Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013

Størrelse: px
Begynne med side:

Download "Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013"

Transkript

1 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: April 9, 5 a) Den tidsuavhengige Schrödingerlikninga er ] [ h m + V (r, φ) ψ(r, φ) = Eψ(r, φ). () der Innsetting av L z = i h gjev φ ( [ h m r + ) r r L z h r = r + r r + r φ. () ] + V (r, φ) ψ(r, φ) = Eψ(r, φ). (3) L z = i h φ kommuterer med Ĥ fordi L z kommuterer med r (partielderiverte kommuterer) fordi L z kommuterer med r (fordi L z er uavhengig av r) og difor med ein vilkårleg funksjon f(r).

2 Dersom vi krev at bølgjefunksjonen skal vere eintydig får vi ψ(r, ) = ψ(r, π), (4) sidan φ = og φ = π er same punkt på sirkelen. (Ein kan sjølsagt velje eit vilkårleg punkt på sirkelen). Etter innsetting i (4) og forkorting med R(r) gjev dette = e πim. Denne likninga har løysing m =, ±, ±,.... (5) b) Innsetting av ψ(r, φ) = R(r)e imφ i likning () og forkorting med e imφ gjev direkte den oppgjevne likninga. etc. Ved innset- c) Dersom vi skiftar variabel x = r µω får vi d = µω h dr h ting av V (r) = µω r = hωx gjev dette hω [ d dx + d x dx m x Vi har R(r) = u(x) = P (x)e x. Dette gjev d dx ] u(x) + hωx u(x) = Eu(x) (6) u (x) = P (x)e x P (x)xe x, (7) u (x) = P (x)e x P (x)xe x + P (x) ( x ) e x. (8) Innsetting av u (x) og u (x) og forkorting med hω og e x gjev ( ) ) P (x) + x x P (x) + (ɛ m P (x) =. (9) x c) Vi bruker potensrekkjemetoden og skriv P (x) = a n x n. () Dette gjev P (x) = P (x) = n= a n nx n = n= a n n(n )x n = n= Innsetting gjev da a n n(n )x n + n= +(ɛ ) n= a n nx n, () n= a n n(n )x n. () n= a n nx n a n nx n a n x n m n= n= n= a n x n =. (3)

3 Dette kan vi skrive som a n n(n )x n + a x + a n nx n a n nx n n= n= n= ( +(ɛ ) a n x n m a x + a ) m a n x n =. (4) x n= Dersom vi redefinerer n n i det første, tredje og siste leddet, får vi etter litt opprydding n= [ ] an+ (n + ) m a n+ + (ɛ n ) a n x n n= + a ( m ) x a m x =. (5) Koeffisienten foran kvar potens av x må vere lik null. Dette gjev rekursjonsrelasjonen a n+ = n + ɛ (n + ) m a n. (6) I tillegg må a = viss m og a = viss m. Rekursjonsformelen viser at a n+ /a n /n for store n som er same oppførsel som rekkja for e x. Det vil seie at P (x) e x for store x og difor at u(x) e x for store x. u(x) er såleis ikkje normerbar. Einaste vegen ut er at rekkja terminerer, det vil seie a n+ = for passe heiltal n. Dette gjev eller ɛ = n +, (7) E = hω(n + ). (8) d) Dersom P (x) = A er konstant får vi ved innsetting i (9) ) (ɛ m A =, (9) som har løysing når ɛ = og m =. Dersom P (x) = Bx får vi ved innsetting og litt opprydding x ( ) m B + x (ɛ 4) B =, () x

4 som har løysing ɛ = 4 og m =, det vil seie m = ±. e) Energien til den isotrope todimensjonale oscillatoren er E = hω(n x + n y + ), () der n x =,,... og n y =,,... Grunntilstanden er for n x = n y = og E = hω som tilsvarer ɛ =. Middelverdien r kan skrivast som r = π r ψ r dr dφ π ψ r dr dφ, () der nemnaren er normeringsintegralet av ψ (r, φ). Etter innsetting av ψ (r, φ) gjev vinkelintegralet π i tellar og nemnar. Ny variabel x = r µω/ h gjev da r = h x 3 e x dx µω xe x dx = h µω = h µω, ye y dx e y dx der vi andre linje har skifta variabel, y = x. Dette gjev V (r) = µω r = hω. (3) Vi har H = E k + V (r) og E = H. Dette gjev Sidan E = ( hω)ɛ = hω for grunntilstanden får vi E k = E V (r). (4) E k = hω. (5) Energien E er da i middel likt fordelt mellom potensiell og kinetisk energi. Venderadien er gjeve E V (r vende ) =. (6)

5 Med E = hωɛ = hω får vi µω r vende = hω, (7) som har løysing r vende = h µω. (8) Oppgåve a) På grunn av faktoren e αx går ψ(x) når x + og ψ(x) er difor lokalisert. ψ(x) beskriv da ein bunden tilstand. Normeringsintegralet er ψ(x) = A x e αx dx = A 8α 3 y e y dy = A 4α 3! =. (9) Dersom ein veljer A reell får vi A = α 3 blir og den normerte bølgjefunksjonen b) Middelverdien til den potensielle energien er ψ(x) = α 3 xe αx. (3) V (x) = 4F α 3 x 3 e αx dx = F 4α c) Middelverdien til den kinetiske energien er E k = h m = h m y 3 e y dy = 3F α. (3) ψ(x) d ψ(x) dx dx [ ] d dx ψ(x) dx (3)

6 etter delvis integrasjon. Innsetting av ψ(x) gjev E k = h m 4α3 = h m α = h m α. [ αx] e αx dx ( y ) e y dy d) Den totale energien til systemet kan vi da skrive som E = E k + E p = h m α + 3F α. (33) Verdien på α som minimaliserer E, α min, finn ein ved å løyse de dα gjev =. Dette h m α min 3F α min =, (34) eller α min = ( 3mF h ) 3. (35) Innsett i uttrykket for E får vi da E min = ( h m ) 3 F 3. (36) der prefaktoren er Feilen i grunntilstandsenergien er omlag 6 4 d prosent. Ikkje dårleg. Merk: E = h + 3F > for alle α > og vi har dα m α 3 såleis eit minimum og ikkje eit maksimum. E k er gjeve integralet ved ( d dx ψ) og blir mindre jo flatare ψ(x) er (ψ(x) = konstant minimerer E k ). Den potensielle energien E p blir mindre desto meir bølgjefunksjonen er konsentret rundt x = (som er minimum til V (x)). Verdien på α som minimaliserer E, α min, er da eit kompromiss mellom desse to ledda.

7 Oppgåve 3 a) Funksjonen r kommuterer opplagt med funksjonen V (r) og også med L mr fordi L er uavhengig av. Vi treng difor berre å rekne ut [ +, r]. Vi r r r r får da [ r + ] r r, r ψ = r (rψ) + (rψ) r r r r ψ r ψ = ( r + r ) ψ, der ψ er ein vilkårleg glatt funksjon. Altså er [Ĥ, r] = h m ( r + r ). (37) b) Fouriertranformen i tre dimensjonar er Φ(p) = ψ(r)e ip r/ h d 3 r. (38) (π h) 3 Ved innsetting gjev dette Φ(p) = π(π ha ) 3 e ip r/ h e r/a d 3 r. (39) Sidan ψ er uavhengig av vinklane kan vi bruke hintet som er gjeve i oppgåva. Vinkelintegralet blir då π π e ipr cos θ/ h dω = dφ e ipr cos θ/ h sin θdθ [ ] e ipr cos θ/ h π = π h ipr = π h [ e ipr/ h e ipr/ h]. (4) ipr Innsetting av dette i radialintegralet gjev Φ(p) = π h re [ r/a e ipr/ h e ipr/ h] dr ip (πa h) 3 = ( ) 3 a π h ( + a p / h (4) ) Vi noterer oss at Φ(p) er kulesymmetrisk i impulsrommet akkurat som ψ(r, θ, φ) er kulesymmetrisk i koordinatrommet. Φ(p) gjev impulsfordelinga i grunntilstanden.

8 c) Klassisk mekanikk er deterministisk. I prinsipp kan vi løyse Newtons bevegelseslikningar dersom vi kjenner kreftene på systemet og initialkrava. I kvantemekanikken gjev ψ som er løysinga av Schrödingerlikninga all informasjon om systemet. Denne informasjonen er av statistisk natur. For eksempel vil ψ(x) gje sannsynlegheitsfordelinga for posisjonen til ein partikkel på x-aksen. I tillegg vil to observable som ikkje er kompatible (der dei tilhøyrande operatorane ikkje kommuterer) ikkje vere skarpe samtidig. Det vil seie at systemet ikkje kan vere i ein eigentilstand for begge observable samtidig. Eksempel er posisjonen x og impulsen p. Usikkerheita i slike observable er gjevne ved uskarpheitsrelasjonar. d) Dersom vi bruker klassisk fysikk vil partikkelen sprette tilbake viss E < V (%refleksjon). Dersom E > V vil partikkelen beveges seg mot høgre med redusert hastighet (% transmisjon) Kvantemekanisk vil refleksjonskoeffisienten, det vil seie sannsynlegheiten for at partikkelen blir reflektert vere lik når E < V. Dette er klassisk oppførsel. Når E > V er refleksjonskoeffisienten ein avtagande funksjon av E, men er positiv. Dette er altså ikkje-klassisk oppførsel. Sjå figur. Figure : Refleksjonskoeffisient for eit potensialsprang som funksjon av E/V.

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015

Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.

Detaljer

1 Stokastisk variabel

1 Stokastisk variabel FY1/TFY415 Innføring i kvantefysikk - Notat om sannsynlegheit 1 1 Stokastisk variabel Før vi byrjar på oppgåvene gjev vi ein liten briefing om stokastiske variable, middelverdiar, usikkerheiter osb. Ein

Detaljer

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2

ØVING 2. Krumningseigenskapar for eindimensjonale energieigenfunksjonar. h2 + V (x). (0.1) 2m dx 2 FY006/TFY45 Innføring i kvantefysikk - Øving Frist for innlevering: tirsdag 4. februar Oppgave ØVING Krumningseigenskapar for eindimensjonale energieigenfunksjonar Ein partikkel med masse m bevegar seg

Detaljer

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom

LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom FY6/TFY45 - Løysing øving 6 Løysing oppgåve LØYSING ØVING 6 Grunntilstanden i hydrogenliknande atom a) Vi merkar oss fyrst at vinkelderivasjonane i Laplace-operatoren gjev null bidrag til r, sidan (r)

Detaljer

FY1006/TFY Øving 4 1 ØVING 4

FY1006/TFY Øving 4 1 ØVING 4 FY006/TFY425 - Øving 4 Frist for innlevering: tirsdag 24. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-system Som diskutert på side 0 i boka til Hemmer, er det eit viktig poeng både i klassisk

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Onsdag 11. august 2010 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng, tel. 73 59 36 63, eller 45 45 55 33 EKSAMEN I FY1006 INNFØRING

Detaljer

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 28. mai 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Eksamen SIF4048 8.05.03 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 8. mai 003 SIF4048 Kjemisk fysikk og kvantemekanikk a. Da sannsynlighetstettheten Ψ(x, 0) = β/π exp( βx ) er symmetrisk med

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)

Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer) 1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:

Detaljer

TUNNELERING. - eit viktig kvantemekanisk fenomen

TUNNELERING. - eit viktig kvantemekanisk fenomen TUNNELERING - eit viktig kvantemekanisk fenomen Tunnelering Ein kvantemekanisk partikkel kan vere i stand til å passere ein potensialbarriere sjølv om partikkelenergien er mindre enn høgda til barrieren!

Detaljer

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00

EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00 Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK

Detaljer

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l.

ØVING 12. Vinkelfunksjonar, radialfunksjonar og orbitalar for hydrogenliknande. Y lm ; l =0, 1, ; m = l,,l. FY1006/TFY4215 - Øving 12 1 Frit for innlevering: Tirdag 22. april kl.1700 Oppgåve 1 ytem ØVING 12 Vinkelfunkjonar, radialfunkjonar og orbitalar for hydrogenliknande For ein partikkel om bevegar eg i eit

Detaljer

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl

EKSAMEN I FY1006 INNFØRING I KVANTEFYSIKK/ TFY4215 INNFØRING I KVANTEFYSIKK Lørdag 13. august 2011 kl NORSK TEKST Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Ingjald Øverbø, tel. 73 59 18 67, eller 97 01 23 55 Jon Andreas Støvneng, tel.

Detaljer

ØVING 4. @V @x i. @V @x

ØVING 4. @V @x i. @V @x FY006/TFY425 - Øving 4 Frit for innlevering: tirdag 8. februar, kl 7.00 Oppgåve ØVING 4 Vibrerande to-partikkel-ytem Som dikutert på ide 0 i boka til Hemmer, er det eit viktig poeng både i klaik mekanikk

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet.

En samling av mer eller mindre relevante formler (uten nærmere forklaring) er gitt til slutt i oppgavesettet. Norges teknisk-naturvitenskapelige universitet NTNU Institutt for fysikk Lade EKSAMEN I: MNF FY 44 KVANTEMEKANIKK I DATO: Tirsdag 4. desember 999 TID: 9.00 5.00 Antall vekttall: 4 Antall sider: 3 Sensurdato:

Detaljer

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1

LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 2011 kl. 09:00-14: i( 3 + 1) = i + i + 1 LYØSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 18. mai 011 kl. 09:00-1:00 NYNORSK OPPGAVE 1 Gitt dei komplekse tala z = 3 + i, w = 1 + i a Rekn ut (skriv på forma a + bi (i z + 3w,

Detaljer

Fasehastighet: Gruppehastighet:

Fasehastighet: Gruppehastighet: Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store

Detaljer

Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Enkel introduksjon til kvantemekanikken

Enkel introduksjon til kvantemekanikken Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks

Detaljer

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra

11 Harmonisk oscillator og dreieimpuls vha operatoralgebra TFY4250/FY2045 Tillegg 11 - Harmonisk oscillator og dreieimpuls operatoralgebra 1 TILLEGG 11 11 Harmonisk oscillator og dreieimpuls vha operatoralgebra I Tillegg 3 er den harmoniske oscillatoren gitt en

Detaljer

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6.

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Atomstruktur Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Hydrogenatomet Det enklaste atomet 1 elektron bunde til atomkjernen, som har 1 proton Bindinga er pga. den elektriske tiltrekningskrafta

Detaljer

FAKTA. Likeverdige brökar: BrÖkar som har same verdien: 2 = 2 4 = 3 6 = 4 8 = 5

FAKTA. Likeverdige brökar: BrÖkar som har same verdien: 2 = 2 4 = 3 6 = 4 8 = 5 FAKTA Likeverdige brökar: BrÖkar som har same verdien: = = 6 = 8 = 0 utvide ein brök: utvide ein brök vil seie Ô multiplisere teljaren og nemnaren med same talet. BrÖken endrar da ikkje verdi: = = 6 brøk

Detaljer

Dersom summen vert over 400 g må ein trekkje dette frå.

Dersom summen vert over 400 g må ein trekkje dette frå. 13. POLYGONDRAG Nemninga polygondrag kjem frå ein tidlegare nytta metode der ein laga ein lukka polygon ved å måle sidene og vinklane i polygonen. I dag er denne typen lukka polygon lite, om i det heile

Detaljer

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL)

EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 6. desember 2011. Tid : 09.00-13.00. Sted: : Adm. bygget, Aud. max. eller B154. Tillatte hjelpemidler : Alle

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Å løyse kvadratiske likningar

Å løyse kvadratiske likningar Å løyse kvadratiske likningar Me vil no sjå på korleis me kan løyse kvadratiske likningar, og me tek utgangspunkt i ei geometrisk tolking der det kvadrerte leddet i likninga blir tolka geometrisk som eit

Detaljer

EKSAMENSOPPGAVE. Rottman - Matematisk formelsamling. Linje. Marius Kadek. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen

EKSAMENSOPPGAVE. Rottman - Matematisk formelsamling. Linje. Marius Kadek. NB! Det er ikke tillatt å levere inn kladd sammen med besvarelsen Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: Fys- Kvantemekanikk Dato: 7. juni 16 Klokkeslett: 9: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Rottman - Matematisk formelsamling Type

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal

Detaljer

RETTLEIING FOR BRUK AV «MIN SIDE» I DEN ELEKTRONISKE SKJEMALØYSINGA FOR FRI RETTSHJELP. Oppdatert 19.september 2012 Ove Midtbø FMSF

RETTLEIING FOR BRUK AV «MIN SIDE» I DEN ELEKTRONISKE SKJEMALØYSINGA FOR FRI RETTSHJELP. Oppdatert 19.september 2012 Ove Midtbø FMSF RETTLEIING FOR BRUK AV «MIN SIDE» I DEN ELEKTRONISKE SKJEMALØYSINGA FOR FRI RETTSHJELP Oppdatert 19.september 2012 Ove Midtbø FMSF 1 INNHOLD OM RETTLEIAREN... 3 FUNKSJONANE PÅ «MIN SIDE»... 3 MINE SAKER...

Detaljer

Eksamensoppgive FYSIKK. Nynorsk. 6. august 2002. Eksamenstid: 5 timar. Hielpemiddel: Lommereknar

Eksamensoppgive FYSIKK. Nynorsk. 6. august 2002. Eksamenstid: 5 timar. Hielpemiddel: Lommereknar UNIVERSITETS. OG HOGSKOLERADEI Eksamensoppgive FYSIKK Nynorsk 6. august 2002 Forkurs for ingeniorutdanning og maritim hogskoleutdanning Eksamenstid: 5 timar Hielpemiddel: Lommereknar Tabellar i fysikk

Detaljer

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6.

Atomstruktur. Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Atomstruktur Ein diskusjon av hovudpunkta frå YF 41.3, 41.5, 41.6. Hydrogenatomet Det enklaste atomet 1 elektron bunde til atomkjernen, som har 1 proton Bindinga er pga. den elektriske tiltrekningskrafta

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

MA3002 Generell topologi

MA3002 Generell topologi Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag Side 1 av 7 Fagleg kontakt under eksamen: Richard Williamson, (735) 90154 MA3002 Generell topologi Laurdag 1. juni 2013 Tid: 09:00

Detaljer

2) Finn koordinatane til eventuelle topp- og botnpunkt på grafen til f ved rekning.

2) Finn koordinatane til eventuelle topp- og botnpunkt på grafen til f ved rekning. OPPGÅVE a) Deriver funksjonen f( ) = tan 2 ( ) b) Bestem integralet 4 lnd c) Bestem integralet + 2 d d) Gitt funksjonen f ( ) = cos 5 0, 2π ) Finn f ( ) 2) Finn koordinatane til eventuelle topp- og botnpunkt

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

KappAbel 2010/11 Oppgåver 2. runde - Nynorsk

KappAbel 2010/11 Oppgåver 2. runde - Nynorsk Reglar for poenggjeving på oppgåvene (sjå konkurransereglane) : Rett svar gir 5 poeng. Galt svar gir 0 poeng Blank gir 1 poeng. NB: På oppgåvene 2 og 5 får ein 5 poeng for 2 rette svar. Eitt rett svar

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen TFY 4104 Fysikk Hausten 2009

Eksamen TFY 4104 Fysikk Hausten 2009 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Eksamen TFY 404 Fysikk Hausten 2009 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 735933 Mandag 30. november

Detaljer

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)

Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is) Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi

Detaljer

KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerande system. Laurdag 8. august 2009, kl. 09.00 13.00

KONTINUASJONSEKSAMEN I EMNE. TDT4136 Logikk og resonnerande system. Laurdag 8. august 2009, kl. 09.00 13.00 Side 1 av 6 KONTINUASJONSEKSAMEN I EMNE TDT4136 Logikk og resonnerande system Laurdag 8. august 2009, kl. 09.00 13.00 Oppgåva er laga av Tore Amble, og kvalitetssikret av Lester Solbakken. Kontaktperson

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Kontinuasjonseksamen i emne TFE4130 Bølgeforplanting

Kontinuasjonseksamen i emne TFE4130 Bølgeforplanting Noregs teknisk naturvitskaplege universitet Institutt for elektronikk og telekommunikasjon Side av 9 Contact during exam: Name: Robert Marskar Tel: 48 22 20 9 Kontinuasjonseksamen i emne TFE430 Bølgeforplanting

Detaljer

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc. Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Eksamensoppgåve i TFY4108 Fysikk

Eksamensoppgåve i TFY4108 Fysikk Institutt for fysikk Eksamensoppgåve i TFY4108 Fysikk Fagleg kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 18 desember 2013 Eksamenstid (frå-til): 9-13 Hjelpemiddelkode/Tillatne

Detaljer

Brukarrettleiing E-post lesar www.kvam.no/epost

Brukarrettleiing E-post lesar www.kvam.no/epost Brukarrettleiing E-post lesar www.kvam.no/epost Kvam herad Bruka e-post lesaren til Kvam herad Alle ansatte i Kvam herad har gratis e-post via heradet sine nettsider. LOGGE INN OG UT AV E-POSTLESAREN TIL

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Nynorsk. Eksamensinformasjon

Nynorsk. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte

Detaljer

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14 5 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 5 014-10-14 15:08:14 Algebra MÅL for opplæringa er at eleven skal kunne forenkle fleirledda uttrykk og løyse likningar av første grad og enkle potenslikningar

Detaljer

Kollokvium 4 Grunnlaget for Schrödingerligningen

Kollokvium 4 Grunnlaget for Schrödingerligningen Kollokvium 4 Grunnlaget for Scrödingerligningen 10. februar 2016 I dette kollokviet skal vi se litt på grunnlaget for Scrödingerligningen, og på når den er relevant. Den første oppgaven er en diskusjonsoppgave

Detaljer

Om utviklingsplanar for dei vidaregåande skulane i Eiksundregionen Høyring 1

Om utviklingsplanar for dei vidaregåande skulane i Eiksundregionen Høyring 1 Rolf Lystad 12.05.14 Oklavegen 4 6155 Ørsta Utdanningsavdelinga v/ståle Solgard Møre og Romsdal fylkeskommune Fylkeshuset, Julsundvegen 9 6404 Molde Om utviklingsplanar for dei vidaregåande skulane i Eiksundregionen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -

Fagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - - ;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

LYS OG SYN - auget som ser. Gjennomføre forsøk med lys, syn og fargar, og beskrive og forklare resultata

LYS OG SYN - auget som ser. Gjennomføre forsøk med lys, syn og fargar, og beskrive og forklare resultata LYS OG SYN - auget som ser Gjennomføre forsøk med lys, syn og fargar, og beskrive og forklare resultata Lys og syn Kva er lys? Korleis beveg lyset seg? Kva er det som gjer at vi kan sjå? Kan vi vere sikre

Detaljer

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s.

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 1 Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 9 Addisjon og subtraksjon med brøk s. 10 Multiplikasjon

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2

Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2 Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Fasehastighet: Gruppehastighet:

Fasehastighet: Gruppehastighet: Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store

Detaljer

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk

Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk FY1006/TFY4215 våren 2012 - pensum og kursopplegg 1 Pensum og kursopplegg for FY1006/TFY4215 Innføring i kvantefysikk våren 2012 Litt om de to emnene De to emnene FY1006 og TFY4215 er identiske både når

Detaljer

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag

Eksamen IRF30014, høsten 15 i Matematikk 3 Løsningsforslag Oppgave 1. Eksamen IRF314, høsten 15 i Matematikk 3 øsningsforslag I denne oppgaven er det to løsningsforslag. Ett med asymptotene som gitt i oppgaveteksten. I dette første tilfellet blir tallene litt

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

FINANSRAPPORT FOR 1. TERTIAL 2013

FINANSRAPPORT FOR 1. TERTIAL 2013 HORDALAND FYLKESKOMMUNE Økonomiavdelinga Arkivsak 201010513-27 Arkivnr. 160 Saksh. Skeie, Ingvar Saksgang Fylkesutvalet Fylkestinget Møtedato 24.05.2013 11.06.2013-12.06.2013 FINANSRAPPORT FOR 1. TERTIAL

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

Energiband i krystallar. Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi

Energiband i krystallar. Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi Energiband i krystallar Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi Energibandstrukturen til eit material avgjer om det er ein leiar (metall), halvleiar, eller isolator Energiband

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande

Detaljer

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149 Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +

Detaljer

Leverandørskifteundersøkinga 2. kvartal 2007

Leverandørskifteundersøkinga 2. kvartal 2007 Leverandørskifteundersøkinga 2. kvartal 2007 Samandrag Om lag 46 400 hushaldskundar skifta kraftleverandør i 2. kvartal 2007. Dette er ein nedgang frå 1. kvartal i år då 69 700 hushaldskundar skifta leverandør.

Detaljer

Eksamen 04.12.2014. REA3019 Teknologi og forskingslære 2 / Teknologi og forskningslære 2. http://eksamensarkiv.net/ Nynorsk/Bokmål

Eksamen 04.12.2014. REA3019 Teknologi og forskingslære 2 / Teknologi og forskningslære 2. http://eksamensarkiv.net/ Nynorsk/Bokmål Eksamen 04.12.2014 REA3019 Teknologi og forskingslære 2 / Teknologi og forskningslære 2 Nynorsk/Bokmål 1.2009 Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel Bruk av kjelder Eksamen varer i 5 timar.

Detaljer

Eksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 02.12.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 0..009 REA0 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga: timar:

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

FINANSRAPPORT 2. TERTIAL 2012

FINANSRAPPORT 2. TERTIAL 2012 HORDALAND FYLKESKOMMUNE Økonomiavdelinga Arkivsak 201010513-21 Arkivnr. 160 Saksh. Skeie, Ingvar Saksgang Fylkesutvalet Fylkestinget Møtedato 26.09.2012-27.09.2012 16.10.2012-17.10.2012 FINANSRAPPORT 2.

Detaljer

ORDINÆR EKSAMEN Sensur faller innen

ORDINÆR EKSAMEN Sensur faller innen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Skriftlig eksamen i Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K 15 studiepoeng ORDINÆR EKSAMEN 11.12.09. Sensur faller innen

Detaljer

Kort om forutsetninger for boligbehovsprognosene

Kort om forutsetninger for boligbehovsprognosene Kort om forutsetninger for boligbehovsprognosene Framtidas bustadbehov blir i hovudsak påverka av størrelsen på folketalet og alderssamansettinga i befolkninga. Aldersforskyvingar i befolkninga forårsakar

Detaljer

Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS3003 Eksamensoppgåver Gjennomgang våren 2004 Erling Berge Vår 2004 1 Gjennomgang av Oppgåve 3 gitt hausten 2001 Vår 2004 2 Haust 2001 Oppgåve 3 I tabellvedlegget til oppgåve 3 er det estimert 7 ulike

Detaljer

Den gode gjetaren. Lukas 15:1-7

Den gode gjetaren. Lukas 15:1-7 Den gode gjetaren Lukas 15:1-7 Bakgrunn I denne forteljinga formidlar du noko om kva ei likning er. Difor er delen om gullboksen relativt lang. Det å snakke om dei ulike filtstykka som ligg i boksen, er

Detaljer

Retningslinjer for. Transportordninga for funksjonshemma i Hordaland

Retningslinjer for. Transportordninga for funksjonshemma i Hordaland HORDALAND FYLKESKOMMUNE Retningslinjer for Transportordninga for funksjonshemma i Hordaland Gjeldande frå 1.November 2014 23.05.2014 Innhald: 1. Formål 3 2. Kven kan nytte ordninga? 3 3. Godkjenningsperiode

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

Vi har ikkje behandla bustøttesøknaden fordi det manglar samtykke frå ein eller fleire i husstanden

Vi har ikkje behandla bustøttesøknaden fordi det manglar samtykke frå ein eller fleire i husstanden 0311 ESPEN ASKELADD VIDDA 1 VIDDA 2 0028 OSLO 123456 78910 BYDEL GAMLE OSLO 5. mars 2013 Vi har ikkje behandla bustøttesøknaden fordi det manglar samtykke frå ein eller fleire i husstanden Husbanken har

Detaljer

KappAbel 2010/11 Oppgåver 1. runde - Nynorsk

KappAbel 2010/11 Oppgåver 1. runde - Nynorsk Reglar for poenggjeving på oppgåvene (sjå konkurransereglane) : Rett svar gir 5 poeng. Galt svar gir 0 poeng Blank gir 1 poeng. NB: På oppgåvene 3, 4, 7 og 8 får ein 5 poeng for 2 rette svar. Eitt rett

Detaljer

KOMMISJONSVEDTAK. av 17. februar 1997

KOMMISJONSVEDTAK. av 17. februar 1997 Nr.6/245 KOMMISJONSVEDTAK av 17. februar 1997 om framgangsmåten for samsvarsattestering av byggjevarer i medhald av artikkel 20 nr. 2 i rådsdirektiv 89/106/EØF, med omsyn til konstruksjonstrevarer og tilhøyrande

Detaljer

Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Oppmannsrapport etter fellessensur i norsk skriftleg i Sogn og Fjordane og Møre og Romsdal

Oppmannsrapport etter fellessensur i norsk skriftleg i Sogn og Fjordane og Møre og Romsdal Oppmannsrapport etter fellessensur i norsk skriftleg i Sogn og Fjordane og Møre og Romsdal Sentralt gitt eksamen NOR0214, NOR0215 og NOR1415, 10. årstrinn Våren 2015 Åndalsnes 29.06.15 Anne Mette Korneliussen

Detaljer

Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I

Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I FY2045/TFY4250 Kvantemekanikk I, kursopplegg 1 Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics, av B.H.

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer