Noen diskrete sannsynlighetsfordelinger. (utarbeidet av Mette Langaas), TMA4245 V2007

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Noen diskrete sannsynlighetsfordelinger. (utarbeidet av Mette Langaas), TMA4245 V2007"

Transkript

1 Kapittel 5 Noen diskrete sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Diskret uniform fordeling Diskret uniform fordeling: Hvis den stokastiske variabelen X antar verdiene x 1, x 2,..., x k med lik sannsynlighet så er X diskret uniformt fordelt med fordeling f(x; k) = 1 k, x = x 1, x 2,..., x k Histogram of x Density x TEO 5.1: µ = E(X) = k i=1 x i k og σ 2 = Var(X) = k i=1 (x i µ) 2 k

2 3 Midtveiseksamen oppg. 1a eksamen Høsten 2004 ble det i TMA4240 bli innført tellende skriftlig midtveiseksamen. Denne ble gitt i form av en flervalgsoppgave ( multiple choice ) bestående av n = 20 spørsmål som alle har m svaralternativer. Studentene måtte velge et svaralternativ for hvert spørsmål (det var ikke lov å svare blankt på et spørsmål). For å få karakter bedre enn F (36%) måtte minst 8 spørsmål være korrekt besvart. Studenten Ole vurderte om han skal la være å lese til midtveiseksamen og heller velge tilfeldige svaralternativer på alle spørsmålene (han ville da ikke engang lese oppgaveteksten før han svarte). Før han bestemte seg, ba han en studiekamerat regne ut hvor stor sannsynlighet han da hadde for få bedre enn F. 4 Midtveiseksamen (forts.) La X være antall korrekte svar Ole fikk på de n = 20 spørsmålene. Forklar hvorfor vi kan anta at X er binomisk fordelt med n = 20 og p = 1 m. Finn sannsynligheten for at Ole fikk bedre enn F hvis han valgte å svare tilfeldig på alle spørsmålene, dvs. P(X 8), når antall svaralternativer er m = 2. Finn også P(X 8) for m = 4 og m = 5. Hva blir forventet antall korrekte svar, dvs. E(X), når m = 2, 4, 5?

3 5 5.3 Binomisk fordeling Bernoulli prosess: Et Bernoulli eksperiment (prosess) har følgende egenskaper: 1. Eksperimentet består av n gjentatte forsøk. 2. Hvert forsøk undersøker man om en hendelse A inntreffer (suksess) eller ikke (A =fiasko). 3. Sannsynligheten for hendelsen A (suksess) kaller vi p, og denne er den samme fra forsøk til forsøk. 4. De n gjentatte forsøkene er uavhengige av hverandre. Dermed: et Bernoulli eksperiment kan resultere i hendelsen A (suksess) med sannsynlighet p og komplementet av hendelsen A (A =fiasko) med sannsynlighet 1 p Binomisk fordeling (forts.) La den stokastiske variablen X være antall ganger hendelsen A (suksess) inntreffer på de n uavhengige forsøkene. Sannsynlighetsfordelingen til X kalles binomisk fordeling og er gitt ved ( ) n f(x) = b(x; n, p) = p x (1 p) (n x), x = 0, 1,..., n x Kumulativ fordeling: F(x) = P(X x) finnes ved tabelloppslag. Eksempler: antall defekte enheter i industriell prosess antall pasienter med positiv effekt av medisin

4 7 Binomisk fordeling forts. n = 10, p = 0.2 n = 10, p = 0.5 n = 10, p = 0.7 Bin(n=10, p=0.2) Bin(n=10, p=0.5) Bin(n=10, p=0.7) Bin(n=10, p=0.2) Bin(n=10, p=0.5) Bin(n=10, p=0.7) TEO 5.2: Forventning og varians i binomisk fordeling b(x; n, p) er µ = E(X) = np og σ 2 = Var(X) = np(1 p) 8 Urne med kuler [v1] Definisjon: p = antall røde kuler antall kuler Prosedyre: Utfør n ganger trekk en kule tilfeldig registrer fargen legg kula tilbake Da er antallet røde kuler binomisk fordelt.

5 9 Urne med kuler [v2] Definisjoner: p 1 = antall hvite kuler antall kuler p 2 = antall sorte kuler antall kuler p 3 = antall blå kuler antall kuler p 4 = antall røde kuler antall kuler Prosedyre: Utfør n ganger trekk en kule tilfeldig og registrer fargen legg kula tilbake Da er antallet hvite kuler og antallet sorte kuler og antallet blå kuler og antallet røde kuler multinomisk fordelt. 10 Multinomisk fordeling Multinomisk fordeling: Et forsøk kan resultere i k mulige utfall A 1, A 2,..., A k, med sannsynligheter p 1, p 2,..., p k. La de stokastiske variablene X 1, X 2,..., X k representere antall ganger utfallene A 1, A 2,..., A k opptrer i n uavhengige forsøk. Sannsynlighetsfordelingen til X 1, X 2,..., X k kalles multinomisk fordeling og er gitt ved ( ) n f(x 1, x 2,..., x k ; p 1, p 2,..., p k, n) = p x 1 1 x 1, x 2,..., x px 2 2 px k k k med k i=1 x i = n, k i=1 p i = 1 og ( n x 1,x 2,...,x k ) = n! x 1!x 2! x k!.

6 11 Urne med kuler [v3] Definisjon: N=antall kuler k =antall røde kuler Prosedyre: Utfør n ganger trekk en kule tilfeldig registrer fargen legg kula til side Da er antallet røde kuler hypergeometrisk fordelt. 12 Antall fisker i dammen Vi vil anslå størrelsen, N, av en dyreart innenfor et område (metode fra 1896). Gjøre to undersøkelser: 1. finner og merker k individ, og slipper dem ut igjen. 2. finner så n individ, og x av disse er merket. Lukket populasjon: ingen død, fødsel, innflytting, utflytting. Andelen merkede i de to utvalgene bør da være like, bestandsanslag: k N = x n N = k n x X er hypergeometisk fordelt med parametere N, k, n.

7 Hypergeometrisk fordeling Hypergeometrisk eksperiment: har følgende egenskaper: 1. Vi har en mengde av N enheter. Av de N enhetene så klassifiseres k som hendelsen A (suksess) og N k som komplementet av hendelsen A (A =fiasko). 2. Et tilfeldig utvalg av størrelse n trekkes uten tilbakelegging fra de N enhetene. Antallet ganger, X, som hendelsen A (suksess) inntreffer er da en hypergeometrisk stokastisk variabel Hypergeometrisk fordeling (forts.) Hypergeometrisk fordeling: En hypergeometrisk stokastisk variabel, X, angir antallet ganger hendelsen A (suksess) inntreffer i et hypergeometrisk eksperiment der n enheter trekkes fra N enheter, der k av de N enheter er klassifisert som hendelsen A (suksess) og N k som komplementet av hendelsen A (A =fiasko). Sannsynlighetsfordelingen til X kalles en hypergeometrisk fordeling og er gitt ved f(x) = h(x; N, n, k) = ( k N k ) x)( n x ( N x = 0, 1, 2,..., n n)

8 15 Hypergeometrisk fordeling (forts.) N = 10, k = 5, n = 5 N = 12, k = 5, n = 5 N = 100, k = 50, n = 40 Hyper(N=10, k=5, n= 5) Hyper(N=12, k=5, n= 5) Hyper(N=100, k=50, n= 40) Hyper(N=10, k=5, n= 5) Hyper(N=12, k=5, n= 5) Hyper(N=100, k=50, n= 40) TEO 5.3: Forventning og varians i den hypergeometriske fordelingen h(x; N, n, k) er µ = E(X) = nk N og σ2 = Var(X) = N n N 1 n k N (1 k N ) 16 Hypergeometisk og binomisk fordeling Hvis n er liten i forhold til N ( n N 0.05), så vil sammensetningen av de N enhetene endres lite under trekningen. Dermed kan k N sees på som den binomiske sannsynligheten p. Dermed kan binomisk fordeling sees på som en stor populasjon versjon av hypergeometrisk fordeling.

9 17 Urne med kuler [v4] Definisjoner: N=antall kuler a 1 =antall hvite kuler a 2 =antall sorte kuler a 3 =antall blå kuler a 4 =antall røde kuler Prosedyre: Utfør n ganger trekk en kule tilfeldig og registrer fargen legg kula til side. Da er antallet hvite kuler antallet sorte kuler antallet blå kuler antallet røde kuler multivariat hypergeometrisk fordelt. 18 Multivariabel hypergeometrisk fordeling Multivariabelt hypergeometrisk eksperiment: har følgende egenskaper: 1. Et tilfeldig utvalg av størrelse n trekkes uten tilbakelegging fra N enheter. 2. Av de N enhetene så klassifiseres a 1 i cellen A 1, a 2 i cellen A 2,..., a k i cellen A k. 3. Av de n enhetene så klassifiseres x 1 i cellen A 1, x 2 i cellen A 2,..., a k i cellen A k. Sannsynlighetsfordelingen til X 1, X 2,..., X k kalles multivariabel hypergeometrisk fordeling f(x 1, x 2,..., x k ; a 1, a 2,..., a k, n) = ( a1 x n ) )( a2 ) x 1 x 2 ( an ( N n) med k i=1 x i = n og k i=1 a i = N.

10 19 Kakelotteri 300 lodd fordelt på 3 farger (100 av hver) 9 vinnerlodd, 3 av hver farge (33,66,99) Vi kjøper 5 lodd. To strategier: trekk 5 lodd blant de 300 loddene trekk 5 lodd av samme farge Hvilken strategi gir størst sjanse for å vinne? 20 Binomisk og negativ binomisk Forsøksrekke, registrerer A (suksess) eller A (fiasko) i hvert forsøk. P(A) = p i hvert forsøk. Forsøkene er uavhengige. Binomisk Bestemmer totalt antall forsøk, n, på forhånd. X =antall suksesser på n forsøk Negativ binomisk Antall forsøk er ikke bestemt på forhånd, men eksperimentet avsluttes når k suksesser er oppnådd. X =antall forsøk til k suksesser er oppnådd.

11 Negativ binomisk og geometrisk fordeling Kabel: En kabel består av mange uavhengige wires. Kabelen kan overbelastes og P(en wire ødelegges)=p. Ved overlast er det lite sannsynlig at mer enn en wire skades. Kabelen må skiftes når 3 av wirene har feilet. X =antall overbelastninger som kabelen tåler før den må skiftes. Maskin: En maskin feiler med sannsynlighet p hver time. Når den feiler bli den minimalt reparert (dvs. den blir så god som akkurat før den feilet). Når maskinen har feilet k ganger byttes den ut. X=antall timer til maskinen byttes ut. Russisk rulett: En revolver har 6 kammer. En kule settes i ett kammer og kolben snurres. Første person sikter og trekker av. Hvis kulen ikke var i kammeret går revolveren videre til neste mann, som snurrer kolben, sikter og trekker av. X =antall forsøk til k te (helst første) mann finner kulen. 22 Negativ binomisk fordeling Negativ binomisk eksperiment: utføres som et binomisk eksperiment med den forskjell at forsøkene gjentas til et fast antall suksesser inntreffer. Dvs. 1. Eksperimentet består av et på forhånd ukjent antall forsøk. 2. Hvert forsøk: inntreffer hendelsen A (suksess) eller ikke (fiasko). 3. Sannsynligheten for hendelsen A (suksess), P(A) = p, er den samme fra forsøk til forsøk. 4. De gjentatte forsøkene er uavhengige av hverandre. 5. Eksperimentet avsluttet når et bestemt antall, k, av hendelsen A (suksesser) har inntruffet.

12 23 Negativ binomisk fordeling Negativ binomisk fordeling: Vi ser på gjentatte uavhengige forsøk som kan resultere i hendelsen A (suksess) med sannsynlighet p og komplementet til hendelsen A (A =fiasko) med sannsynlighet 1 p. La den stokastiske variabelen X angi antall forsøk som må gjøres for at hendelsen A (suksess) inntreffer k ganger. X har da en negativ binomisk fordeling med sannsynlighet ( ) x 1 b (x; k, p) = p k (1 p) (x k) k 1 for x = k, k + 1, k + 2, Negativ binomisk fordeling (forts.) k = 5, p = 0.1 k = 5, p = 0.5 k = 5, p = 0.8 Negbin(k=5, p=0.1) Negbin(k=5, p=0.5) Negbin(k=5, p=0.8) Negbin(k=5, p=0.1) Negbin(k=5, p=0.5) Negbin(k=5, p=0.8)

13 25 Urne med kuler [v5] Definisjon: p = antall røde kuler antall kuler Prosedyre: Utfør inntil k røde kuler er trukket trekk en kule tilfeldig registrer fargen legg kula tilbake Da er antallet trekninger negativ binomisk fordelt. 26 Geometrisk fordeling Negativ binomisk med k=1: g(x; p) = p(1 p) (x 1) x = 1, 2, 3,... TEO 5.4: Forventning og varians i den geometriske fordelingen g(x; p) er µ = E(X) = 1 p og σ 2 = Var(X) = 1 p p 2 p = 0.1 p = 0.5 p = 0.8 Negbin(k=1, p=0.1) Negbin(k=1, p=0.5) Negbin(k=1, p=0.8) Negbin(k=1, p=0.1) Negbin(k=1, p=0.5) Negbin(k=1, 4 p=0.8)

14 27 Telefonsalg av billettar A-HA skal ha konsert på Lerkendal, og billetter kan kjøpes ved å ringe et bestemt telefonnummer. X = # forsøk inntil en kommer gjennom første gang. X g(x; p), p = P(komme gjennom) = Hva er forventet antall ganger en må ringe for å komme gjennom? 2. Hva er sannsynligheten for å komme gjennom dersom en orker å ringe maksimalt 50 ganger? 3. Dersom en har ringt 50 ganger utan å komme gjennom, hva er sannsynligheten for å komme gjennom i neste forsøk? 28 Pyramidespillet, eksamen Des2004 #2a Ole Petter har blitt spurt om å bli med i et pyramidespill (betale inn en viss sum penger, og deretter rekruttere nye personer). Så vil pengene begynne å strømme inn... Ifølge personen som spurte Ole Petter, vil en person som blir spurt om å delta i pyramidespillet ha en sannsynlighet p = 1/3 for å bli med, så det å få fem personer til å bli med, skal ikke være noe problem. Forenkling: La den stokastiske variabelen X angi antall personer Ole Petter må spørre, inntil den første personen blir med i pyramidespillet. Under hvilke antagelser vil X være geometrisk fordelt? I resten av oppgaven kan du anta at X er geometrisk fordelt med punktsannsynlighet f(x) = p(1 p) (x 1) for x = 1, 2,...

15 29 Pyramidespillet, eksamen Des2004 #2a Dersom Ole Petter bestemmer seg for å delta i pyramidespillet, hva er forventet antall personer han må spørre for å få med en ny person, når p = 1/3? Hva er sannsynligheten for at han må spørre flere enn fem personer for å få en person til å delta i pyramidespillet, når p = 1/3? Poisson prosess og fordeling Poisson prosess: Vi ser på om en hendelse inntreffer eller ikke innenfor et intervall eller en region. 1. Antall hendelser som inntreffer i et intervall eller i en spesifisert region, er uavhengig av antall hendelser som inntreffer i ethvert annet disjunkt intervall eller region. 2. Sannsynligheten for at en enkelt hendelse inntreffer innenfor et lite intervall eller liten region, er proporsjonal med lengden av intervallet eller størrelsen på regionen, og er ikke avhengig av antallet hendelser som inntreffer utenfor intervallet eller regionen. 3. Sannsynligheten for at mer enn en hendelse skal inntreffe innenfor et kort intervall eller liten region er negliserbar.

16 Poisson prosess og fordeling Poisson fordeling: La den stokastiske variabelen X representere antallet hendelser i et gitt intervall eller region av størrelse t. Sannsynlighetsfordelingen til X er p(x; λt) = (λt)x x! e λt x = 0, 1, 2,... hvor λ er gjennomsnittlig antall hendelser per enhet intervall eller region (og e = ). 32 Binomisk- og Poissonfordeling Utledning : Poisson P(X = x) kan utledes ved å dele opp tidsaksen i n bittesmå intervaller av lengde t = t n. Da har vi en binomisk situasjon i n uavhengige intervaller. Lar vi n får vi Poisson P(X = x). Bevis A27 side 713. TEO 5.6 La X være en binomisk stokastisk variabel med sannsynlighetsfordeling b(x; n, p). Når n, p 0, og µ = np holdes konstant, så er b(x; n, p) p(x;µ)

17 33 Poisson fordeling (forts.) µ = λt = 0.5 µ = λt = 2 µ = λt = 10 Pois(lambda=0.5) Pois(lambda=2) Pois(lambda=10) Pois(lambda=0.5) Pois(lambda=2) Pois(lambda=10) TEO 5.45 Forventning og varians i Poissonfordelingen p(x; λt) er begge λt. 34 Poisson situasjoner Alpinulykker (eksamen 5.august 2004, oppgave 3) Sikkerhet er en av de høyest prioriterte oppgavene i norske alpinanlegg. Vi antar at antall alpinulykker som krever legebehandling i alpinanlegget Alpinfjellet i en periode på t skidager, X, er Poisson-fordelt med forventningsverdi µ = λt. Her er λ skadefrekvens pr skidag og t er eksponeringstid i antall skidager. En skidag er definert som en person i alpinanlegget en hel dag. Jordskjelv α-partikler bakgrunnsstråling. Trykkfeil pr. bokside. Antall studenter som sovner pr. forelesningstime (?) Antall aviser som selges ved et utsalgssted.

18 36 Optimal leveranse av Dagbladet Daglig selges rundt eksemplarer av Dagbladet hos tilsammen utsalgssteder (tall fra 2000). Dagbladet ønsker å bruke statistiske modeller for å betemme hvor mange eksemplarer som skal leveres til hvert utsalgssted hver salgsdag for at avisen skal tjene mest. Leveres for mange eksemplarer blir noen ikke solgt og er en unødvendig kostnad. Leveres for få eksemplarer gå utsalgsstedet utsolgt og avisen taper salgsinntekter. Økonomer i avisen kan angi en kostnad eksemplar som ikke blir solgt og for eksemplarer som kunne vært solgt (tapt salg). Dette kan våre avhengig av ukedag, type utsalgssted og andre størrelser.

19 37 Optimal leveranse av Dagbladet Kan vi finne fordelingen til antall aviser som kan selges på hvert salgssted hver salgsdag kan vi optimalt bestemme hvor mange aviser som skal leveres til hvert salgssted hver salgssdag. Et slikt system er implementert ved Dagbladet! 38 Fordelingen til avissalg Dagens salg av Dagbladet i en dagligvareforretning på City Syd (idealisert). 1. Ser vi på salget i to disjunkte tidsintervall så er disse uavhengige. (Har mange aviser og går ikke utsolgt.) 2. Kundene ankommer butikken fordelt over hele åpningstiden. Noen av kundene kjøper Dagbladet, og vi har en underliggende intensitet for kjøp på λ. 3. To salg er ikke fullstendig sammenfallende på tidsaksen. Salget er Poisson-fordelt med forventing λt. Pois(lambda=50)

20 39 Fordelingen til avissalg (forts.) Forventet salg er avhengig av utsalgssted og salgsdag. Klar effekt: Ukedag Sesong, helligdager, høytider, spesielle hendelser, trender over lengre perioder. Type utsalgssted, geografi. Basert på data tilbake i tid (her 3.5 år) kan man anslå forventet salg for hver utsalgssted og hver salgsdag frem i tid. Leveranse kan så bestemmes som en percentil i Poisson-fordelingen med denne forventningen. 40 Fordelingen til avissalg (forts.) Pois(lambda=50) Metoden anbefaler leveringstall på en normaldag, og skaleres i forhold til dagens forside (totalopplaget). Problemer med Poisson: faste kunder, busslast på fjellet.

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma.

Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. TMA4240 Statistikk H2010 Kapittel 6: Kontinuerlige sannsynlighetsfordelinger 6.4-5.7: Normalfordelingen, normalapproksimasjon, eksponensial og gamma. Mette Langaas Foreleses mandag 27. september 2010 2

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse

2 Om å lære matematikk og litt om vurdering av måloppnåelse/kompetanse Fagdag 5-3MX Innhold: 1. Tilbakemelding på første termin 2. Om å lære matematikk og vurdering 3. Sannsynlighetsfordelinger (7.2), forventning og varians (7.3, 7.4): Gjennomgåelse 4. Oppgaver 1 Tilbakemelding

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Statistikk 1 kapittel 3

Statistikk 1 kapittel 3 Statistikk 1 kapittel 3 Nico Keilman ECON 2130 Vår 2014 Kapittel 3 Sannsynlighetsregning Formål: å kvantifisere usikkerhet ved hjelp av sannsynligheter Viktige begreper stokastisk forsøk: et forsøk der

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Øving 7: Statistikk for trafikkingeniører

Øving 7: Statistikk for trafikkingeniører NTNU Veg og samferdsel EVU kurs Trafikkteknikk Oslo / høsten 2007 Øving 7: Statistikk for trafikkingeniører Det anbefales generelt å arbeide i grupper med 2-3 studenter i hver gruppe. Bruk gjerne Excel

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige univsitet Institutt for matematiske fag ST0103 Brukkurs i statistikk Høst 2014 Løsningsforslag Øving 6 5.2 Antall sprukne pøls X binomialfordelt med n 8 og p 0.2, og

Detaljer

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år?

b) Hva er sannsynligheten for at re tilfeldig utvalgte bilmotorer alle har en levetid på minst 17 år? Oppgave 1 Levetiden T til en bestemt type bilmotor er normalfordelt med forventning µ = 15 år og standardavvik σ = 3 år. a) Vis at sannsynligheten for at en tilfeldig utvalgt bilmotor har en levetid på

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I

Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I Notater til forelesning i Sannsynlighetsregning SK 101 Matematikk i grunnskolen I 4 Kombinatorikk Vi må lære tellemetoder når valgtrær, som vi brukte tidligere, blir for store og vanskelig å håndtere.

Detaljer

FORMELSAMLING STATISTIKK, HiG

FORMELSAMLING STATISTIKK, HiG Høgskolen i Gjøvik Avdeling for ingeniørfag Versjon fra mai 2007 FORMELSAMLING STATISTIKK, HiG Hans Petter Hornæs hans.hornaes@hig.no ISSN:??????? Innledning. Denne formelsamlingen er skrevet for bruk

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG Løsningsforlag statistikk, FO4N, AMMT, HiST.årskurs, 7. desember 006 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr:

Detaljer

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.

b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs. Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Universitetet i Agder. Fakultet for teknologi og realfag EKSAMEN

Universitetet i Agder. Fakultet for teknologi og realfag EKSAMEN Universitetet i Agder Fakultet for teknologi og realfag EKSAMEN Emnekode: MA-149 (Statistikkdelen) Emnenavn: Statistikk og matematikkdidaktisk forskning Dato: 22. november 2011 Varighet: 5 timer Tall på

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Matteknologisk utdanning

Matteknologisk utdanning Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 5) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato: 30. mai 2007

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk)

10.4 Sannsynligheter ved flere i utvalget (kombinatorikk) 10. er ved flere i utvalget (kombinatorikk) Så langt i framstillingen har vi diskutert den språklige siden, den matematiske tolkningen av sannsynlighetsbegrepet og presentert ulike modeller som kan anvendes

Detaljer

Kontinuerlige stokastiske variable.

Kontinuerlige stokastiske variable. Kontinuerlige stokastiske variable. I forelesning har vi sett på en kontinuerlig stokastisk variabel med sannsynlighetstetthet f() =2 og sannsynlighetsfunksjon F () = 2 for. Der hadde jeg et reint regneteknisk

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk.

Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Forelesning 6, kapittel 3. : 3.6: Kombinatorikk. Kombinatorikk betyr her: Formler for opptelling av antall kombinasjoner. Generelt er denne grenen av matematikk videre, og omfatter blant annet grafteori.

Detaljer

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik.

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Løsningsforslag utsatt eksamen Matematikk 2, 4MX25-10 (GLU2 5-10) 5.desember 2013 Oppgave 1 a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Ved å bruke tangentlinja i punktet

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 4: Sannsynlighetsregning Bo Lindqvist Institutt for matematiske fag 2 Sannsynligheten for en hendelse (4.1) Sannsynligheten for en hendelse sier oss hvor ofte

Detaljer

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler

Prøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten

Detaljer

Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling

Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling www.nr.no Modellering av fotballkamper og blodgiving ved hjelp av Poisson og binomisk fordeling Magne Aldrin, Norsk Regnesentral og Universitetet i Oslo UiO april 2011 Norsk Regnesentral Forskningsinstitutt

Detaljer

Litt mer om eksponensialfordelingen

Litt mer om eksponensialfordelingen Litt mer om eksponensialfordelingen og Poissonprosesser. Dekkes av 5.6, 6.6, 6.7 og det som står under. Eksponensialfordelingen Så langt har vi lært at det finnes to parametriseringer av eksponensialfordelingen

Detaljer

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten.

DEL 1. Uten hjelpemidler. a) Forklar at likningssystemet nedenfor kan brukes til å regne ut sidene i trekanten. DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningene a) 6 4 0 b) lg lg lg(4 ) Oppgave ( poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC og CB. C P 10 A 0

Detaljer

Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret.

Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret. Eksamen 7. mai 2014 Eksamenstid 4 timar IR201812 Statistikk og Simulering Skrivne og trykte hjelpemiddel samt kalkulator er tillate. Ta med all mellomrekning som trengst for å grunngje svaret. Oppgåve

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Forskjellige typer utvalg

Forskjellige typer utvalg Forskjellige typer utvalg Det skal deles ut tre pakker til en gruppe på seks. Pakkene inneholder en TV, en PC og en mobiltelefon. På hvor mange måter kan pakkene deles ut? Utdelingen skal være tilfeldig

Detaljer

Faktor - en eksamensavis utgitt av ECONnect

Faktor - en eksamensavis utgitt av ECONnect Faktor - en eksamensavis utgitt av ECONnect Løsningsforslag: SØK1004 Statistikk for økonomer Eksamen: Våren 009 Antall sider: 16 SØK1004 - Løsningsforslag Om ECONnect: ECONnect er en frivillig studentorganisasjon

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9

Tilfeldig utvalg [8.1] U.i.f. Statistisk inferens. Kapittel 8 og 9 3 Tilfeldig utvalg [8.1] DEF 8.1: En populasjon er mengden av observasjoner som vi ønsker å studere, dvs. alle observasjoner det er mulig å gjøre. (Dersom elementene i populasjonen har fordeling f(x),

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Godkjent april 2014 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Profesjons- og yrkesmål Dette studiet er beregnet for lærere som har godkjent lærerutdanning med innslag

Detaljer

Bud-guiden. Lykke til på jobb! Hilsen oss i Dørsalg. En god start på arbeidslivet!

Bud-guiden. Lykke til på jobb! Hilsen oss i Dørsalg. En god start på arbeidslivet! Bud-guiden Som Dagblad-bud bidrar du til at folk kan lese Dagbladet Helgeavisa i helgen. Det er en viktig jobb. Uten deg er alt arbeidet som er lagt ned i å lage avisa forgjeves, for en avis trenger lesere.

Detaljer

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9

år i 1 2 3 4 5 6 7 8 9 alder x i 37 38 39 40 41 42 43 44 45 tid y i 45.54 41.38 42.50 38.80 41.26 37.20 38.19 38.05 37.45 i=1 (x i x) 2 = 60, 9 TMA424 Statistikk Vår 214 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II Oppgave 1 Matlabkoden linearreg.m, tilgjengelig fra emnets hjemmeside, utfører

Detaljer

Eksamensoppgave i SØK1004 - Statistikk for økonomer

Eksamensoppgave i SØK1004 - Statistikk for økonomer Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i emnet STK4500 v2009: Finans og forsikring Prosjektoppgave, utlevering onsdag 27. mai kl. 9.00, innleveringsfrist fredag 29. mai

Detaljer

Standardavvik. Varians. Utfallsrom (sannsynlighet)

Standardavvik. Varians. Utfallsrom (sannsynlighet) Standardavvik Median Varians n = partall Utfallsrom (sannsynlighet) Persentil er verdien definert ved at minst 100% * p% lav observasjonene ligger nedenfor denne verdien En stokatisk variabel X er en funksjon

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

En kort innføring i sannsynlighetsregning

En kort innføring i sannsynlighetsregning En kort innføring i sannsynlighetsregning Harald Goldstein Sosialøkonomisk institutt Januar 2000 Innhold 1 Innledning 1 2 Begivenheter og sannsynlighet 4 2.1 Matematiskbeskrivelseavbegivenheter... 4 2.2

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING Onsdag 1. juni 2005 Tid: 09:00 14:00

EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING Onsdag 1. juni 2005 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Nynorsk Fagleg kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I ST2101 STOKASTISK MODELLERING OG SIMULERING

Detaljer

SELG LODD! ARRANGER ET LOTTERI TJEN PENGER TIL Å BRUKE PÅ NOE MORSOMT OG NYTTIG. www.ringen.no www.aspelund.no

SELG LODD! ARRANGER ET LOTTERI TJEN PENGER TIL Å BRUKE PÅ NOE MORSOMT OG NYTTIG. www.ringen.no www.aspelund.no SELG LODD! ARRANGER ET LOTTERI TJEN PENGER TIL Å BRUKE PÅ NOE MORSOMT OG NYTTIG Ringen Forlag og K. Aspelund har solgt lodd og loddprodukter til foreninger, lag, korps og skoler i en årrekke. Vi kjenner

Detaljer

EKSAMEN I EMNE TMA4245 STATISTIKK

EKSAMEN I EMNE TMA4245 STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Bokmål Faglig kontakt under eksamen: John Tyssedal 73 59 35 34/ 41 64 53 76 Jo Eidsvik 73 59 01 53/ 90 12 74 72

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning H ØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN KLASSAR FOA 172 Statistikk : alle DATO : 5. desember 2007 TAL pa OPPGAVER TAL pa SIDER VEDLEGG HJELPEMIDDEL TID MALFORM FAGLÆRARAR : 4 : 3 (inkludert

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker.

e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. e) Styret i en ungdomsklubb består av to jenter og fire gutter. To fra styret er invitert til et møte i kommunen for å legge fram klubbens ønsker. Bestem sannsynligheten for at én gutt og én jente møter

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer