INF1820: Ordklassetagging

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF1820: Ordklassetagging"

Transkript

1 NF1820: Ordklassetagging NF1820: Ordklassetagging Arne Skjærholt 6. mars NF1820: Ordklassetagging Arne Skjærholt 6. mars

2 NF1820: Ordklassetagging Ordklassetagging Never gonna give you up Never gonna let you down Problemet: Gitt en inputsekvens av ord, hva er den riktige sekvensen tagger for ordene? RB: adverb; MD+TO: modal with infinitival to; VB: verb base form; PRP: personal pronoun; RP: particle Never gonna give you up Never gonna let you down

3 NF1820: Ordklassetagging Ordklassetagging Never/RB gonna/md+to give/vb you/prp up/rp Never/RB gonna/md+to let/vb you/prp down/rp Problemet: Gitt en inputsekvens av ord, hva er den riktige sekvensen tagger for ordene? RB: adverb; MD+TO: modal with infinitival to; VB: verb base form; PRP: personal pronoun; RP: particle Never/RB gonna/md+to give/vb you/prp up/rp Never/RB gonna/md+to let/vb you/prp down/rp

4 NF1820: Ordklassetagging Ordklassetagging Flertydighet De fleste ord er entydige: 11,5% av ordtyper er flertydige. Men 40% av tokens er flertydige. Det vil si: ord som forekommer ofte er oftere flertydige enn mindre vanlige ord. Men ikke alle betydninger er like vanlige, og vanlige i denne sammenhengen tilsvarer sannsynlighet. Dette kommer vi til å benytte oss av. Flertydighet

5 NF1820: Ordklassetagging Ordklassetagging Ordklassekriterier Litt repetisjon: Ordklasseinndelingen organiserer alle ord, slik at et ord tilhører nøyaktig én ordklasse (det er en taksonomi) styrt av visse kriterier. Morfologisk: hare/haren vs. redd/*redd-en Syntaktisk: en redd hare/redd for ilden vs. *en redd/*hare for ilden Semantisk: hare: dyr, levende vesen; redd: egenskap Ordklassekriterier

6 NF1820: Ordklassetagging Ordklassetagging Ordklassekriterier Formelle/morfologiske Funksjonelle/syntaktiske Betydningsmessige/semantiske Litt repetisjon: Ordklasseinndelingen organiserer alle ord, slik at et ord tilhører nøyaktig én ordklasse (det er en taksonomi) styrt av visse kriterier. Morfologisk: hare/haren vs. redd/*redd-en Syntaktisk: en redd hare/redd for ilden vs. *en redd/*hare for ilden Semantisk: hare: dyr, levende vesen; redd: egenskap Ordklassekriterier Formelle/morfologiske Funksjonelle/syntaktiske Betydningsmessige/semantiske

7 NF1820: Ordklassetagging Utfallsrom Ω, mengden av mulige utfall En delmengde E Ω kalles en hendelse P tilordner sannsynlighet [0,1] til hendelser Snakke litt om eksemplene fra forrige gang. Utfallsrom Ω, mengden av mulige utfall En delmengde E Ω kalles en hendelse P tilordner sannsynlighet [0,1] til hendelser

8 NF1820: Ordklassetagging Betinget sannsynlighet P (A B) P (A B) = P (B) P (A B) = P (A)P (B A) P (A B) = P (A B)P (B) P (A)P (B A) = P (A B)P (B) Betinget sannsynlighet P (A B) = P (A B) P (B) P (A B) = P (A)P (B A) P (A B) = P (A B)P (B) P (A)P (B A) = P (A B)P (B)

9 NF1820: Ordklassetagging Bayes teorem Eksempelet: En skole har 40% jenter og 60% gutter. Alle guttene går i bukser, halvparten av jentene bruker skjørt, resten bukser. Hva er sannsynligheten for at en i bukser er en jente? Bayes teorem

10 NF1820: Ordklassetagging Bayes teorem P (B A)P (A) P (A B) = P (B) Eksempelet: En skole har 40% jenter og 60% gutter. Alle guttene går i bukser, halvparten av jentene bruker skjørt, resten bukser. Hva er sannsynligheten for at en i bukser er en jente? Bayes teorem P (A B) = P (B A)P (A) P (B)

11 NF1820: Ordklassetagging Argmax: Den x som gir størst f (x) x 0 = argmax x X f (x) betyr at f (x) f (x 0) for alle x X Argmax: Den x som gir størst f (x) x0 = argmax x X f (x) betyr at f (x) f (x 0 ) for alle x X

12 NF1820: Ordklassetagging Argmax: Den x som gir størst f (x) x 0 = argmax x X f (x) betyr at f (x) f (x 0) for alle x X def argmax(f, xs): max_f = f(x[0]) max_x = x[0] for x in xs[1:]: new_f = f(x) if new_f > max_f: max_f = new_f max_x = x return (max_x, max_f) Argmax: Den x som gir størst f (x) x0 = argmax x X f (x) betyr at f (x) f (x 0 ) for alle x X def argmax(f, xs): max_f = f(x[0]) max_x = x[0] for x in xs[1:]: new_f = f(x) if new_f > max_f: max_f = new_f max_x = x return (max_x, max_f)

13 NF1820: Ordklassetagging Tagging Utfallsrommet er alle taggsekvenser n, gitt den observerte setningen w1 n, og vil finne den taggsekvensen som er mest sannsynlig (har høyest sannsynlighet) gitt ordsekvensen: ˆt 1 n = argmax x P (tn 1 wn 1 ). Tagging

14 NF1820: Ordklassetagging ˆt 1 n = argmax P ( n wn 1 ) n Men denne sannsynligheten er faktisk ganske vanskelig å regne på, så vi bruker Bayes teorem og omformer uttrykket. Sannsynligheten til ordsekvensen kan strykes, siden den sannsynligheten er konstant for en gitt inputstreng. ˆt 1 n = argmax P ( n wn 1 ) n

15 NF1820: Ordklassetagging ˆt 1 n = argmax P ( n wn 1 ) n P (w1 n = argmax tn 1 )P (tn 1 ) n P (w1 n) Men denne sannsynligheten er faktisk ganske vanskelig å regne på, så vi bruker Bayes teorem og omformer uttrykket. Sannsynligheten til ordsekvensen kan strykes, siden den sannsynligheten er konstant for en gitt inputstreng. ˆt 1 n = argmax P ( n wn 1 ) n = argmax t n 1 P (w n 1 tn 1 )P (tn 1 ) P (w n 1 )

16 NF1820: Ordklassetagging ˆt 1 n = argmax P ( n wn 1 ) n P (w1 n = argmax tn 1 )P (tn 1 ) n P (w1 n) = argmaxp (w1 n tn 1 )P (tn 1 ) n Men denne sannsynligheten er faktisk ganske vanskelig å regne på, så vi bruker Bayes teorem og omformer uttrykket. Sannsynligheten til ordsekvensen kan strykes, siden den sannsynligheten er konstant for en gitt inputstreng. ˆt 1 n = argmax P ( n wn 1 ) n = argmax t n 1 P (w n 1 tn 1 )P (tn 1 ) P (w n 1 ) = argmaxp (w1 n tn 1 )P (tn 1 ) n

17 NF1820: Ordklassetagging n P ( n ) = P (t i t i 1) i n P (w1 n tn 1 ) = P (w i t i) 1 Men vi er ikke helt i mål enda. Først gjør vi den samme antagelsen for P ( n ) som vi gjorde for språkmodeller: neste tagg avhenger kun av foregående tagg. Dette kalles for Markovantagelsen. En lignende antagelse gjør vi for ordsekvensen gitt taggsekvensen: hvert ord avhenger kun av taggen på det ordet. Dette siste uttrykket er heller ikke åpenbart bedre, men med en lur algoritme (Viterbi-algoritmen) går det bra. Viterbi er pensum i NF4820. n P ( n ) = P (t i t i 1 ) n P (w1 n tn 1 ) = P (w i t i ) i 1

18 NF1820: Ordklassetagging n P ( n ) = P (t i t i 1) i n P (w1 n tn 1 ) = P (w i t i) 1 n ˆt 1 n = argmax P (t i t i 1)P (w i t i) n i=1 Men vi er ikke helt i mål enda. Først gjør vi den samme antagelsen for P ( n ) som vi gjorde for språkmodeller: neste tagg avhenger kun av foregående tagg. Dette kalles for Markovantagelsen. En lignende antagelse gjør vi for ordsekvensen gitt taggsekvensen: hvert ord avhenger kun av taggen på det ordet. Dette siste uttrykket er heller ikke åpenbart bedre, men med en lur algoritme (Viterbi-algoritmen) går det bra. Viterbi er pensum i NF4820. n P ( n ) = P (t i t i 1 ) n P (w1 n tn 1 ) = P (w i t i ) ˆt n 1 = argmax t n 1 i 1 n P (t i t i 1 )P (w i t i ) i=1

19 NF1820: Ordklassetagging ˆP (t t ) = c(t,t) c(t ) ˆP (w t) = c(w,t) c(t) Sannsynlighetene estimerer vi akkurat som i språkmodellene (med MLE). Sannsynligheten P (t t ) kalles ofte for transisjonssannsynligheten, og P (w t) for emisjonssannsynligheten. ˆP (t t ) = c(t,t) c(t ) ˆP (w t) = c(w,t) c(t)

20 NF1820: Ordklassetagging Q tilstander V vokabular t : Q Q P e : Q V P Q,V,t,e En annen måte å se HMMer på er som en probabilistisk FSA, noe som forklarer bruken av transisjon. Når maskinen kommer inn i en tilstand genererer den et ord (emisjonen) som er det vi ser. Dette er også grunnen til at vi snakker om hidden: den faktiske tilstandssekvensen er ukjent for oss (skjult). t: transisjonsfunksjonen, e emisjonsfunksjonen, q s starttilstand, q f sluttilstand. Q tilstander V vokabular t : Q Q P e : Q V P Q,V,t,e

21 NF1820: Ordklassetagging

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Syvende forelesning Lilja Øvrelid 6 mars, 2017 1 Ordklassetagging Ordklasser? Bindeledd mellom ordet og setningen (syntaks): Sier noe om hva slags

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Syvende forelesning Lilja Øvrelid 6 mars, 2017 1 Ordklassetagging Ordklasser? Bindeledd mellom ordet og setningen (syntaks): Sier noe om hva slags

Detaljer

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo

HMM-tagging INF4820 H2008. Jan Tore Lønning. 30. september. Institutt for Informatikk Universitetet i Oslo INF4820 H2008 Institutt for Informatikk Universitetet i Oslo 30. september Outline 1 2 3 4 5 Outline 1 2 3 4 5 Flertydighet Example "" "fisk" subst appell mask ub fl @løs-np "fisker" subst appell

Detaljer

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning

INF5820 Natural Language Processing - NLP. H2009 Jan Tore Lønning INF5820 Natural Language Processing - NLP H2009 jtl@ifi.uio.no HMM Tagging INF5830 Lecture 3 Sep. 7 2009 Today More simple statistics, J&M sec 4.2: Product rule, Chain rule Notation, Stochastic variable

Detaljer

INF1820: Oppsummering

INF1820: Oppsummering Arne Skjærholt 8. mai Arne Skjærholt 8. mai Kurset gir en innføring i lingvistisk teori og relaterer denne til språkteknologiske problemområder, metoder og applikasjoner. Fokus er på å koble teori til

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Trettende forelesning REPETISJON Lilja Øvrelid 15 mai, 2017 1 Fra emnebeskrivelsen Kurset gir en innføring i lingvistisk teori og relaterer denne

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Trettende forelesning REPETISJON Lilja Øvrelid 15 mai, 2017 1 Fra emnebeskrivelsen Kurset gir en innføring i lingvistisk teori og relaterer denne

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Femtende forelesning REPETISJON Lilja Øvrelid 14 mai, 2011 1 / 68 FRA EMNEBESKRIVELSEN Kurset gir en innføring i lingvistisk teori og relaterer

Detaljer

INF1820: Ordklasser 2014-02-13. INF1820: Ordklasser. Arne Skjærholt. 13. februar. INF1820: Ordklasser. Arne Skjærholt. 13. februar

INF1820: Ordklasser 2014-02-13. INF1820: Ordklasser. Arne Skjærholt. 13. februar. INF1820: Ordklasser. Arne Skjærholt. 13. februar Arne Skjærholt 13. februar Arne Skjærholt 13. februar Ordklasser Ordklasser Ordklassene er bindeleddet mellom ordet (det morfologiske nivået) og syntaksen (setningsstrukturen). Det kan bestemme hva slags

Detaljer

INF1820 INF1820 2013-02-22. Arne Skjærholt INF1820. dairoku: del 6, kougi: forelesning. Arne Skjærholt

INF1820 INF1820 2013-02-22. Arne Skjærholt INF1820. dairoku: del 6, kougi: forelesning. Arne Skjærholt dairoku: del 6, kougi: forelesning Arne Skjærholt 第 六 講 義 Arne Skjærholt 第 六 講 義 Ordklassene er bindeleddet mellom ordet (det morfologiske nivået) og syntaksen (setningsstrukturen). Det kan bestemme hva

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Sjette forelesning Arne Skjærholt 25 januar, 2012 SIST GANG Forrige gang: Alle rare ordene Alle rare morfene Nå: Morfologi med datamaskin (computational

Detaljer

Slides til 12.1 Formelt språk og formell grammatikk

Slides til 12.1 Formelt språk og formell grammatikk Slides til 12.1 Formelt språk og formell grammatikk Andreas Leopold Knutsen April 6, 2010 Introduksjon Grammatikk er studiet av reglene som gjelder i et språk. Syntaks er læren om hvordan ord settes sammen

Detaljer

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione

INF INF1820. Arne Skjærholt. Terza lezione INF1820. Arne Skjærholt. Terza lezione Arne Skjærholt Terza lezione Arne Skjærholt Terza lezione Regulære uttrykk Regex Regulære uttrykk (regular expressions) er et godt eksempel på det som kalles finite-state methods (hvorfor det heter det

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 1.2 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK 19. januar 2017 2 Fysisk modell En tape delt opp i ruter. I hver rute står det et symbol. En

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning

INF2820 Datalingvistikk V2012. Jan Tore Lønning INF2820 Datalingvistikk V2012 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 20. januar 2012 2 Non-Determinism Speech and Language Processing - Jurafsky and Martin

Detaljer

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning

INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning INF2820 Datalingvistikk V2017 Forelesning 2, 23.1 Jan Tore Lønning ENDELIGE TILSTANDSMASKINER OG REGULÆRE SPRÅK, DEL 2 19. januar 2017 2 Sist uke: FSA Brukes om hverandre: Finite state automaton - FSA

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Sjette forelesning Lilja Øvrelid 27 februar, 2017 1 Sannsynlighet Sannsynlighet spiller en svært viktig rolle i språkteknologi... og også i dette

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Sjette forelesning Lilja Øvrelid 27 februar, 2017 1 Sannsynlighet Sannsynlighet spiller en svært viktig rolle i språkteknologi... og også i dette

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO et matematisk-naturvitskapelige fakultet Eksam i: IF1820 Introduksjon til språk- og kommunikasjonsteknologi Eksamsdag: 17. juni 2016 Tid for eksam: 14.30 18.30 Oppgavesettet er på 6

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

INF2820 Datalingvistikk V2014. Jan Tore Lønning

INF2820 Datalingvistikk V2014. Jan Tore Lønning INF2820 Datalingvistikk V2014 Jan Tore Lønning ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK DEL 2 22. januar 2014 2 DFA deterministisk endelig maskin Q = {q0, q1, q2,, qn-1} Strengt

Detaljer

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være:

Oppgave 2. Eksamen INF2820, 2015, oppgave 2. La gramatikk G være: 2 Eksamen INF2820, 2015, oppgave 2 Oppgave 2 La gramatikk G være: S > NP VP VP > VI VP > VTV NP VP > VS CP CP > C S NP > 'dyret' 'barnet' 'Kari' 'Ola' VI > 'sov' 'smilte' 'danset' VTV > 'kjente' 'likte'

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen FORMELLE OG NATURLIGE SPRÅK KONTEKSTFRIE GRAMMATIKKER 7. februar 2011 2 Naturlige språk som formelle språk Et formelt språk består av: En

Detaljer

Oppgave 1 (samlet 15%)

Oppgave 1 (samlet 15%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal svare på alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

INF INF1820. Arne Skjærholt. Negende les INF1820. Arne Skjærholt. Negende les

INF INF1820. Arne Skjærholt. Negende les INF1820. Arne Skjærholt. Negende les Arne Skjærholt egende les Arne Skjærholt egende les σύνταξις Syntaks, fra gresk for oppstilling, er studiet av hvordan vi bygger opp setninger fra ord. Pāṇini (ca. 400 år f.kr.) er den første som formulerer

Detaljer

INF1820 INF Arne Skjærholt INF1820. Arne Skjærholt

INF1820 INF Arne Skjærholt INF1820. Arne Skjærholt Arne Skjærholt Quatrième leçon Arne Skjærholt Quatrième leçon Previously... Alle rare ordene Alle rare morfene Previously... Coming up... Morfologi med datamaskin (computational morphology) Hvordan analysere

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

INF2820 Datalingvistikk V2016. Jan Tore Lønning

INF2820 Datalingvistikk V2016. Jan Tore Lønning INF2820 Datalingvistikk V2016 Jan Tore Lønning I dag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon av smart NFA 1.

Detaljer

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker.

Repetisjon. 1 binærtall. INF3110 Programmeringsspråk. Sist så vi ulike notasjoner for syntaks: Jernbanediagrammer. BNF-grammatikker. INF3 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk NF Regulære språk i utvidet NF Regulære språk i jerbanediagrammer

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper

Kombinatorikk. MAT1030 Diskret Matematikk. Oppsummering av regneprinsipper MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Kombinatorikk 14. april 2010 (Sist oppdatert: 2010-04-14 12:43) MAT1030 Diskret Matematikk 14.

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 22: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 14. april 2010 (Sist oppdatert: 2010-04-14 12:42) Kombinatorikk MAT1030 Diskret Matematikk 14.

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

. Grammatiske problem med å beskrive ordklassen adverb og setningsleddet adverbial i norsk. Sverre Stausland Johnsen Universitetet i Oslo

. Grammatiske problem med å beskrive ordklassen adverb og setningsleddet adverbial i norsk. Sverre Stausland Johnsen Universitetet i Oslo .. Grammatiske problem med å beskrive ordklassen adverb og setningsleddet adverbial i norsk Sverre Stausland Johnsen Universitetet i Oslo stausland.johnsen@iln.uio.no Universitetet i Stavanger 15. januar

Detaljer

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null,

Følgelig vil sannsynligheten for at begge hendelsene inntreffer være null, Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 3, blokk I Løsningsskisse Oppgave 1 Hvis hendelsene A og B er uavhengige, vil enhver kunnskap om hvorvidt A har

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.6-2.8] TMA4240 Statistikk (F2 og E7) 2.6, 2.7, 2.8: Betinget sannsynlighet [23.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/18 Oppsummering fra 2.1-2.5 FENOMEN Eksperiment

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.8: Bayes regel 3.1: Stokastisk variabel 3.2: Diskrete sannsynlighetsfordelinger 3.3: Kontinuerlige sannsynlighetsfordelinger Mette Langaas Foreleses onsdag 1. september 2010

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Fjerde forelesning Lilja Øvrelid 6 februar, 2014 OVERSIKT Såkalt endelig tilstand (finite-state) -teknologi er kjapp og effektiv nyttig for et

Detaljer

APPENDIKS D Geminittisk språk/grammatikk

APPENDIKS D Geminittisk språk/grammatikk 1 APPENDIKS D Geminittisk språk/grammatikk Jeg har latt overskriften på dette appendikset bli sående i sin opprinnelige form, selv om jeg kun har maktet å gi et nokså usystematisk og mangelfullt innblikk

Detaljer

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2011. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2011 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 26. januar 2011 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

INF2820 Datalingvistikk V2015. Jan Tore Lønning

INF2820 Datalingvistikk V2015. Jan Tore Lønning INF2820 Datalingvistikk V2015 Jan Tore Lønning Idag Automater og regulære uttrykk Litt Python Implementasjon av DFA i Python Naiv NFA-algoritme Smart NFA-algoritme Pythonimplementasjon 30. januar 2015

Detaljer

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her,

Obs. Læreren må være klar over at det er mulig å få riktig svar ved å regne feil her, Oppgave 1 b 3b Hva er 3a 8a b hvis a 2? A 5 B 7 C 8 D 24 E 70 Er det nødvendig å finne tall for a og b? Hvor i uttrykket finnes a b? b Hva blir verdien av første ledd når a 2? Skriv om potensen i andre

Detaljer

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk :

Oppgave 1 Vi har gitt følgende grammatikk for noe vi kan kalle speilengelsk : Eksempelspørsmål Spørsmål av denne typen kan forventes til eksamen, men kanskje ikke så mange. I hvert fall ville dette pluss spørsmål fra første del av pensum blitt for mye for en tretimers eksamen. Oppgave

Detaljer

Matchinger i ikke-bipartite grafer

Matchinger i ikke-bipartite grafer Matchinger i ikke-bipartite grafer Stein Krogdahl, Notat til INF 3/4130 Sist revidert september 2006 Vi skal i dette notatet se på det å finne matchinger i generelle grafer, uten noe krav om at grafen

Detaljer

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning

INF2820 Datalingvistikk V2015. Forelesning 4, 9.2 Jan Tore Lønning INF2820 Datalingvistikk V2015 Forelesning 4, 9.2 Jan Tore Lønning I dag Oppsummering av endelige tilstandsteknikker Begrensninger ved regulære språk Regulære uttrykk: teoretiske og praktiske Noen egenskaper

Detaljer

Kap. 5, Del 3: INF5110, fra 1/3-2011

Kap. 5, Del 3: INF5110, fra 1/3-2011 Kap. 5, Del 3: LR(1)- og LALR(1)-grammatikker INF5110, fra 1/3-2011 Bakerst: Oppgaver til kap 5 (svar kommer til gjennomgåelsen) gåe Nytt 2/3: Nå også oppgave 2 fra eksamen 2006 Stein Krogdahl, Ifi, UiO

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 10: Mengdelære Dag Normann Matematisk Institutt, Universitetet i Oslo 17. februar 2010 (Sist oppdatert: 2010-02-17 12:40) Kapittel 5: Mengdelære MAT1030 Diskret Matematikk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal

Oppgave 2. INF5110 oppgave 2 på eksamen v04 med teori. FirstMengder. Arne Maus Ifi. Eks. 4.9 Beregning av First-mengde. terminal Oppgave 2 INF5110 oppgave 2 på eksamen v04 med teori rne Maus Ifi FirstMengder Def { terminal First () = { a finnes avledning * a α } Dessuten: Om er utnullbar, så er ε First() Eks. 4.9 eregning av First-mengde

Detaljer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Femte forelesning Lilja Øvrelid 13 februar, 2017 1 Lingvistikk Bindestreksdisipliner: psykolingvistikk, neurolingvistikk, sosiolingvistikk, datalingvistikk

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma

Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Utvalgsaksiomet, velordningsprinsippet og Zorns lemma Dag Normann Universitetet i Oslo Matematisk Institutt Boks 1053 - Blindern 0316 Oslo 13. mars 2007 I dette notatet skal vi gi et bevis for ekvivalensen

Detaljer

INF2820 Datalingvistikk V Gang Jan Tore Lønning

INF2820 Datalingvistikk V Gang Jan Tore Lønning INF2820 Datalingvistikk V2016 5. Gang - 17.2 Jan Tore Lønning I dag Kontekstfrie grammatikker, avledninger og trær Kontekstfrie grammatikker og regulære språk Kontekstfrie grammatikker for naturlige språk

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kap. 4.5 STK1000 H11 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel

Detaljer

Partielle ordninger, Zorns lemma og utvalgsaksiomet

Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140, H-15 Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med

Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag. Vi har fått oppgitt at X poisson(λ) med Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 5, blokk I Løsningsskisse Oppgave 1 Vi lar X være antall tankskip som ankommer havnen i løpet av en dag.

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

INF3110 Programmeringsspråk

INF3110 Programmeringsspråk INF3 Programmeringsspråk Dagens tema Syntaks (Komp 47, kap 3 (og noe 4)) Repetisjon Regulære språk i klassisk BNF Regulære språk i utvidet BNF Regulære språk i jerbanediagrammer Regulære språk og automater

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 27. januar 2010 (Sist oppdatert: 2010-01-27 12:47) Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret

Detaljer

IN1140: Introduksjon til språkteknologi. Forelesning #5

IN1140: Introduksjon til språkteknologi. Forelesning #5 IN1140: Introduksjon til språkteknologi Forelesning #5 Samia Touileb Universitetet i Oslo 19. september 2017 Tema for i dag 2 Fra forrige forelesning: Ikke-deterministiske FSAer, Regulære språk Ordklasser

Detaljer

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Høst 28.11.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5

Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 Betinget sannsynlighet, total sannsynlighet og Bayes setning Kapittel 4.5 På bakgrunn av materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Vi vil først ved hjelp av et eksempel se

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015

Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015 Oppgaver til kodegenerering etc. INF-5110, 12. mai, 2015 Oppgave 1: Vi skal se på koden generert av TA-instruksjonene til høyre i figur 9.10 i det utdelte notatet, side 539 a) (repetisjon fra forelesningene)

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Første forelesning Lilja Øvrelid 16 januar, 2017 1 Praktisk Hvor og når Tidspunkt Forelesning: Mandag 12:15-14, Seminarrom Caml Grupper: Onsdager

Detaljer

INF1820: Introduksjon til språk-og kommunikasjonsteknologi

INF1820: Introduksjon til språk-og kommunikasjonsteknologi INF1820: Introduksjon til språk-og kommunikasjonsteknologi Første forelesning Lilja Øvrelid 16 januar, 2017 1 Praktisk Hvor og når Tidspunkt Forelesning: Mandag 12:15-14, Seminarrom Caml Grupper: Onsdager

Detaljer

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen

Introduksjon. MAT1030 Diskret Matematikk. Introduksjon. En graf. Forelesning 22: Grafteori. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 22: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Introduksjon 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) MAT1030 Diskret Matematikk

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

Oppgave 1 (samlet 40%)

Oppgave 1 (samlet 40%) 2 Du kan svare på norsk, dansk, svensk eller engelsk. Du skal besvare alle spørsmålene. Vekten på de ulike spørsmålene er oppgitt. Du bør lese gjennom hele settet slik at du kan stille spørsmål til faglærerne

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Datainnsamling, video av forelesning og referansegruppe

Datainnsamling, video av forelesning og referansegruppe Datainnsamling, video av forelesning og referansegruppe Datainnsamling Om du ikkje alt har gjort det: https://wiki.math.ntnu.no/tma4240/2015h/start Video http://video.adm.ntnu.no/serier/55d47b463d96a Referansegruppe

Detaljer

Ordklasser Inndelingen ORDKLASSEINNDELINGEN

Ordklasser Inndelingen ORDKLASSEINNDELINGEN Ordklasser Inndelingen ORDKLASSEINNDELINGEN Hvorfor lære om ordklasser? Viktig del av den grammatiske språkbeskrivelsen Forstå bøyningsmåter skrive korrekt Innsikt i hvordan norsk skiller seg fra andre

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Overblikk over komplementer i kinesisk

Overblikk over komplementer i kinesisk Overblikk over komplementer i kinesisk Halvor Eifring 2. november 2001 1. Resultative komplementer 1.1. Struktur V1+V2 V1 er et verb, oftest transitivt: V2 er et adjektiv eller annen type verb: 1.2. Betydning

Detaljer

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka

STK1100 våren Betinget sannsynlighet og uavhengighet. Svarer til avsnittene 2.4 og 2.5 i læreboka STK1100 våren 2017 Betinget sannsynlighet og uavhengighet Svarer til avsnittene 2.4 og 2.5 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Eksempel 1 Vi vil først ved hjelp av et eksempel

Detaljer

Forelesning 7. Tilstandsmaskin

Forelesning 7. Tilstandsmaskin Forelesning 7 Tilstandsmaskin Hovedpunkter Tilstandsmaskin Tilstandstabell Tilstandsdiagram Analyse av D flip-flop basert tilstandsmaskin Reduksjon av antall tilstander Tilordning av tilstandskoder Designprosedyre

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse

INF3140 Modeller for parallellitet INF3140/4140: Programanalyse INF3140/4140: Programanalyse Uke 4, side 1. Hvordan sjekke egenskaper ved programmer? Testing eller debugging øker tilliten til programmet ved prøving, men gir ingen garanti for korrekthet Operasjonell

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

MAT1030 Forelesning 8

MAT1030 Forelesning 8 MAT1030 Forelesning 8 Logikk, predikatlogikk, bevisteknikker Roger Antonsen - 11. februar 009 (Sist oppdatert: 009-0-17 10:5) Kapittel 4: Mer predikatlogikk Oppsummering Læringsmålene for kapitlet om logikk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2820 Datalingvistikk Eksamensdag: 6. juni 2014 Tid for eksamen: 1430-1830 Oppgavesettet er på 5 side(r) Vedlegg: 0

Detaljer

INF 2820 V2016: Innleveringsoppgave 3 del 1

INF 2820 V2016: Innleveringsoppgave 3 del 1 INF 2820 V2016: Innleveringsoppgave 3 del 1 Pga tekniske problemer er oppgaveteksten delt i to. Dette er første del. Andre del legges ut mandag 13.3! Besvarelsene skal leveres i devilry innen fredag 24.3

Detaljer

Kapittel 4: Mer predikatlogikk

Kapittel 4: Mer predikatlogikk MAT1030 Diskret Matematikk Forelesning 8: Logikk, predikatlogikk, bevisteknikker Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Mer predikatlogikk 11. februar 009 (Sist oppdatert:

Detaljer

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk INF0: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk Mathias Lohne mathialo Rekursjonseksempel Eksempel Finn kjøretid for følgende program: (Ex11 b) 1 float foo(a) { n = Alength; 3 4 if

Detaljer

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen

INF2820 Datalingvistikk V2012. Jan Tore Lønning & Stephan Oepen INF2820 Datalingvistikk V2012 Jan Tore Lønning & Stephan Oepen ENDELIGE TILSTANDSTEKNIKKER OG REGULÆRE UTTRYKK I DATALINGVISTIKK 17. januar 2012 2 Naturlige språk En mann kjøpte en bil av en mann som hadde

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

En repetisjon hrj høst 2009

En repetisjon hrj høst 2009 En repetisjon hrj høst 2009 Data Maskin Data Syntaktiske objekter - endelige Mengde { } Multimengde [ ] Liste < > Symbol String = Liste av symboler Vi kan alltid finne ut om to syntaktiske objekter er

Detaljer