inneholder. Lyd som sinusoider Sinusoider er et felles navn på funksjonene cos(x) og sin(x). Antall svingninger per sekund er frekvensen til en tone, og måles i Hz ( s -1 ) Vi hører lufttrykk som svinger mellom 18 ganger per sekund og ganger per sekund, og med et lydtrykk på fra 1/ til 1/ av atmosfæretrykket Hørselen svekkes med alderen. Svekkelsen er ikke lik for alle frekvenser. De ca endepunktene for hørenervene slites / knekker. Periodisk signal: et periodisk signal gjentar seg etter en viss tid. Sinus og cosinus-funksjoner beskriver periodiske signaler. De brukes til å forklare hva slags informasjon et lydsignal inneholder. Vi trenger å lære litt om sinusoider for å skjønne hvordan lydsignaler lagres. De fleste lyder består av flere rene toner med ulik frekvens. Øret er veldig følsomt for forandringer i frekvens (0.3% endring). INF1040-Lyd1-9 INF1040-Lyd1-10 Funksjonen cos(x) Funksjonen cos(x) cos(x) er kjent fra geometrien for å måle sidene i en trekant. Da er x en vinkel som måles i radianer (0 til 2π) eller grader (0-360 ). cos(x) svinger mellom 1 og -1 når x varierer mellom 0 og 2π, og den svinger på samme måte når x varierer mellom 2π og 4π. 10 cm x Vinkel x finnes ved at cos(x)=8/10 Da blir x=cos -1 (8/10)=36.8 Hvis x måles i radianer, og x ligger mellom 0 og 10 ser funksjonen cos(x) slik ut: 8 cm cos(x) svinger mellom 1 og -1 når x varierer mellom 0 og 2π i radianer. x = 0 cos(x)=1 x = π/2 (90 ) cos(x)=0 vinkel x x = π (180 ) cos(x)=-1 x = 3π/2 (270 ) cos(x)=0 x = 2π (360 ) cos(x)=1 og dette gjentar seg når x roterer en gang til cos(x) x INF1040-Lyd1-11 INF1040-Lyd1-12

4 cos(t) for tidssignaler Ser på signaler som varierer med tiden t. Vi er interessert i antall svingninger pr. sekund. cos(2πft) Ser vi på cos(2πft) der f er et heltall (f.eks. 10), får vi noe som svinger f ganger (10 ganger) pr. sekund: Dette forteller oss frekvensen til signalet. Et triks vi bruker er å se på funksjonen cos(2πt). Dette gir oss noe som svinger fra 1 til -1 og tilbake til 1 i løpet av 1 sekund. f er antall svingninger pr. sekund og kalles frekvens. Frekvensen f måles i hertz (Hz). (1 khz er 1000 svingninger i sekundet). INF1040-Lyd1-13 INF1040-Lyd1-14 Periode Funksjonen cos(2π10t) gjentar seg selv 10 ganger pr. sekund. 1 periode Amplitude Amplituden forteller hvor sterk lyden er, dvs. lydstyrken. x(t) = A cos(2πf 0 t) 1 periode A=10 Perioden kaller vi for T. Vi kan regne ut frekvensen som f = 1/T, eller T = 1/f. For å finne perioden ser vi på avstanden i sekunder mellom to punkter på samme sted i svingningen, for eksempel der funksjoner går fra negative til positive verdier (krysser null). Her kan vi måle at avstanden, dvs. perioden er 0.1 sekund. Amplituden A til en cosinus-funksjon er maksimumsverdien den kan ha. INF1040-Lyd1-15 INF1040-Lyd1-16

5 Faseforskyvning (bare for de viderekomne) Frekvens til cosinussignaler x(t) = A cos(2πf 0 t), t er tiden, f 0 er frekvensen: x(t) = A cos(2πf 0 t + φ) φ cos(2πt) f 0 =1 cos(2π*0.5*t) f 0 =0.5 cos(2π*0.7*t) f 0 =0.7 φ faseforskyvning (er startpunktet forskjellig fra 0) Høy frekvens: varierer fort Lav frekvens: varierer langsomt INF1040-Lyd1-17 INF1040-Lyd1-18 Funksjonen sin(x) sin(x) er kjent fra geometrien for å måle sidene i en trekant. Da er x en vinkel som måles i radianer (0 til 2π) eller grader (0-360 ). 10 cm x 6 cm Vinkel x finnes ved at sin(x)=6/10 Da blir x=sin -1 (6/10)=36.8 sin(x) svinger fra 0 til 1 til 0 til -1 til 0 når x varierer mellom 0 og 2π i radianer. Hva er forskjellen på sin(2πft) og cos(2πft)? cos(2π5t) starter på 1 og varierer 5 ganger i sekundet. sin(2π5t) starter på 0 og varierer 5 ganger i sekundet. Bare startpunktet, dvs. faseforskyvningen, er forskjellig. vinkel x x = 0 sin(x)=0 x = π/2 (90 ) sin(x)=1 x = π (180 ) sin(x)=0 x = 3π/2 (270 ) sin(x)=-1 x = 2π (360 ) sin(x)=0 og dette gjentar seg når x roterer en gang til INF1040-Lyd1-19 INF1040-Lyd1-20

6 Lyd fra cosinuser En kammertone (A) har frekvens på 440 Hz: cos(2*pi*440*t) fra t=0 til t=0.01 En A som er en oktav lavere har frekvens 220 Hz: cos(2*pi*220*t) fra t=0 til t=0.01 lyd4.wav Vi kan lage andre toner ved f=440*2 (key-49)/12, der key er tonenr. fra keybord (49 for kammertonen) A-dur skala lages ved key=37,39,41,42,44,46,48,49 Se lyd3.wav Das wohl temperierte clavier Sound (OLE2) lyd5.wav Toner og frekvenser Tonens lydstyrke bestemmes av dens amplitude. Øret vårt hører godt forskjeller i frekvens (hvor hurtig en tone med samme styrke svinger), og vi hører lett forskjell på ulike toner (og om to instrumenter ikke er stemt høres det surt ut). En A på piano og klarinett høres likevel helt forskjellig ut: Tonen har samme frekvens, 440Hz, dvs. de har en bølgeform som gjentar seg 440 ganger i sekundet. Innen hver periode har lyden fra et piano og lyden fra en klarinett ulik kurve. Tonen fra et piano består ikke bare av en ren sinus, men er satt sammen av mange sinuser med ulik frekvens og periode. Ulike instrumenter har også ulik ansats, romklang, etterklang etc. lyd6.wav INF1040-Lyd1-21 INF1040-Lyd1-22 Hvordan kan vi se hvilke frekvenser en lyd inneholder? Vi trenger et verktøy for å se hvilke frekvenskomponenter en lyd inneholder. Hvordan ser frekvensspekteret ut? Topper i plottet viser de dominerende frekvensene Til dette bruker vi frekvensspekteret. Frekvensspekteret er basert på å ta Fourier-transformen til lydsignalet Fourier-transformen dekomponerer lydsignalet i ulike basis sinus- og cosinuskomponenter med ulik frekvens og ser hvor sterkt bidrag hver komponent har. Amplitude Frekvens Spekteret er alltid symmetrisk Et rent cosinus-signal med frekvens 3000 HZ INF1040-Lyd1-23 INF1040-Lyd1-24

7 Noen lyder og frekvensspektere Toner og overtoner En tone i musikken består av: lyd7.wav lyd8.wav en grunn tone (fundamental frekvens) overtoner - harmonisk relaterte frekvenser (høyere frekvenser satt sammen som k*fundamental frekvens) Grunnfrekvens 1 Hz (sin(2πt)) lyd11.wav Messinginstrument Klarinett 1. harmoniske komponent 2 Hz (sin(2π2t)) 2. harmoniske komponent 3 Hz (sin(2π3t)) lyd12.wav lyd13.wav lyd14.wav lyd9.wav lyd10.wav a1*cos(2*pi*300t)+a2*cos(2*pi*500t) Klokke INF1040-Lyd1-25 INF1040-Lyd1-26 Andre lyder En kompleks lyd som øret ikke oppfatter som en bestemt tone består av mange ulike frekvenskomponenter, og frekvensene er ikke harmonisk relaterte. En skarp lyd som f.eks. et dunk inneholder mange frekvenskomponenter Vi trenger mange komponenter for å beskrive noe som endrer seg fort, f.eks. at en gjenstand faller i gulvet. Tale inneholder vanligvis færre frekvenser enn musikk (mindre båndbredde). Men lyden endrer seg med tiden? Spektrene på forrige side var bare et utplukk på et tidspunkt. Med verktøyene dere skal bruke på øvingstimene vil dere se spektrene endre seg når lyden endrer seg. INF1040-Lyd1-27 INF1040-Lyd1-28

8 Hva om vi summerer cosinuser? Hva om vi summerer cosinuser? Vi hørte at lyd16.wav cos(2*pi*300*t)+cos(2*pi*500*t) A-dur treklang cos(2π220t)+cos(2π292t)+cos(2π330t) ga oss to toner samtidig. lyd15.wav lyd17.wav Hvis vi lager et signal Alle tonene i en skala samtidig N f ( t) = Ai cos(2πfit ) i= 1 der A i er amplituden/styrken til komponent i og f i er frekvensen til komponent i så kan vi lage mange lyder hvis N er stor. lyd18.wav En tone pluss støy (hvit støy - et jevnt sus av støy på mange frekvenser) INF1040-Lyd1-29 INF1040-Lyd1-30 Sinus Kan vi bruke andre bølgeformer enn sinus og cosinus? Lyd fra cosinus lyd19.wav cos() lyd20.wav Frekvensspekteret Spekteret INF1040-Lyd1-31 INF1040-Lyd1-32

9 Lyd fra firkantpuls Lyd fra trekantpuls Firkantpuls lyd21.wav Trekantpuls lyd22.wav Spekteret til firkantpuls Spekteret til trekantpuls INF1040-Lyd1-33 INF1040-Lyd1-34 Generelle lydsignaler Et resultat fra Fourier-teori sier at vi kan uttrykke et vilkårlig periodisk signal som en endelig sum av sinussignaler med ulik frekvens. Hver komponent av sinussignalet vektes med en tilsvarende amplitide A i (A i beskriver hvor sterk komponent i er sammenlinget med de andre komponentene). Alle lydsignaler vi hører, kan beskrives som signaler som inneholder ulik frekvensinformasjon (frekvensene kan endre seg med tiden, men i et kort øyeblikk hører vi en lyd som består av svingninger med et antall ulike frekvenser). Ved å se på frekvensspekteret til signalet, kan vi se hvilke frekvenser det inneholder (lærer mer om dette i INF 2400 Stikkordet er Digital Signalbehandling). frekvensinformasjon Dette kan hjelpe oss når vi skal representere lyd INF1040-Lyd1-35 Frekvensinnhold og båndbredde Alle lydsignaler kan betraktes som å inneholde et endelig sett av ulike frekvenser. Begrepet båndbredde referer til ulike frekvensbånd. Hvis vi skal spille signaler opp til Hz må vi ha en båndbredde på Hz. Dette må vi ta hensyn til når vi skal lagre lyd f.eks. på en CD. Vi kan også utnytte informasjon om at mennesket hører frekvenser mellom 20 og Hz. Ulike lydsignaler inneholder ulike bånd av frekvensspekteret: Musikk, f.eks. orkestermusikk, setter store krav til båndbredde ( Hz). Tale ligger på max. 3 khz. Øret mest følsomt mellom 1 og 4 khz. Dette brukes i telefonoverføringer (max Hz). Det mest sentrale er den maksimale frekvensen vi ønsker å representere. INF1040-Lyd1-36

Introduksjon til lyd. Litt praktisk informasjon. Det ytre øret. Fra lydbølger til nerveimpulser

Introduksjon til lyd. Litt praktisk informasjon. Det ytre øret. Fra lydbølger til nerveimpulser Introduksjon til lyd Temaer i dag: Hvordan kan vi høre lyd? Lyd og lydbølger Sinuser, frekvenser, tidssignaler Litt praktisk informasjon Husk øretelefoner på øvelsestimene denne uken og en stund framover.

Detaljer

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd.

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd. Foreleser: INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?

Detaljer

INF Digital representasjon : Introduksjon til lyd

INF Digital representasjon : Introduksjon til lyd INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Foreleser: Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?

Detaljer

Introduksjon til lyd. Litt praktisk informasjon. Fra lydbølger til nerveimpulser. Det ytre øret

Introduksjon til lyd. Litt praktisk informasjon. Fra lydbølger til nerveimpulser. Det ytre øret Introduksjon til lyd Temaer i dag: Hvordan kan vi høre lyd? Lyd og lydbølger Amplitude, frekvens, periode og bølgelengde Hvordan representere lydsignaler matematisk? Hvordan illustrere lydsignaler grafisk?

Detaljer

Introduksjon til lyd

Introduksjon til lyd Introduksjon til lyd Temaer i dag: Hvordan kan vi høre lyd? Lyd og lydbølger Amplitude, frekvens, periode og bølgelengde Hvordan representere lydsignaler matematisk? Hvordan illustrere lydsignaler grafisk?

Detaljer

Introduksjon til lyd. Litt praktisk informasjon. Fra lydbølger til nerveimpulser. Det ytre øret

Introduksjon til lyd. Litt praktisk informasjon. Fra lydbølger til nerveimpulser. Det ytre øret Introduksjon til lyd Temaer i dag: Hvordan kan vi høre lyd? Lyd og lydbølger Amplitude, frekvens, periode og bølgelengde Hvordan representere lydsignaler matematisk? Hvordan illustrere lydsignaler grafisk?

Detaljer

INF Digital representasjon : Introduksjon til lyd

INF Digital representasjon : Introduksjon til lyd INF1040 - Digital representasjon 24.09.2008: Introduksjon til lyd Foreleser: Fritz Albregtsen Kontakt: fritz@ifi.uio.no, 911 63 005 Det blir en del stoff per forelesning Er det matematikk eller praktisk

Detaljer

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF Digital representasjon : Introduksjon til lyd.

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF Digital representasjon : Introduksjon til lyd. Foreleser: INF1040 - Digital representasjon 24.09.2008: Introduksjon til lyd Fritz Albregtsen Kontakt: fritz@ifi.uio.no, 911 63 005 Det blir en del stoff per forelesning Er det matematikk eller praktisk

Detaljer

Introduksjon til lyd

Introduksjon til lyd Introduksjon til lyd Temaer i dag: Hvordan kan vi høre lyd? Lyd og lydbølger Amplitude, frekvens, periode og bølgelengde Hvordan representere lydsignaler matematisk? Hvordan illustrere lydsignaler grafisk?

Detaljer

Sampling, kvantisering og lagring av lyd

Sampling, kvantisering og lagring av lyd Litteratur : Temaer i dag: Neste uke : Sampling, kvantisering og lagring av lyd Cyganski kap 11-12 Merk: trykkfeilliste legges på web-siden Sampling av lyd Kvantisering av lyd Avspilling av samplet og

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

Løsningsforslag til kapittel 10 - Lydbølger

Løsningsforslag til kapittel 10 - Lydbølger Løsningsforslag til kapittel - Lydbølger Oppgaver til plenum: Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet: Vi betegner

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige

Detaljer

Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd

Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd Sampling og samplingsrate Hvis vi har et lydsignal som inneholder frekvenser fra 100 til 500 Hz, hvilken samplingsrate og samplingsintervall

Detaljer

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11)

INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) INF 1040 høsten 2008: Oppgavesett 9 Sampling og kvantisering av lyd (kapittel 11) Fasitoppgaver Denne seksjonen inneholder innledende oppgaver hvor det finnes en enkel fasit bakerst i oppgavesettet. Det

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

Tema nr 2: Analog eller digital, kontinuerlig eller diskret. Eksempel på ulike båndbredder. Frekvensinnhold og båndbredde. Analog

Tema nr 2: Analog eller digital, kontinuerlig eller diskret. Eksempel på ulike båndbredder. Frekvensinnhold og båndbredde. Analog INF 1040 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Frekvensinnhold og båndbredde 2. Analog eller digital, kontinuerlig eller diskret 3. Sampling, kvantisering, digitalisering 4. Nyquist-Shannon

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

Lyd på datamaskiner. Knut Mørken. November 17, 2008

Lyd på datamaskiner. Knut Mørken. November 17, 2008 Lyd på datamaskiner Knut Mørken November 17, 2008 1 Digital lyd Svært mye av informasjonen som omgir oss i dag er lagret digitalt og blir overført digitalt. Vi har digital lyd på CD-plater, på internet

Detaljer

Fouriersyntese av lyd

Fouriersyntese av lyd Fouriersyntese av lyd Hensikt Laboppsettet vist p a bildet er kjent under navnet Fouriersyntese av lyd. Hensikten med oppsettet er a erfare hvordan ulike kombinasjoner av en grunntone og dens overharmoniske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

Lydproduksjon. t.no. ww ww.hin. Forelesning 1 Introduksjon Lyd og bølger MMT205 - F1 1

Lydproduksjon. t.no. ww ww.hin. Forelesning 1 Introduksjon Lyd og bølger MMT205 - F1 1 MMT205 Lydproduksjon t.no ww ww.hin Forelesning 1 Introduksjon Lyd og bølger MMT205 - F1 1 F1 - Agenda Introduksjon Lyd og bølger Lyd fysiske karakteristika - parametre MMT205 - F1 2 MMT205 Lydproduksjon

Detaljer

Det fysiske laget, del 2

Det fysiske laget, del 2 Det fysiske laget, del 2 Kjell Åge Bringsrud (med foiler fra Pål Spilling) 1 Pulsforvrengning gjennom mediet Linje g(t) innsignal Dempning A(f) v(t) utsignal A(f) 0% 50% Frekvensresponsen Ideell Frekv.

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Oblig 1 FYS2130. Elling Hauge-Iversen

Oblig 1 FYS2130. Elling Hauge-Iversen Oblig 1 FYS2130 Elling Hauge-Iversen February 9, 2009 Oppgave 1 For å estimere kvalitetsfaktoren til basilarmembranen for ulike frekvenser har jeg laget et program som generer et rent sinussignal. Ideen

Detaljer

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital INF 14 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Analog eller digital, kontinuerlig eller diskret 2. Sampling, kvantisering, digitalisering 3. Nyquist-Shannon teoremet 4. Oversampling,

Detaljer

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples 0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk

Detaljer

INF 1040 Sampling, kvantisering og lagring av lyd

INF 1040 Sampling, kvantisering og lagring av lyd INF 1040 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Analog eller digital, kontinuerlig eller diskret 2. Sampling, kvantisering, digitalisering 3. Nyquist-Shannon teoremet 4. Oversampling,

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer

Forelesning nr.4 INF 1411 Elektroniske systemer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,

Detaljer

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.

Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender. Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling

Detaljer

Kap 7: Digital it prosessering av analoge signaler

Kap 7: Digital it prosessering av analoge signaler Kap 7: Digital it prosessering av analoge signaler Sverre Holm Temaer 1. Sampling og rekonstruksjon 2. Finne spektret til samplet signal 3. Gjenvinning med forskjellige interpolasjoner 4. Nullinnsetting

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital

Analog. INF 1040 Sampling, kvantisering og lagring av lyd. Kontinuerlig. Digital INF 14 Sampling, kvantisering og lagring av lyd Temaer i dag : 1 Analog eller digital, kontinuerlig eller diskret 2 Sampling, kvantisering, digitalisering 3 Nyquist-Shannon teoremet 4 Oversampling, undersampling,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,

Detaljer

Digitalisering av lyd

Digitalisering av lyd Digitalisering av lyd Denne øvelsen er basert på materiale som Tore A. Danielsen utviklet som del av sin masteroppgave i fysikkdidaktikk. Arnt Inge Vistnes har også bidratt med ideer og diskusjoner. Hva

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-213 Lars Kristian Henriksen UiO 18. februar 215 Diskusjonsoppgaver: Oppgave 1 Hvordan kan vi ved å ta utgangspunkt i et frekvensspekter lage en syntstisk lyd? Vil en slik

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Et hørselsproblem (1)

Et hørselsproblem (1) Et hørselsproblem (1) I videoen går audiografen gjennom flere prosesser for å diagnostisere hvilken type hørselstap det kan være. Konsultasjon: Spør pasienten om hva han selv mener, og hva han kan ha problemer

Detaljer

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER

LABORATORIEØVELSE B FYS LINEÆR KRETSELEKTRONIKK 1. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER FYS322 - LINEÆR KRETSELEKTRONIKK LABORATORIEØVELSE B. LAPLACE TRANSFORMASJON 2. AC-RESPONS OG BODEPLOT 3. WIENBROFILTER Maris Tali(maristal) maristal@student.matnat. uio.no Eino Juhani Oltedal(einojo)

Detaljer

INF1040 Digital representasjon

INF1040 Digital representasjon INF1040 Digital representasjon av tekster, tall, former, lyd, bilder og video Forelesere: Gerhard Skagestein Fritz Albregtsen Første forelesning: Onsdag 23. august 12:15 14:00, Sophus Lies Auditorium.

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6. NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk

Detaljer

En innføring i Fourrierrekker

En innføring i Fourrierrekker En innføring i Fourrierrekker Matematiske metoder 2 Kristian Wråli, Sivert Ringstad, Mathias Hedberg 0 Innholdsfortegnelse Kapittel Side 1 Innledning 2 1.0 Introduksjon 2 1.1 Maple 2 2 Teori 7 2.0 Introduksjon

Detaljer

INF 1040 Sampling, kvantisering og lagring av lyd

INF 1040 Sampling, kvantisering og lagring av lyd INF 1040 Sampling, kvantisering og lagring av lyd Temaer i dag : 1. Analog eller digital, kontinuerlig eller diskret 2. Sampling, kvantisering, digitalisering 3. Nyquist-Shannon teoremet 4. Oversampling,

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 2/3

TMA Kræsjkurs i Matlab. Oppgavesett 2/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 2/3 28.02.2013 Oppgave 0: Bruk av fftshift og ifftshift Når du bruker fft i Matlab flyttes frekvensene over midten av spekteret, slik at får du ut frekvensdata

Detaljer

INF3470/4470 Digital signalbehandling. Introduksjon Sverre Holm

INF3470/4470 Digital signalbehandling. Introduksjon Sverre Holm INF3470/4470 Digital signalbehandling Introduksjon Sverre Holm Frekvensinnhold i tale og musikk Utgangspunkt: 800 Hz Adobe Audition, filtre Bedre og bedre: 800 Hz 1 oktav: 400-1600 2 oktaver: 200-3200

Detaljer

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum

SPEKTALANALYSATORER. Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum SPEKTALANALYSATORER Fig. 1 Illustrasjon av sammenhengen tidsfunksjon - frekvensspektrum Vi har ofte nytte av å kunne veksle mellom de to grafiske presentasjonsmåtene for et elektrisk signal, tidsfunksjon

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

Kapittel 3. Basisbånd demodulering/deteksjon. Avsnitt 3.1-3.2

Kapittel 3. Basisbånd demodulering/deteksjon. Avsnitt 3.1-3.2 Kapittel 3 Basisbånd demodulering/deteksjon Avsnitt 3.1-3.2 Basisbånd demodulering & deteksjon Basisbånd: Ingen bærebølgefrekvens Også en modell med ideell oppkonvertering av frekvens i senderen, og ideell

Detaljer

UTVIDET TEST AV PROGRAM

UTVIDET TEST AV PROGRAM Tid : 16.2.99, kl. 153 Til : Ole Meyer og prøvenemda Fra : Anders Sak : Fagprøve våren 1999, utvidet test av program Denne oppgaven var tre-delt. UTVIDET TEST AV PROGRAM Først skulle jeg påtrykke AD-kortet

Detaljer

Figur 2 viser spektrumet til signalet fra oppgave 1 med 20% pulsbredde. Merk at mydaqs spektrumsanalysator 2

Figur 2 viser spektrumet til signalet fra oppgave 1 med 20% pulsbredde. Merk at mydaqs spektrumsanalysator 2 Oppgave 1 teoretisk del; 2 poeng Figur 1 viser et stolpediagram fra MatLab der c k er plottet for a = 0.2, a = 0.5 og a = 0.01. V 0 = 1 for alle plottene. Oppgave 1 praktisk del; 2 poeng Figur 2 viser

Detaljer

Lydproduksjon. t.no. ww ww.hin. Forelesning 9 Signalbehandling (processing) og effekter MMT205 - F9 1

Lydproduksjon. t.no. ww ww.hin. Forelesning 9 Signalbehandling (processing) og effekter MMT205 - F9 1 MMT205 Lydproduksjon t.no ww ww.hin Forelesning 9 Signalbehandling (processing) og effekter MMT205 - F9 1 F9 - Innhold MMT205 - F9 2 Introduksjon Signalbehandlingsmetoder: Akustiske/mekaniske, eks. mikrofonplassering,

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF igital representasjon Oppsummering 8 del II Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I - W/m,tilSmerteterskelen, W/m Oftest angir vi ikke absolutt lydintensitet

Detaljer

INF1040 Digital representasjon Oppsummering 2008 del II

INF1040 Digital representasjon Oppsummering 2008 del II INF040 Digital representasjon Oppsummering 2008 del II Fritz Albregtsen INF040-Oppsum-FA- Lydintensitet Vi kan høre lyder over et stort omfang av intensiteter: fra høreterskelen, I 0 = 0-2 W/m 2,tilSmerteterskelen,0

Detaljer

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP

Sampling av bilder. Romlig oppløsning, eksempler. INF Ukens temaer. Hovedsakelig fra kap. 2.4 i DIP INF 2310 22.01.2008 Ukens temaer Hovedsakelig fra kap. 2.4 i DIP Romlig oppløsning og sampling av bilder Kvantisering Introduksjon til pikselmanipulasjon i Matlab (i morgen på onsdagstimen) Naturen er

Detaljer

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2

INF 1040 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 INF 40 Digital representasjon 2007 Utkast til - Obligatorisk oppgave nr 2 Utlevering: onsdag 17. oktober 2007, kl. 17:00 Innlevering: fredag 2. november 2007, kl. 23:59:59 Formaliteter Besvarelsen skal

Detaljer

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2 Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur

Detaljer

Grunnleggende om lyd.

Grunnleggende om lyd. GODE RÅD OM LYD! Grunnleggende om lyd. Hva er støy? Tønnes A. Ognedal 31.01.2017 Lyd vs. Støy Støy?! Lyd! Støy er lyd som oppleves - Uønsket - Ubehagelig - Lydnivå? Lyd: Kommunikasjon Informasjon Musikk

Detaljer

NS 8178: Akustiske kriterier for rom og lokaler til musikkutøvelse (Akustikk i lokaler for øvelse og fremføring)

NS 8178: Akustiske kriterier for rom og lokaler til musikkutøvelse (Akustikk i lokaler for øvelse og fremføring) NS 8178: Akustiske kriterier for rom og lokaler til musikkutøvelse (Akustikk i lokaler for øvelse og fremføring) Kristian E. Meisingset Sivilingeniør, musiker, NAMK-styrerepr. Deltaker i arbeidsgruppen

Detaljer

Møre og Romsdal Fylkeskommune Søre Sunnmøre Tannhelsedistrikt v/gunnar Eikrem Røysbakken 3 6100 VOLDA Ørsta 13.08.13

Møre og Romsdal Fylkeskommune Søre Sunnmøre Tannhelsedistrikt v/gunnar Eikrem Røysbakken 3 6100 VOLDA Ørsta 13.08.13 Møre og Romsdal Fylkeskommune Søre Sunnmøre Tannhelsedistrikt v/gunnar Eikrem Røysbakken 3 6100 VOLDA Ørsta 13.08.13 Kopi: Verneombud Tilbakemelding etter hørselstester og støykartlegging 2013 Denne rapporten

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 3

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 3 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel.a cos + + sin + = cos cos sin sin + sin cos + cos sin = cos sin + sin + cos = cos + = cos = cos b sin + = sin sin sin = sin = sin = sin =,7 =,7 +

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser og forklarende

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Kapittel 2. Fourier analyse. 2.1 Fourier transform*

Kapittel 2. Fourier analyse. 2.1 Fourier transform* Kapittel 2 Fourier analyse [Copyright for kapittelet, tekst og figurer: Arnt Inge Vistnes.] 2.1 Fourier transform* Vi kan fremstille svingefenomener, slik vi hittil har gjort, ved å angi en tidsvariabel

Detaljer

LYDFORSTERKERANLEGG, del 1

LYDFORSTERKERANLEGG, del 1 1 LYDFORSTERKERANLEGG, del 1 EDT 2006 Petter Brækken 2 3 Innholdsfortegnelse 1. Høyttalere 1.1 Driftseffekt - følsomhet - virkningsgrad - impedans - egenresonans - dempningsfaktor 1.2 Det elektrodynamiske

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : Eksamens dag : Tid for eksamen : Oppgavesettet er på 6 sider Vedlegg : Tillatte hjelpemidler : FYS1210-Elektronikk med prosjektoppgaver

Detaljer

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv.

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv. 6.1 BEGREPER L SNSKRVE 1 6.1 BEGREPER L SNSKRVE il sinuskurven i figur 6.1.1 er det noen definisjoner som blir brukt i vekselstrømmen. Figur 6.1.1 (V) mid t (s) min Halvperiode Periode PERODE (s) En periode

Detaljer

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A : Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:

Detaljer

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling

Temaer i dag. Mer om romlig oppløsning. Optisk avbildning. INF 2310 Digital bildebehandling Temaer i dag INF 2310 Digital bildebehandling Forelesning II Sampling og kvantisering Fritz Albregtsen Romlig oppløsning i bilder Sampling av bilder Kvantisering i bilder Avstandsmål i bilder Pensum: Kap.

Detaljer

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens

Introduksjon/motivasjon I. FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe. Introduksjon/motivasjon II. Bakgrunn: Frekvens Introduksjon/motivasjon I INF2310 Digital bildebehandling FORELESNING 8 FOURIER-TRANSFORM I Ole Marius Hoel Rindal, foiler av Andreas Kleppe I dag: Grunnlaget Grunnlaget og intuisjonen i Fourier-analyse

Detaljer

Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400.

Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400. Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høsten 2007 Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400. LØSNINGSFORSLAG 1) En masse er festet til ei fjær og utfører udempede

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik

Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon

Detaljer

Notat om trigonometriske funksjoner

Notat om trigonometriske funksjoner Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks

Detaljer

En innføring i Fouriertransformasjon

En innføring i Fouriertransformasjon En innføring i Fouriertransformasjon Matematiske metoder 2 Kristian Wråli, Sivert Ringstad, Mathias Hedberg 0 Innholdsfortegnelse Kapittel Side 0 Innholdsfortegnelse 1 1 Innledning 2 2 Teori 2 2.0 Introduksjon

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Hva er støy? Støy defineres som UØNSKET lyd. Lyd er en sanseopplevelse knyttet til en subjektiv tolking av et rent fysisk fenomen:

Hva er støy? Støy defineres som UØNSKET lyd. Lyd er en sanseopplevelse knyttet til en subjektiv tolking av et rent fysisk fenomen: Lyd teori I påfølgende sider er det forsøkt på en enkel og lettfattelig måte å få frem viktige argumenter, og teorien bak støybehandling. Utredning, behandling av formler etc. er ikke tatt med, for ikke

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

PROSJEKT I ELEKTRISITET OG MAGNETISME SIGNALANALYSE / LYDSYNTESE

PROSJEKT I ELEKTRISITET OG MAGNETISME SIGNALANALYSE / LYDSYNTESE PROSJEKT I ELEKTRISITET OG MAGNETISME SIGNALANALYSE / LYDSYNTESE AV KIM VIDAR BAKKEN VÅREN 2004 INNHOLDFORTEGNELSE: Sammendrag 2 1. Innledning 3 2. Bakgrunnsteori 3 2.1 Lyd 3 2.2 Digital lyd 4 2.3 Bruk

Detaljer

Prosjektplan. Innføring. Andreas Kleppe Prosjektplan for INF3460 V INF3460 våren 2009 Prosjekt i digital signalbehandling og akustikk

Prosjektplan. Innføring. Andreas Kleppe Prosjektplan for INF3460 V INF3460 våren 2009 Prosjekt i digital signalbehandling og akustikk INF3460 våren 2009 Prosjekt i digital signalbehandling og akustikk Prosjektplan Innføring Lyd er kontinuerlige lufttrykkvariasjoner i tid (som sprer seg i rom). Med unntak av noen spesialtilfeller kan

Detaljer

Trigonometriske funksjoner (notat til MA0003)

Trigonometriske funksjoner (notat til MA0003) Trigonometriske funksjoner (notat til MA0003) 0. mars 2005 Radianer Gitt et punkt A på en sirkel med radius og sentrum O. La punktet P v flytte seg fra punktet A slik at det beveger seg langs en sirkelbue

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Introduksjon og grunnleggende begreper

Introduksjon og grunnleggende begreper Introduksjon og grunnleggende begreper Innhold VEKTORER... NYTTIGE RELASJONER...2 IMPEDANS...3 OVERFØRINGSFUNKSJONER...6 SIGNALER...7 Harmonisk signal og aritmetiske rekker...8 Oktaver og geometriske rekker...9

Detaljer

Mikrofoner. MUS2253 Musikkproduksjon II

Mikrofoner. MUS2253 Musikkproduksjon II MUS2253 Musikkproduksjon II Mikrofoner Foreleser: Hans T. Zeiner-Henriksen e-mail: h.t.zeiner-henriksen@imv.uio.no Tlf.: Mob.: 48059723 Kontor: 22854857 Opptak av lyd Registrering av variasjoner i lufttrykket

Detaljer

KAPITTEL 5 Funksjoner og kontinuitet

KAPITTEL 5 Funksjoner og kontinuitet KAPITTEL 5 Funksjoner og kontinuitet I dette kapitlet skal vi se litt på hva kontinuitet betyr for numeriske beregninger og plotting av funksjoner, og vi skal se at skjæringssetningen gir opphav til en

Detaljer