To faser, olje og vann, i en dimensjon

Størrelse: px
Begynne med side:

Download "To faser, olje og vann, i en dimensjon"

Transkript

1 To faser, olje og vann, i en dimensjon Utvid programmet til også å inkludere strøm av de to fasene olje og vann i en dimensjon for et horisontalt system Bruk kvasi-implisitt formulering med kordemetoden Bruk p o og s o som ukjente Løs ligningssettet med SOLVE, dvs med eliminasjon eller simultan løsning for p o og s o Legg inn opsjon for produksjon mot konstant trykk, pconst, ved utløpet av blokk 1 Les inn tabell av PVT-data og bergartsdata Dimensjoner til 20 blokker Bruk oppstrøms relative permeabiliteter Testeksempelet en skal simulere tilsvarer øving 102 i Dake sin lærebok [?], sml også øving 101 i samme bok I dette eksempelet er kapillartrykket p c satt lik null Vi skal likevel formulere ligningene i modellen med kapillartrykksledd En får bruk for dette i øving 10, som behandler simulering av et laboratorieeksperiment for å må relative permeabilitetskurver, med og uten kapillartrykk Følgende data inngår: mx = 20 bruk lik blokklengde Lengde 2000 ft, tverrsnitt ft 2 φ 018 Initiell vannmetning s wi 020 B oi 13 rb/stb, c o psi 1 B wi 10 rb/stb, c w psi 1 o 50 cp, konstant w 05 cp, konstant Relative permeabiliteter er gitt av tabell 101 i boken til Dake, og en setter p c 0 En vannrate på 1000 stb/d injiseres i blokk nr 20 og produksjonen skjer mot konstant trykk ÔÓÒ Ø p i ved utløpet av blokk nr 1 1

2 Initielt trykk p i = 2000 psia Simuler vanndrivet i 25 år, og gjør følgende sammenligninger: A Ved tid ett år, plott s w som funksjon av avstand fra injeksjonsenden beregnet fra: 1 Simuleringsmodellen 2 Buckley-Leverett teorien, se Dake [?], kapittel 10 Forklar forskjellen mellom i) og ii) B Sammenlign WOR versus tid i 25 år NPC versus tid i 25 år beregnet med de samme to metodene som under A 2

3 Kommentarer For strøm av en fase i en dimensjon har vi fra før ckb p x x q φ b t og utvidet til to faser får en etter en helt tilsvarende utledning ckkro b o p o x o x for oljeligningen, og for vannligningen ckkrw b w p w x w x q o φ t s ob o (1) q w φ t s wb w (2) I tillegg har en definisjonen av kapillartrykk, p w p o p c, og at summen av metningene må være lik en: s w s o 1 I disse ligningene er b o o funksjoner kun av p o,og b w w kun av p w, mens k ro k rw p c kun er funksjoner av s w Det fins mange måter å formulere ligningssettet på i numerisk forstand: A Impes metoden B Fullstendig implisitt formulering (Newton) C Kordemetoden eller kvasi-newton Her skal vi kort beskrive metode A og B, og gå i detalj og bruke metode C I det følgende lar vi superskript k betegne iterasjonsnivå, og n tidsnivå, slik at modellen går fra tidsnivå n til n 1 ved hjelp av flere iterasjoner La oss først formulere ut høyre side av ligningen: hvor φ t s ob o b o b n 1 o s o s n 1 o φ t φ t φ t b n o2 s n o2 s o s n 1 o s n o p o p n 1 o p n o s o b o n 1 s o b o n b o s o s o b o b o s o s o b o p o p o Tilsvarende finner en for vannligningen: φ t s wb w φ t b w s w s w b w p w p w 3

4 IMPES-metoden Betegnelsen IMPES er et akronym for Implicit Pressure Explicit Saturation De metningsavhengige størrelsene, k ro k rw p c, holdes fast på tidsnivå n, mens en løser trykket implisitt for tidsnivå n 1 Siden s w s o, elimineres s o på høyre side av ligningen og en står igjen med en ligning i trykk Denne ligningen er fremdeles ulinær siden b avhenger av trykk, og s o inngår Grovt sett løses den i følgende trinn: 1 Foreta en implisitt løsning av trykkene 2 Beregn s o fra ligning 1 eller 2 3 Oppdater koeffisienter og b s o s w etc 4 Start på punkt 1 igjen Denne metode fungerer godt dersom det ikke er for store metningsendringer per tidssteg Den blir derfor ofte brukt i full felt modeller hvor de numeriske blokkene er store Trykket løses ved eliminasjon eller LSOR Oppstrøms relative permeabiliteter I strømningsleddet på venstre side av oljeligningen 1 inngår leddet k ro b o o For strøm av en fase, hvor k ro 1, har vi tidligere brukt middelverdi av b o o både i tid og avstand Dette kan ikke gjøres uten videre for k ro, som eksemplifisert: Figuren illustrerer vann W O W O olje vann Figur 1: Illustrasjon av oppstrøms relative permeabiliteter et vanndriv fra venstre mot høyre I blokk i er oljemetningen s or og k ro 0 I blokk ip er s o s or og k ro 0 Dersom k ro midles arimetisk mellom de to blokkene, så vil transmissibiliteten til olje bli større enn null Olje vil strømme fra blokk i til blokk ip og oljemetningen i blokk i vil bli redusert til en verdi under s or Dette er ufysikalsk og det foreslåtte en rekke metoder i litteraturen for å bøte på dette: Harmonisk midling Topunkts oppstrøms relative permeabiliteter Oppstrøms relative permeabiliteter 4

5 Vi skal bruk oppstrøms relative permeabiliteter, som vel er den vanligste formuleringen For hvert tidssteg, ev etter første iterasjon, sjekkes hvilken retning oljestrømmen har, fra i ip eller ip i I transmissibiliteten mellom de to blokkene velges så oppstrøms verdi av k ro Fullstendig implisitt formulering Vi ser på strømningsleddet ckkro b o p o x o x mellom blokk i og ip og skriver dette på formen Ü Ô F p oi p oip s oi s oip, hvor Ü Ô, som før, inneholder de konstante deler av transmissibiliteten mellom ip og i,og F p oi p oip s oi s oip k rob o o p oip p oi Vi bruker Newton s metode på F, eller sagt på en annen måte, vi rekkeutvikler F til første orden i alle variable: F k 1 ³ F k F p oi k p k 1 oi F p oip k p k 1 oip F k s k 1 oi s oi F s oip k s k 1 oip Her må en generelt ta med både s oi og s oip siden en ikke vet hvilken vei strømmen går Ved oppstrøms relative permeabiliteter er enten F s oi k eller F s oip k lik null Strømningsleddet i vannligningen formuleres tilsvarende Høyre sidene av ligningen uttrykkes også i poi k 1 soi k 1 En får da to ligninger med to ukjente, p k 1 o og so k 1, som det løses for ved eliminasjon eller med (L)SOR Merk at p k 1 oi s k 1 oi er endringer per Newton iterasjon ikke endringer over tidssteget Kordemetoden kvasi-newton Metoden kan illustreres ved å formulere uttrykket for k ro : Her er k n 1 ro ro kro n s n 1k o s n o ³ k n ro kn 1k k n 1k ro verdien av k ro etter iterasjon k, s n 1k o verdien av s n 1 o etter iterasjon k, s n 1k 1 o s n 1k 1 o s n o s n 1k 1 o (3) 5

6 s o Når løsning har konvergert er so n 1k 1 so n 1, kro n 1k kro n 1, so n 1k 1 so n 1 s o, og ligning 3 er eksakt oppfylt De trykkavhengige størrelsene, b o o b w w, er kun svakt avhengige av trykket Det er derfor tilstrekkelig å behandle dem som før, dvs bruke tids- og avstandsmiddel Vi ser videre på strømningsleddene mellom blokk i og ip i oljeligningen: x ckkro b o p o o x Ó Ü Ô ÖÓ Ô ÓÔ Ô Ó Ó Ô hvor Ó Ó Ô er tids- og avstandsmiddel La oss definere ÓÚÓ Ô Ó Ó Ô Videre kan vi sette: hvor k ro Ó ÖÓÐ Ó Ó Ó ½ Ó ÖÓÐ Ô ½ Ó Ó Ô Ó Ô Ó 10 dersom oljestrømmen går fra i ip 00 dersom oljestrømmen går fra ip i ÖÓÐ Ó Ó kroi n k n 1k k n roi roi s n 1k s n 1k 1 oi s n oi oi s n oi Vi minner også om at Ü Ô Ü Ü Ü Ô Videre definerer vi for strømningsledd mellom blokk i og ip: ÓÜÐÔ ÓÚÓ Ô Ó ÖÓÐ ½ Ó ÖÓÐ Ô ÓÜÔÔ ÓÜÔÑ ÔÓÔ ÓÚÓ Ô ½ Ó Ó Ô ÓÚÓ Ô Ó Ó ÔÓ Ô ÔÓ For strøm mellom blokk im og i definerer vi: ÓÜÐ ÓÚÓ Ó Ñ ÖÓÐ Ñ ½ Ó Ñ ÖÓÐ ÓÜÑÑ ÓÜÑÔ ÔÓÑ ÓÚÓ Ó Ñ Ó Ñ ÓÚÓ ½ Ó Ñ Ó ÔÓ Ô ÔÓ Siden ÓÜÐÔ ÓÜÔÔ ÓÜÔÑ ÓÜÐ Ô ÜÑ ÓÜÑÔ Ô ÜÑ ÓÜÑÑ Ô ÜÑ 6

7 trenger en bare bruke ett sett av disse størrelsene Vannligningen formuleres helt tilsvarende, bortsett fra et ekstra ledd som inneholder kapillartrykket p c : x ckkrw b w p w w x ckkrw b w p o ckkrw b w p c x w x x w x Det første leddet på høyre side formuleres på samme måte som for oljeligningen Det er ledd nummer to, kapillarleddet, som volder noe problemer Vi definerer størrelsene wxldm, dwxmp, dwxmm på samme måte som for oljeligningen I kapillarleddet har vi et produkt av to metningsavhengige størrelser, nemlig k rw og p c Dette produktet tilnærmer vi på følgende måte: k n 1 rw ³ k n rw pn c k n rw p c p n c k rw ³ k n rw p n c k n rw p c s o s o p n c k rw s o s o Her har en altså neglisjert andre ordens ledd, også kalt kryssledd, av typen s o s o Vi definerer p c s o Ô k rw s o Û og er nå istand til å skrive ut kapillarleddet i detalj: og x ckkrw b w p c ÛÜ Ô ÛÜ w x Ô ÛÜ Ô ÛÜÐÑ Ô ÜÑ ÛÜÑÔ Ô ÜÑ ÓÔ ÛÜÑÑ Ô ÜÑ Ó ÔÐ Ô Ô Ô ÓÔ ÔÐ Ô Ó Disse leddene multipliseres så ut, og en neglisjerer kryssledd Dette gir ÛÜ Ô ÛÜÐÑ Ô ÜÑ ÔÐ Ô ÛÜÑÔ Ô ÜÑ ÔÐ Ô ÓÔ ÛÜÑÑ Ô ÜÑ ÔÐ Ô Ó ÛÜÐÑ Ô ÜÑ Ô Ô ÓÔ + tilsvarende ledd ved å bruke i-leddene På høyre side av vannligningen har en størrelsen b w som en tilnærmer med b w b w p w p w b w p w ÔÓ ÔÓÐ Ô Ó Vannligningen i detalj oppsummering Fullstendig diskretisering av vannligningen 2 gir: ÛÜ Ô Û ÛÜ Ô Û Õ Û φ Ø Û Û Û Û 7

8 med følgende definisjoner: ÛÜ ÛÜ ÛÜÐÑ ÛÜÑÑ ÓÑ ÛÜÑÔ Ó ÛÜÐÑ Ô ÛÜÑÑ Ô Ó ÛÜÑÔ Ô ÓÔ ÜÑ Ô Û Ô ÛÑ Ô Û Ô ÓÑ Ô Ó Ô Ñ Ô Ô Û ÔÓÑ ÔÓÔ Ô ÛÔ Ô Û Ô ÓÔ Ô Ó Ô Ô Ô Ô ÓÑ Ô Ó Ô ÓÔ Ô Ó Vi velger som sagt å bruke Ô Ó og Ó Ò ½ Ó Ò Ó som ukjente Leddet ÛÜ Ô Û blir da ÛÜÐÑ Ô Ó ÛÜÐÑ ÔÐ Ñ ÛÜÑÑ ÔÓÑ ÓÑ ÛÜÑÔ ÔÓÑ Ó ÛÜÐÑ ÔÐ Ñ ÛÜÐ Ô Ñ ÓÑ ÛÜÑÔ ÔÐ Ñ Ó ÛÜÑÑ ÔÐ Ñ ÓÑ ÛÜÐÑ Ô Ó ÛÜÐ ÔÐ ÓÑ ÛÜÑÔ ÔÐ Ó Vi ønsker å skrive ligningen på formen ÔÓÛ ÔÓ Ñ ÓÛ Ó Ñ ÔÓÛ ÔÓ ÓÛ Ó ÔÓÛ ÔÓ Ô ÓÛ Ó Ô Û ¼ Med får en ÔÛÑ ÔÓÑ ÔÐ ÔÐ Ñ ÔÛÔ ÔÓÔ ÔÐ ÔÐ Ñ ÔÓÛ ÛÜÐÑ ÓÛ ÛÜÑÑ ÔÛÑ ÛÜÐÑ Ô Ñ ÔÓÛ ÛÜÑÐ ÛÜÐÑ Ô ÜÑ φ Ø Û ÛÔ ÓÛ ÛÜÑÔ ÔÛÑ ÛÜÑÑ Ô ÜÑ ÔÛÔ ÛÜÐÑ ÛÜÐÑ Ô ÜÑ Ô φ Ø Û ÛÔ Ô Û ÔÓÛ ÛÜÐÑ Ô ÜÑ ÓÛ ÛÜÑÔ Ô ÔÛÔ ÛÜÐÑ Ô Ô Ô ÜÑ Û ÛÜÐÑ ÔÐ ÔÐ Ñ ÛÜÐÑ Ô ÜÑ ÔÐ ÔÐ Ô φ Ø Û ÛÔ ÔÓÐ Õ Û Oljeligningen blir utformet tilsvarende, og her er det ikke noe kapillartrykksledd ÔÓÓ ÓÜÐÑ ÓÓ ÓÜÑÑ ÔÓÑ ÔÓÓ ÓÜÑÐ ÓÜÐÑ Ô ÜÑ φ Ø Ó ÓÔ ÔÓÓ ÓÜÐÑ Ô ÜÑ ÓÓ ÓÜÑÔ Ô ÔÓÔ ÜÑ Ó φ Ø Ó ÓÔ ÔÓÐ Õ Ó 8

9 Ukjente blokk1 blokk2 blokk3 blokk4 blokk5 Lign ÔÓ ½ Ó½ ÔÓ ¾ Ó¾ ÔÓ Ó ÔÓ Ó w 1 ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 2 ÔÓÓ ÓÓ ÔÓÓ ÓÓ w 3 ÔÓÛ ÓÛ ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 4 ÔÓÓ ÓÓ ÔÓÓ ÓÓ ÔÓÓ ÓÓ w 5 ÔÓÛ ÓÛ ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 6 ÔÓÓ ÓÓ ÔÓÓ ÓÓ ÔÓÓ ÓÓ Ligningssystem For et enfasesystem har vi sett at ligningssystemet har en tridiagonal koeffisientmatrise For to faser har hver blokk to ukjente Det som i enfasetilfellet var en (skalar) koeffisient blir nå en 2 2 matrise, som illustrert i følgende skjema: Ukjente blokk1 blokk2 blokk3 blokk4 blokk5 Lign ÔÓ ½ Ó½ ÔÓ ¾ Ó¾ ÔÓ Ó ÔÓ Ó w 1 ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 2 ÔÓÓ ÓÓ ÔÓÓ ÓÓ w 3 ÔÓÛ ÓÛ ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 4 ÔÓÓ ÓÓ ÔÓÓ ÓÓ ÔÓÓ ÓÓ w 5 ÔÓÛ ÓÛ ÔÓÛ ÓÛ ÔÓÛ ÓÛ o 6 ÔÓÓ ÓÓ ÔÓÓ ÓÓ ÔÓÓ ÓÓ Koeffisientmatrisen blir altså en båndmatrise med båndbredde lik 7 Ligningssystemet kan derfor løses ved den tidligere omtalte subrutinen SOLVE, eller en annen matriseløser, [?] Rateformulering I tillegg til å bruke konstante rater ønsker en også å produsere mot konstant trykk, pconst, ved utløpet av blokk nr 1: ÕÓ ½ ÓÚÓ ½ ÖÓ ½ ÔÓÒ Ø ÔÓ ½ ÕÛ ½ ÛÛ ½ ÖÛ ½ ÔÓÒ Ø ÔÓ ½ Ô ½ Vi regner her at trykket i brønnen, pconst, er det samme for olje som for vann 9

10 Uttrykket for oljeraten kan skrives ut på følgende måte, når vi bruker tidligere definerte størrelse: ÕÓ ½ ÓÚÓ ½ ÖÓÐ ½ ÔÓÒ Ø ÓÚÓ ½ Ó ½ ÔÓÒ Ø Ó ½ ÓÚÓ ½ ÖÓÐ ½ ÔÓ ½ ÓÚÓ ½ Ó ½ ÔÓ ½ Ó ½ Dette kan vi videre skrive som hvor ÕÓ ½ ÕÓ ½ ÕÓÔ ÔÓ ½ ÕÓ Ó ½ (4) hvor ÔÓ ½ er den sist iterert verdien Tilsvarende får en for vannraten: hvor ÕÓ ½ ÓÚÓ ½ ÖÓÐ ½ ÔÓÒ Ø ÕÓÔ ÓÚÓ ½ ÖÓÐ ½ ÕÓ ÓÚÓ ½ Ó ½ ÔÓÒ Ø ÔÓ ½ ÕÛ ½ ÕÛ ½ ÕÛÔ ÔÓ ½ ÕÛ Ó ½ (5) ÕÛ ½ ÛÚÛ ½ ÖÛÐ ½ ÔÓÒ Ø ÔÐ ½ ÕÛÔ ÛÚÛ ½ ÖÛÐ ½ ÕÛ ÛÚÛ ½ Û ½ ÔÓÒ Ø ÔÓ ½ ÛÚÛ ½ ÖÛÐ ½ Ô ½ Û ½ ÔÐ ½ Uttrykkene for ÕÓ ½ og ÕÛ ½ settes inn for qo og qw i ligningene og fordeles på de riktige matriseelementene på følgende måte: ÕÓÔ ÔÓÓ ÕÛÔ ÔÓÛ ÕÓ ÓÓ ÕÛ ÓÛ hvor betyr settes inn i Etter at løsningen har konvergert beregnes ratene for blokk 1 fra ligningene 4 og 5 før materialbalansen beregnes Dersom ÕÓ ½ eller ÕÛ ½ blir positive, settes de lik 0 Vannraten ÕÛ ½ kan fysikalsk sett godt bli naturlig negativ, på grunn av endeeffekt Noen hint til programmering Les inn PVT-tabell og omgjør til ekvidistant, intern tabell på 81 linjer TP TBP TVO TBW TVW Les inn bergartstabell og omgjør til ekvidistant, intern tabell på 51 linjer: TSO TKRO TKRW TPC

11 Les inn initiell metningsfordeling Beregn OOIP og OWIP Rett etter start av tidsstegssløfe uføres følgende: ÔÓÐ ÔÓ ÓÐ Ó ÚÓÐ ÚÓ ÛÐ Û ÚÛÐ ÚÛ ÔÐ Ô ÖÛÐ ÖÛ ÖÓÐ ÖÓ ÓÐ Ó Tidssteget kontrolleres nå både av maksimum metningsendring og maksimum trykkendring: ÔÑÜ ¼psi ÑÜ ¼¼ Konvergenssjekk utføres på både po og dso Materialbalanse utføres både for vann og olje SUBROUTINE FLPROP SUBROUTINE SAT SUBROUTINE FLODIR Ó ÚÓ ÓÔ Û ÚÛ ÛÔ ÖÓ Ó ÖÛ Û Ô Ô Ó ½¼ dersom ÔÓ ÔÓ Ô ¼ dersom ÔÓ Ô ÔÓ Û ½¼ dersom ÔÛ ÔÛ Ô ¼ dersom ÔÛ Ô ÔÛ Denne subrutinen kalles opp en gang etter 1 iterasjon i hvert tidssteg 11

12 SUBROUTINE TRANS ÓÜÐÑ ÛÜÐÑ ÓÜÑÔ ÛÜÑÔ ÓÜÑÑ ÛÜÑÑ SUBROUTINE RAT Dersom pconst > 0 beregnes følgende størrelser: SUBROUTINE FLOCON ÕÓ ÕÛ ÕÓÔ ÕÛÔ ÕÓ ÕÛ ÔÓÛ ÓÛ ½ ¾ ÐÐ ÓÐÚ ÔÓÓ ÓÓ ÔÓÓ ÓÓ Ó Løsningen returneres i cc-matrisen Deretter settes so(i) = sold(i) + dso(i) Sjekk for konvergens Når løsningen har konvergert beregnes qo(1) og qw(1) dersom pconst > 0 Andre kommentarer Dersom alle deriverte med hensyn på metning settes lik null, altså at dkods, dkwds, dpcdsså er lik null, fås en IMPES formulering av ligningene Da kan s oi elimineres og en får kun en ligning per numerisk blokk Dersom en legger inn helning og gravitasjonsledd gho, ghw, må reservoarets ekvilibreres før start av simuleringen Definer woc der hvor Ô ¼ Beregn p o og p w som funksjon av høyden 12

13 p c p o p w Med denne verdien av p c går en inn i tabellen og finner s o Iterer til likevekt Noen modeller bruker sekvensiell løsning Da løser en først for p o med TRIDIA, deretter for s o med TRIDIA og iterer På grunn av blokkinndelingen vil modellen vise numerisk dispersjon Vannfronten vil bli utsmurt Dette kan rettes på med en frontfølgeteknikk 13

(a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax, pconst, tqchg.

(a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax, pconst, tqchg. 6. Radielt system Oppgaver 1. Programmet skal utvides til å inkludere (a) Alternativt lineært eller radielt system, (b) Innlesing av nye data ved tid tqchg: qo(1), qo(mx), delmin, delmax, dtmult, dpmax,

Detaljer

8. En fase i to dimensjoner

8. En fase i to dimensjoner 8. En fase i to dimensjoner Utvid programmet til også å inkludere strøm i to dimensjoner for en fase i et horisontalt system. Bruk implisitt formulering Løs ligningssettet med LSOR eller eliminasjon og

Detaljer

, tilsvarende terskeltrykket p d

, tilsvarende terskeltrykket p d HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 3. SEPTEMBER 1999 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET

Detaljer

Notat: Analytisk løsning

Notat: Analytisk løsning Notat: Analytisk løsning I dette notatet er utledet en analytisk løsning på det problemet som simuleres i øving 1: Strøm av en svakt kompressibel fase (olje) gjennom et horisontalt, endimensjonalt, reservoar

Detaljer

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er

Detaljer

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en

hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en Skisse til løsning Eksamen i Reservoarteknikk. september, 998 Oppgave a) v k dφ s µ ds ; () hvor s er målt langs strømningsretningen. Velges Darcy enheter så har en v s : volumhastighet, cm/s k : permeabilitet,

Detaljer

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering

Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Strøm av olje og vann i berggrunnen matematisk model, simulering og visualisering Hans Fredrik Nordhaug Matematisk institutt Faglig-pedagogisk dag, 01.02.2000. Oversikt 1 Oversikt Introduksjon. Hva er

Detaljer

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1):

Figur 1: Skisse av den ene armen til en sentrifuge; kjerne i beholder. dp = ρω 2 Z 2 1. rdr; = 1 2 ρω2 (r 2 2 r2 1): Skisse til løsning Eksamen i Reservoarteknikk 3. september, 999 Oppgave Figur : Skisse av den ene armen til en sentrifuge; kjerne i beholder. a Akselerasjonen er ω r. Kraftbidraget df fra masse dm i volumelement

Detaljer

Ò Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø

Ò Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø Ã Ô ½ Ú Ò Ò Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø Ð ÙØ ÐÐ Ö ÓÐ Ö ÓÒØ ÒØ ØÖ Ñ ÓÐ Ð ÙØ ÁÒÚ Ø Ö ÒÝ ÔÖÓ Ø Ö ÃÓÒØ Òع ÓÐ Ò Ò

Detaljer

Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010.

Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010. 1 Fakultet for teknisk naturvitenskapelige fag Emne: BIP 140, Reservoarteknikk Dato: 4. Desember 2010. Tid: 09.00-13.00 Tillatte hjelpemidler: Enkel kalkulator Oppgavesettet består av: 8 sider inkludert

Detaljer

Ã Ô ½ Ò Ò ÐÐ ØÖ

Ã Ô ½ Ò Ò ÐÐ ØÖ Ã Ô ½ Ò Ò ÐÐ ØÖ Ò Ø Ø Å Ð ÓÐ Ó ÓÒ ÙÖ Ø Ô Ö Ø Ñ Ö ËØÖ Ó ØÒ Ö Ó Ð Ô Ú Ö ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ ÚÚ Ò Ò Ø ÓÖ Ò ÒØ Ó ØÒ Ö Ñ Ð ÍØÒÝØØ Ò Ú ÐÒ Ú Ö ÅÓØ Ú Ö Ð Ö ÓÖ Ð Ö Ñ Ð ÝÑÑ ØÖ Ò ÓÖÑ ÓÒ Ó Ô Ø Ð ØÖÙ ØÙÖ Ã Ô Ø Ð

Detaljer

ÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð

ÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð ÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ Ù Ù Ø ¾ ¾¼¼ ½ Ì Ú Û ÜÔÖ Ö Ö ÑÝ ÓÛÒ Ò Ó ÒÓØ Ò Ö

Detaljer

Innføring i RESERVOARSIMULERING

Innføring i RESERVOARSIMULERING Innføring i RESERVOARSIMULERING Svein M. Skjæveland og Jann-Rune Ursin Høgskolen i Stavanger August 2001 Innhold I Teoretisk grunnlag 1 1 Opplegg 2 1.1 Undervisningsopplegg......................... 2 1.2

Detaljer

Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð

Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð Ò Ø Ø ÃÎÅ ÖÙÒÒ Ó ÓÖÙØ ØÒ Ò Ö Ë ÖÔ ¹ ÓÖ ÓÐ Ø Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø Ò Ò Ö ÃÎÅ Ó Ð ØÓÖÑÓ ÐÐ Ö Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò ÃÎŵ À Ò Ø Ò Ö ÓÑÑ Ö Ñ Ø Ð Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø ÒÒ Ò

Detaljer

R, t. reference model. observed model 1 P

R, t. reference model. observed model 1 P ÌÖ Ò Û Ø ÆÓÚ Ð ÈÓ Ø Ñ Ø ÓÒ Ð ÓÖ Ø Ñ Ó Ó ÊÓ Ò Ò ÆÓÖ ÖØ ÃÖĐÙ Ö ÌÓÖ Ê Ö Ð ËÓÑÑ Ö ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÙÒ ÈÖ Ø Å Ø Ñ Ø Ö Ø Ò¹ Ð Ö Ø ¹ÍÒ Ú Ö ØĐ Ø ÞÙ Ã Ð ÈÖ Ù Ö ØÖ ½¹ ¾ ½¼ à РÖÑ ÒÝ ÖÓ Ò Ö ØÖ º Ò ÓÖÑ Ø ºÙÒ

Detaljer

Ë Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È

Ë Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È Ë Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È Õµ Ý Ø Ò Ø Ð Õ µ Ú Û ¹ Ñ Ò ÓÒ Ð Ú ØÓÖ Ô ÓÚ Ö Õµº ÔÔÐ

Detaljer

σ cosθ φ (1) Forklar kort de størrelser som inngår, deres benevning i et konsistent sett av enheter og hva J-funksjonen brukes til.

σ cosθ φ (1) Forklar kort de størrelser som inngår, deres benevning i et konsistent sett av enheter og hva J-funksjonen brukes til. AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 7 sider MERKNADER: Ingen DATO: 3.JUNI

Detaljer

ResTek1 Løsning Øving 11

ResTek1 Løsning Øving 11 ResTek Løsning Øving Oppgave a) La L bety lengde, M masse, T tid i et hvilket som helst konsistent sett av enheter. Da er [k] L 2, [µ] MLT, [p] (MLT 2 )L 2 MLT 2, [c] LT 2 M, og da blir t D p D» kt φµcr

Detaljer

a) Anta først at drivmekanismen er oppløst gassdriv, uten gasskappe, og estimer oljevolum opprinnelig tilstede i reservoaret.

a) Anta først at drivmekanismen er oppløst gassdriv, uten gasskappe, og estimer oljevolum opprinnelig tilstede i reservoaret. ResTek1 Øving 9 Oppgave 1 Følgende data er hentet fra et oljereservoar: p N p R p B o R s B g psia 10 6 stb scf/stb rb/stb scf/stb rb/scf 3330 - - 1.2511 510 0.00087 3150 1.024 1050 1.2353 477 0.00092

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

ResTek1 Løsning Øving 11

ResTek1 Løsning Øving 11 ResTek Løsning Øving Oppgave a) La L bety lengde, M masse, T tid i et hvilket som helst konsistent sett av enheter. Da er [k] =L 2, [µ] =M/LT, [p] =(ML/T 2 )/L 2 = M/LT 2, [c] =LT 2 /M, og da blir [ ]

Detaljer

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ Ò Ø Ø Ò ÓÒ Ö ÓÚ Ö Ø Ö Ò Ò Ö Ò Ñ Ã ÐÐ Ö Ð Å ÐÐ Ö Ó ÅÓ Ð Ò Á Åž Ã Ô Ø Ð Ó ØÒ Ò Ø Ó Ð Ð ÐÙØÒ Ò Ö ÓÑ Ô Ø Ð ØÖÙ ØÙÖ À Ú Ø Ò Ò Ñ ÓÒ Ó ÙØÚ ÒÒ Ò ÅÅ ÄÓÚ Ò ÓÑ Ò ÔÖ Ó Ú Ö Ò

Detaljer

Ë Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾

Ë Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾ Ë Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾ Ò Ø Ø Ý Ö Ô ËØÖ Ñ ¾¼½ Ô ØØ Ð ½ Ó ¾µº ÀÚ Ö Ø ÓÖ Ø Ö Ô Ó ÓÒØÖÓÐÐ ÀÚ Ö Ø ÓÖ Ø Ì ÙØ Ò ÔÙÒ Ø ÚÓÖ Ò Ð Ô Ø Ò Ö Ó Ô ÖØÒ Ö Ôº Ë Ð Ô Ø Ó Ö Ú Ú Ò Ô Ö ÓÒ ÐÐ Ö Ú

Detaljer

Î Ö ØØ Ò Ú Ö

Î Ö ØØ Ò Ú Ö Î Ö ØØ Ò Ú Ö Ò Ø Ø Ò ÓÒ Ö ÆÆÎ Ñ ØÓ Ò Ú Ò ÑÓ ÐÐ Ò Î Ø Ú Ò Ò ÙÖ Ó Ò ÓÖÑ ÓÒ Ø Ô Ö Ò ÓÒ Ö Ò Ô Ø Ð = ÙÖ ÒØ ÐÐ Öµ ¼ = Ë ¼ ÒØ ÐÐ Öµ ½µ Ö Ø Ö ÙÐØ Ø ÔÖº ÈË ÖÒ Ò Ô Ö Ö µ ÈË Ø = Ö Ø Ö ÙÐØ Ø Ø ÒØ ÐÐ Ö Ø ¾µ ÈÖ ¹ ÖÒ

Detaljer

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2.

Oppgave 1. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, a) p c = 2σ/R hvor R = R 1 = R 2. Skisse til løsning Eksamen i Reservoarteknikk 1 4. juni, 003 Oppgave 1 a) p c = σ/r hvor R = R 1 = R. b) Arbeidet utført ved volumutvidelsen er netto kraft multiplisert med veien kraften har virket. Kraften

Detaljer

Differansemetoder for to-punkts randverdiproblemer. Innledning. Anne Kværnø

Differansemetoder for to-punkts randverdiproblemer. Innledning. Anne Kværnø Differansemetoder for to-punkts randverdiproblemer. Anne Kværnø Innledning Tidligere i kurset har dere diskutert parabolske, elliptiske og hyperbolske differensialligninger, og hvordan disse kan løses

Detaljer

ÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ

ÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ à Ժ ½ ÈÖ Ò Ú ÓÔ ÓÒ Ö ÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ Ò ÔÖ S T + ÍØ Ú Ð ÙÖ X Ì Ø Ð ÓÖ ÐÐ T + ÎÓÐ Ø Ð Ø Ø ÐÐ

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Ã Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ

Ã Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ Ã Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ ØØ Ö ÓÑ Ø ÖÑ Ò Ð Ò ÓÖ Ð Ö Ö ÒÓ ÒÖ Ù Ø ÖØ Ö Ò Ù ØÖ

Detaljer

ResTek1 Løsning Øving 12

ResTek1 Løsning Øving 12 ResTek1 Løsning Øving 12 Oppgave 1 Den totale kompressibiliteten er gitt ved, Fra plottet ser vi at. Dette gir Skinfaktoren er gitt ved Fra grafen i figur 1 ser en at. Dette gir en skadet brønn. Det kan

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

dq = c v dt + pdα = 0 dq = c p dt αdp = 0 µ pdα = αdp c p dα = c v dp = c v = D θ = T

dq = c v dt + pdα = 0 dq = c p dt αdp = 0 µ pdα = αdp c p dα = c v dp = c v = D θ = T ÙÖ ½ ÇÔÔ Ø Ò Ò Ò ÓÔÔ Ú º¾½ºÌº ¾¾¼¼ ØÑÓ Ö Ý ¾¼½ Ä Ò Ò ÓÖ Ð Ø Ð ÑÐ Ñ ØØ ÖÑÓÔÔ Ú Ö º¾½ºÌ Î ÒØ Ö Ø ÖÖ ÐÙ Ø Ó Ö Ø Ð Ô Ö Ø Ò Γ ÓÖ ÓÑ Ú Ð Ò µ ÐÐØ Ö Ñ Ò Ö ÒÒ Ø ÖÖ Ø Ò ÙÖ ½µº ÖÑ Ú Ð ÐÙ Ø ÓÑ Ú Ø Ð Ö Γ d µ ÐÐØ Ð

Detaljer

SIG4010 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4

SIG4010 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4 SIG4 STRØMNING I PORØSE MEDIA / FLUDMEKANIKK ØVING 4 Oppgave Nedenfor vises laboratorieresultater fra kapillærtrykksmålinger av systemet kerosen (parafin) som fortrenger formasjonsvann for tre kjerner

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

r t = S t r t ; s = ½ T T

r t = S t r t ; s = ½ T T Å Ö ÔÓÖØ Ð Ò Ó ÃÎÅ Ò Ø Ø Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ÈÓÖØ Ð Ú Æ Ó ÇÖ Ð Ö Ò Ò Ú Ã¹ Ó ØÒ Ò Ò ÒÚ Ø Ö Ò ÐÐÙ ØÖ ÓÒ ËÐÙØØÚÙÖ Ö Ò Ú ÃÎÅ Î Ð ÒÒÓÑ Ð Ò Ø ½º Ö Ò Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ØÖ Ö Æ ÇÖ Ð Ó Å Ö Ò À ÖÚ Ø Ó ÓÚ Ò Ò

Detaljer

d) Beregn trykket i brønnen ved bruk av data fra tabell 1.

d) Beregn trykket i brønnen ved bruk av data fra tabell 1. HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG DATO: 21. SEPTEMBER 1998 EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

ResTek1 Løsning Øving 5

ResTek1 Løsning Øving 5 ResTek1 Løsning Øving 5 Ogave 1 Bruker at cr = h(ρ w ρ o ) 62:4=144, når er i si, h ft, ρ g/cm 3,ogat cl = σ L =σ R cr, som gir at cl = 0:188h. Dette gir følgende tabell, 1000 md røve 200 md røve h[ft]

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

kun avhenge av trykket og vi kan skifte fra partiell til ordinær derivasjon. Ved å føre inn massen m f får vi til volumet V f

kun avhenge av trykket og vi kan skifte fra partiell til ordinær derivasjon. Ved å føre inn massen m f får vi til volumet V f Utkast til løsning Oppgave 1 a) Det er massen som bevares. Symbol u står for Dary hastighet (eller volumhastighet, eller superfiial veloity i f.eks. m/s; q er kildeledd som uttrykker injeksjon eller produksjon

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen.

a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da, kan vi vi finne en tilnærming av akselerasjonen. Oppgave 1 a) Ved numerisk metode er det løst en differensiallikning av et objekt som faller mot jorden. Da verdier av er kjent gjennom resultater i form av,, kan vi vi finne en tilnærming av akselerasjonen.

Detaljer

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering

Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering Bioberegninger - notat 4: Mer om sannsynlighetsmaksimering 8. mars 2004 1 Kort om Newton s metode i flere dimensjoner Newton s metode kan generaliseres til å løse sett av n ligninger med n ukjente. Skal

Detaljer

Løsning til øving 1 for FY1004, høsten 2007

Løsning til øving 1 for FY1004, høsten 2007 Løsning til øving 1 for FY1004, østen 2007 1 Oppgave 4 fra læreboka Modern Pysis, 3 utgave: a Bruk Stefan Boltzmanns lov kalt Stefans lov i boka til å regne ut total utstrålt effekt pr areal for en tråd

Detaljer

EKSAMEN I FAG SIF5050 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN

EKSAMEN I FAG SIF5050 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Institutt for matematiske fag Faglig kontakt under eksamen: Einar M. Rønquist (73593547) EKSAMEN I FAG SIF55 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Onsdag 29. mai

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Innføring i RESERVOARSIMULERING. Svein M. Skjæveland og Jann-Rune Ursin

Innføring i RESERVOARSIMULERING. Svein M. Skjæveland og Jann-Rune Ursin Innføring i RESERVOARSIMULERING Svein M. Skjæveland og Jann-Rune Ursin Høgskolen i Stavanger august 1999 Innhold I Teoretisk grunnlag 1 1 Opplegg 2 1.1 Undervisningsopplegg... 2 1.2 Faglig omfang........

Detaljer

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015

Oppsummering TMA4100. Kristian Seip. 16./17. november 2015 Oppsummering TMA4100 Kristian Seip 16./17. november 2015 Forelesningene 17./18. november Denne forelesningen beskriver de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 noen tips for

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

ResTek1 Øving 12. Oppgave 1 Trykkfallstest. Oppgave 2 Trykkfallstest

ResTek1 Øving 12. Oppgave 1 Trykkfallstest. Oppgave 2 Trykkfallstest ResTek1 Øving 12 Oppgave 1 Trykkfallstest Følgende formasjons- og produksjonsdata er gitt for denne trykkfallstesten, tabell 1, Trykkdata er gitt i tabell 2, Beregn permeabilitet og skinfaktor fra transient

Detaljer

Innføring i RESERVOARSIMULERING

Innføring i RESERVOARSIMULERING Innføring i RESERVOARSIMULERING Svein M. Skjæveland og Jann-Rune Ursin Høgskolen i Stavanger August 2000 Innhold I Teoretisk grunnlag 1 1 Opplegg 2 1.1 Undervisningsopplegg......................... 2 1.2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

HØGSKOLEN I STAVANGER ...(1) Hvordan blir denne ligningen dersom skilleflaten mellom fasene er en kuleflate?

HØGSKOLEN I STAVANGER ...(1) Hvordan blir denne ligningen dersom skilleflaten mellom fasene er en kuleflate? HØGSKOLEN I STAVANGER AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 0195 Reservoarteknikk 1 VARIGHET: kl. 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 5 sider MERKNADER:

Detaljer

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann.

d) Poenget er å regne ut terskeltrykket til kappebergarten og omgjøre dette til en tilsvarende høyde av en oljekolonne i vann. Sisse til løsning Esamen i Reservoarteni 3. juni, 999 Oppgave a) Kapillartry er differansen i try mellom to faser på hver side av den infinitesimale overflaten som siller fasene. Det følger av en minimalisering

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

ÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ

ÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ ÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ Ö ÄËʹÁÅ ÔÖÓ Ø Ë Ê Ë Ò Ð Ö Ð³ ÓÐ ÓØÓÖ Ð Å Ø Ñ Ø ÕÙ

Detaljer

Viktig informasjon. Taylorrekker

Viktig informasjon. Taylorrekker Viktig informasjon MAT-IN1105 - Programmering, modellering og beregninger Fredag 15 desember 2017 Kl09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator I

Detaljer

Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À

Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À Ú ÖÐ Ð Ùѵ Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ

Detaljer

ËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø

ËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø ËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø Ñ Ø Ð Ë Ò ÄÙÒ ÍÒ Ú Ö ØÝ ¾ Å Ø Ñ Ø Ð Ë Ò ÆÓÖÛ Ò ÍÒ

Detaljer

(a δ,a+δ), (a δ,a+δ) = {x R x a < δ}. (a δ,a+δ)\{a} = (a δ,a) (a,a+δ) = {x R 0 < x a < δ}, f(x) = 2x 1.

(a δ,a+δ), (a δ,a+δ) = {x R x a < δ}. (a δ,a+δ)\{a} = (a δ,a) (a,a+δ) = {x R 0 < x a < δ}, f(x) = 2x 1. ÆÇÌ Ì ÇÅ Ê ÆË Ê Î Ä ÌÁÄ ÊÍà Á ÃÍÊË Ì Å Ì½½½ Î ÍÆÁÎ ÊËÁÌ Ì Ì Á Ê Æ ØØ ÒÓØ Ø Ø ÒÒ ÓÐ Ö ÒÓ ÒÝØØ Ô Ò ÙÑ ÙÖ Ø Å Ì½½½ ÓÖ ÓÐ Ø Ð ÐÖ Ó Ò Ó Ö ÙÒ Ñ ÒØ ÓÑ Ø ÙØ ÝÐÐ Ò ÒÓØ Ø Ø Ð Ã Ô ØØ Ð ½ Ñ Ð ÒØ ÒÒ Ø ÒÓ Ò Ö ÑÔÐ Ö

Detaljer

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ

Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ò Ø Ø Ê ÒØ ØØ ÓÖ Ð Ò Î Ö Ò Ú Ö ÒØ ØØ ÓÖ Ð Ò Ê Ô Ø Ð Ö Ò ÓÖ Ò ÓÔÔ ÊË È Ö ÓÒ ØØ Ö ÌÓÐ ØÒ Ò ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ Ñ ØØ Ö Ê ÒØ ØØ ÓÖ Ð Ò Ø ÐØ Ö ÒØ Ö Ö Ö ÒØ Ö Ö Á ÓÐ ÖØ Ö ØØ Ø Ò

Detaljer

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013

Oppsummering TMA4100. Kristian Seip. 26./28. november 2013 Oppsummering TMA4100 Kristian Seip 26./28. november 2013 Forelesningene 26./28. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA2501 Numeriske metoder Løsningsforslag, øving 7 Oppgave 1 a) Vi vet at r = Ae e = A 1 r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA250 Numeriske metoder Oppgave Løsningsforslag, øving 7 a) Vi vet at r = Ae e = A r. La være en vektornorm på R n med en tilhørende avledet (subordinat) matrisenorm på R n n. Siden blir Ax A = sup Ax

Detaljer

Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede

Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede ResTek1 Øving 5 Oppgave 1 Følgende kapillartrykksdata ble oppnådd ved å fortrenge vann med luft fra to vannmettede kjerneplugger: 1000 md prøve 200 md prøve P c psi S w P c psi S w 1.0 1.00 3.0 1.00 1.5

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5

Fasit til utvalgte oppgaver MAT1110, uka 28/4-2/5 Fasit til utvalgte oppgaver MAT1110, uka 8/4-/5 Tom Lindstrøm (lindstro@math.uio.no) 5..5 a) Alle punktene i B har avstand til origo større enn 1, så d(0, B) må være minst 1. Ved å velge punkter på x-aksen

Detaljer

TEMA: Damp/Væske-likevekter og Flash-Separasjon. Løsningsforslag:

TEMA: Damp/Væske-likevekter og Flash-Separasjon. Løsningsforslag: Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Energi og Prosessteknikk Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 10 År: 2004

Detaljer

EKSAMEN I FAG TMA4220 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN

EKSAMEN I FAG TMA4220 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Institutt for matematiske fag Faglig kontakt under eksamen: Einar M. Rønquist (73593547 EKSAMEN I FAG TMA422 NUMERISK LØSNING AV PARTIELLE DIFFERENSIALLIGNINGER VED HJELP AV ELEMENTMETODEN Torsdag 3. mai

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Ò Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö

Ò Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö Ò Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö ÅÙÖÖ Ý À ÐÐ Æ ͺ˺ º ¹Ñ Ð Ô Ô Ö Ö º ÐйРºÓÑ ÊÇ ÊÌÇ

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

Prøveunderveiseksamen i MAT-INF 1100, H-03

Prøveunderveiseksamen i MAT-INF 1100, H-03 Prøveunderveiseksamen i MAT-INF 1100, H-03 Denne prøveeksamenen har samme format som den virkelige underveiseksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. De 15 første oppgavene

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Numerisk løsning av ODL

Numerisk løsning av ODL Numerisk løsning av ODL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 5. November 2007 Problem og framgangsmåte Vi vil finne en tilnærming til

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ

Viktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ Viktig informasjon MAT-IN1105 - Modellering og beregninger Mandag 10. desember 2018 Kl.09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator. I dette oppgavesettet

Detaljer

Ì ÊÁË ÈÖÓ Ö Ñ ÜÔÐÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓÐ Ò Ë Ö Ò Ö ÏÓÐ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ ÓÐ ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã ÔÐ Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ

Ì ÊÁË ÈÖÓ Ö Ñ ÜÔÐÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓÐ Ò Ë Ö Ò Ö ÏÓÐ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ ÓÐ ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã ÔÐ Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ Ì ÊÁË ÈÖÓ Ö Ñ ÜÔÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓ Ò Ë Ö Ò Ö ÏÓ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ Ó ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã Ô Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ ØØÔ»»ÛÛÛºÖ º Ùº Ø ÏÓ Ò Ë Ö Ò Ö ØØÔ»»ÛÛÛºÖ º Ùº Ø ½»½ Ó Ò

Detaljer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer

MA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()

Detaljer

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014

Oppsummering TMA4100. Kristian Seip. 17./18. november 2014 Oppsummering TMA4100 Kristian Seip 17./18. november 2014 Forelesningene 17./18. november Disse forelesningene er et forsøk på å se de store linjer og sammenhengen mellom de ulike deltemaene i TMA4100 delvis

Detaljer

Eksamensoppgave i MA2501 Numeriske metoder

Eksamensoppgave i MA2501 Numeriske metoder Institutt for matematiske fag Eksamensoppgave i MA50 Numeriske metoder Faglig kontakt under eksamen: Trond Kvamsdal Tlf: 9305870 Eksamensdato: 3. mai 08 Eksamenstid (fra til): 09:00 3:00 Hjelpemiddelkode/Tillatte

Detaljer

...(1) R 1. og R 2. står for og forklar hvorfor kapillartrykket vanligvis er en funksjon av metningen.

...(1) R 1. og R 2. står for og forklar hvorfor kapillartrykket vanligvis er en funksjon av metningen. AVDELING FOR TEKNISK - NATURVITENSKAPELIGE FAG EKSAMEN I: TE 195 Reservoarteknikk 1 VARIGHET: kl 09.00 14.00 TILLATTE HJELPEMIDLER: Kalkulator OPPGAVESETTET BESTÅR AV: 7 sider MERKNADER: Ingen DATO: 27.MAI

Detaljer

ÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº Â ÔÖ Ú

ÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº  ÔÖ Ú ÀÚÓÖ ÓÖ Ñ ØØ Ë ÙÖ Ï ÒÒ Ö ½½º Ó ØÓ Ö ¾¼¼ ½ ÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº  ÔÖ Ú Ö Ó Ò ÚÒ

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Notat om Peanos aksiomer for MAT1140

Notat om Peanos aksiomer for MAT1140 Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark

Underveiseksamen i MAT-INF 1100, 17. oktober 2003 Tid: Oppgave- og svarark Underveiseksamen i MAT-INF 1100, 17. oktober 003 Tid: 9.00 11.00 Kandidatnummer: De 15 første oppgavene teller poeng hver, de siste 5 teller 4 poeng hver. Den totale poengsummen er altså 50. Det er 5 svaralternativer

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

ÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø

ÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø ÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø ÁÆÆÀÇÄ ÁÒÒ ÓÐ ½ À Ò Ø Ñ ÓÔÔ Ú Ò ½ ¾ ÇÑ ÔÖÓ ÒÐ Ø ¾ ¾º½ ÈÖÓ Ö Ú Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ÈÖÓ Ò ÁÒ

Detaljer

ÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö

ÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö ÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö Ñ ºÙÒ ¹Ô Ùº ØØÔ»»ÛÛÛº Ñ ºÙÒ ¹Ô Ùº» Ð Ò Ù Ö» Å Ý ½ ØÖ

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2015

MA1102 Grunnkurs i Analyse II Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i Analyse II Vår 215 Løsningsforslag Øving 5 11.3:3 f n (x) = 2n+1 x? = x 1 2n+1. (Det er muligens en forskjell

Detaljer