Tillegg om integralsatser

Størrelse: px
Begynne med side:

Download "Tillegg om integralsatser"

Transkript

1 Kpittel 7 Tillegg om integrlstser 7.1 Integrlstser, fundmentlstser Fr et mtemtiske snspunkt er integrlstser beslektet med b f) d = fb) f) b β dr = βr b ) βr ) der den første klles nlsens fundmentlteorem, mens den ndre kn oppfttes som et fundmentlteorem for kurveintegrler. Identitetene er relsjoner mellom den totle endring v en kvntitet, over et intervll eller en kurve, og en kkumulsjonintegrsjon) v endringsrter. Tilsvrene relsjoner eksisterer i flere dimensjoner. Et flteintegrl v spesielle kombinsjoner v endringsrter deriverte) v et felt kn relteres til feltets verdier på rnd. Det siste er d et linjeintegrl rundt rnd. Tilsvrene vil kombinsjoner v endringsrter i et volum kunne relteres til flteintegrler over volumets rnd. Generelt kller vi disse relsjonene for integrlstser og de kn betrktes som generliseringer v fundmentlstsene skrevet ovenfor. De fsiske spektene ved integrlstsene er end viktigere i MEK1100. Når vi beskriver feks. en væske ved hjelp v fsiske begreper og lover vil noen størrelse nturlig frmkomme som volumintegrler, mens ndre vil frmkomme som trnsport v kvntiteter msse, energi et.) gjennom flter. For å reltere størrelsene til hverndre, slik t lle uttrkkes ved feks. volumintegrler, må vi d bruke integrlstser. Dette gjøres i kp. 10 i kompendiet. Merknd: seksjoner merket med * er orienteringsstoff og vektlegges mindre enn resten. 7.2 Greens sts Tidligere hr vi vist t for et todimensjonlt hstighetsfelt og et rektngel, med rel A, i plnet gjelder 1 1 lim v dr = k v lim v n ds = v. 0 A 0 A 26

2 7.2. GREENS SATS 27 d b Figur 7.1: Rektngulært integrsjonsområde. Disse relsjonene oppfttet vi som definisjoner v hhv. virvling og divergens for todimensjonle strømninger. I kompendiet brukes disse direkte i et diskretiseringsrgument for Greens sts der en bruker en oppdeling i rektngler og tilnærmede relsjoner som v dr Ak v. Når diskretiseringen forfines vil en d trenge en ekstr nlse v kkumuleringen v feilene i denne tilnærmelsen. I tillegg tilnærmes rnd med trppefunksjoner tilsvrende sidekntene i rektnglene. Det er mulig å inkludere disse forholdene i utledningen, men den blir d me mer omfttende og komplisert. Her skl vi skissere en modifisert frmgngsmåte. Greens sts for rektngler og tringler Her skl vi t for oss noen vnlige mellomsteg som kn lette tilegnelsen og som også hr en egenverdi. Strten er gnske lik frmstillingen i MAT1110. Vi studerer rektnglet,, frmstilt i figur 7.1 og går motstt vei i forhold til grenseovergngene ovenfor; vi integrerer virvlingen over flten. Når vi deler opp integrnden og velger pssende rekkefølge på integrsjon mhp. og kn dette dobbeltintegrlet overføres til enkeltintegrler som kn tolkes som kurveintegrler lngs de fire sidekn-

3 28 Tillegg om integrlstser d b Figur 7.2: Tringulært integrsjonsområde. tene 1, 2, 3 og 4. v v d b d d = d d = v b )d v )d v d d b v d)d + = v d + v d + v d + v d = v dr + v dr + v dr + v dr = v dr b b d v d d v )d 7.1) der = er den totle rnd til. For et rektngel hr vi d vist v v d d = v d + v d 7.2) som klles Greens sts. I utledningen merker vi oss t de vgjørende mellomstegene bgger på nlsens fundmentlteorem. Likning 7.2) kn derfor betrktes som en direkte utvidelse v dette teoremet. Greens sts kn tilsvrende utvides til områder med ndre geometrier, feks. geometrier med enkle krumme render. Dette overlter vi til MAT1110 og nøer oss med å demonstrere Greens sts for en treknt. En tringelgeometri er frmstilt i figur 7.2. Den skrå delen v rnd, 1, er gitt ved /b + / = 1 og kn prmetriseres ved hjelp v r) = i + )j = i + b j

4 7.2. GREENS SATS Figur 7.3: Smmenstt integrsjonsområde. eller ved hjelp v r) = )i + j = b b i + j. Dobbeltintegrlet v virvlingen blir nå v v d ) v b d d = d d d d b = v ) )d v )d v ))d + = v d + v d + v d + v d = v dr + v dr + v dr = v dr ) b v d d v )d 7.3) der = er den totle rnd til. Vi legger merke til t vi fktisk ikke hr brukt t 3 er en rett linje. Regningen i 7.3) forutsetter bre t 3 er slik t den kn prmetriseres både med og med. Vi kn gjøre en tilsvrende utledning v Greens sts for lle rettvinklede treknter.

5 30 Tillegg om integrlstser Greens sts for smmenstte områder Når Greens sts er etblert for rektngler og rettvinklede tringler kn vi sette smmen slike elementer og vise Greens sts for mer kompliserte områder. I figur 7.3 er et rektngel kombinert med et tringel. Greens sts for områdene gir v v d d = v dr + v dr + v dr + v dr v v d d = v dr + v dr v dr Legger vi smmen disse relsjonene knsellerer bidrgene lngs det felles rndelementet 2 og vi får v v d d = v dr + v dr + +v dr +v dr + v dr = v dr der nå er rnd til området smmenstt v 1 og 2. Slik kn vi umiddelbrt vise Greens lov for lle firkntede og trekntede områder. Vi kn også gå ut fr t et generelt område,, kn tilnærmes med et prtisjonering v tringler, eller firknter kombinert med tringler. Setter vi d opp Greens lov for hver enkelt tringel/rektngel og summerer vil lle bidrg fr interne render knsellere. Vi står d igjen med t et dobbeltintegrl over et område som tilnærmer er lik et kurveintegrl over en tilnærmelse til rnd tpen gitt i figur 4.2) i tillegg til kp. 4. Når oppdelingen gjøres uendelig fin vil d Greens sts for det generelle området frmkomme i grensen. Kommentr: Oppdeling v områder i tringler tringulering) eller firknter er brukt i representsjon v geometrier i en rekke smmenhenger. Bl.. brukes det i en numerisk metode, klt elementmetoden, der oppdelingen v geometrien i elementer tringler/firknter) kombineres med ntgelsen om en enkel fsisk eller mtemtisk ntgelse om vrisjon og kobling mellom de fsiske feltene på hvert element. Eksempler på tringuleringer er gitt i figur Guss og Stokes sts i plnet Greens sts på formen v v d d = v d + v d 7.4) er ekvivlent med komponentlikningene P d d = P d Q d d = Q d 7.5)

6 7.3. GAUSS OG STOKES SATS I PLANET ) b) Figur 7.4: ) Tringulering i elementmodell for brudd i bjelke. Oppdelingen er forfinet nær det området som er forventet å være kritisk. Koordintene er normilserte. b) Tringulering v Tfjord i Møre og Romsdl, brukt i forbindelse med tsunmien i 1934 der 41 mennesker ble drept. Akser er i m.

7 32 Tillegg om integrlstser der P tilsvrer v og Q tilsvrer v i 7.4). Likning 7.4) kn også skrives k v d d = v dr som er et spesiltilfelle v Stokes sts, som kommer i generell utgve siden. Setter vi P = v og Q = v i 7.5) følger v + v d d = v d d = v d v d 7.6) 7.7) som er en utvidelse v vår definisjon v divergens og er en pln utgve v Guss sts. I plnet er Stokes og Guss sts mtemtisk ekvivlente, og tilsvrer Greens sts, selv om de kn gis ulikt fsisk innhold. 7.4 Guss sts i 3D I 3D kn vi utvikle en generlisering v den plne Guss sts ved å integrere v i bokser, prmider ol. Deretter kn slike volumelementer brukes til å prtisjonere et generelt volum. I grensen når oppdelingen blir uendelig fin får vi d den generelle Guss sts v d d dz = v d = v nd 7.8) der er flten som omgir. Likning 7.8) sier t summen v divergens i er lik volumstrømmen ut v. Også 7.8) kn deles i komponenter når vi setter n = n i + n j + n z k. v d = v n d v d = v z z d = v n d v z n z d. 7.9) Disse relsjonene kn vi enkelt bruke for å utlede ndre former v Guss sts. Trkkintegrlet kn behndle på følgende vis pn d = i pn d + j pn d + k pn z d = i = p d + j p d + k p d. Vi kn d sette opp en vrt v Guss sts pn d = p d. p z d 7.10) 7.11)

8 7.5. STOKES SATS 33 På tilsvrende måte kn vi vise n v d = v d. 7.12) 7.5 Stokes sts Stokes sts kn generelt skrives v dr = v n d 7.13) der lmbd er rnd til flt. Retningen på n må være slik t når vi lr fingrene på høre hånd følge omløpsretning for peker tommelen i smme retning som n. Det er klrt t 7.6) er et spesiltilfelle v 7.13) der flten er pln og ligger i -plnet slik t n = k Stokes sts begrunnet vh. diskretisering I kompendiet utvikles Stokes sts fr den plne utgven 7.6) vi en prtisjonering v der flten tilnærmes med en kombinsjon v plne fltelementer. Argumentsjonen kn her gå i tre trinn ) er demonstrert for todimensjonle hstighetsfelt v = v )i + v )j. Det gjør ingen forskjell om vi putter inn et tredimensjonlt felt; v z gir ikke bidrg til k komponenten v virvlingen og z er konstnt i lle integrler. 2. Koordintsstem og tilhørende dekomponering v v kn velges fritt. Hr vi en generell pln flte i R 3 kn vi d velge et koordintsstem slik t flten ligger i det ne -plnet. Derfor gjelder Stokes sts for lle plne flter. 3. Til slutt tr vi for oss en generell flte og diskretiserer denne med tringler eller ndre plne flte-elementer). Stokes sts gjelder d for hvert tringel, lle kurveintegrler lngs interne tringelgrenser nulles ut når vi summerer Stokes sts over lle tringlene. Vi står d igjen med t en tilnærmelse til flteintegrlet v d er lik en tilnærmelse til kurveintegrlet v dr. Når oppdelingen gjøres uendelig fin frmkommer så 7.13) Stokes sts utledet fr Greens vh. prmetrisering. Også Stokes sts kn deles i komponentlikninger v v d = z j v k n d v d = v z i + v k n d vz v z dz = i v z j n d. 7.14)

9 34 Tillegg om integrlstser Disse tre delstsene kn vises hver for seg og vi skl se på den første. Vi ntr t det finnes en prmetrisering for slik t rt s) er definert over et område i t s plnet. Videre nts det t vbildningen er entdig slik t rnd v i t s plnet, C, vbildes på i z-rommet. En utledning v øverste likning i 7.14) kn gå i tre trinn i Dersom C, rnd i ts-plnet, prmetriseres ved t = tq), s = sq) hr vi smtidig en prmetrisering v : r = rtq) sq)). Kurveintegrlet kn d skrives dt v d = v rtq) sq))) t dq + ds dq. s dq Denne kn uttrkkes på formen v d = C C P t s) dt + Qt s) ds der P = v / t og Q = v / s Vi overfører ltså kurveintegrlet i R 3 til et kurveintegrl i t s plnet. ii Flteintegrlet i øverste likning i 7.14) overføres til et dobbeltintegrl over ved å bentte nd = r/ t r/ s dt ds v z j v k n d = It s) dt ds der I = v z z s t t z s v t s s t iii Greens sts gjelder enten de fri vrible heter eller t s. Derfor gjelder Q P dt + Q ds = t P dt ds. s C Dersom I slik den frmkommer i ii) og P, Q, slik de frmkommer i i) oppfller Q t P s = I hr vi vist øverste likning i 7.14). Direkte regning gir Q t P = v v s t s s t = = = I v t s v s t v t + v t + v z z t s v s + v s + v z z s t der vi merker oss t en del ledd knsellerer i overgngene.

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

6. Beregning av treghetsmoment.

6. Beregning av treghetsmoment. Forelesningsnotter i mtemtikk Bruk v integrsjon Beregning v treghetsmoment Side 1 6 Beregning v treghetsmoment 61 Definisjoner Først de grunnleggende definisjonene: Momentkse r m en liten punktformet prtikkel

Detaljer

Multippel integrasjon

Multippel integrasjon Kittel 4 Multiel integrsjon Fundmentlteoremet sier t integrsjon og derivsjon er motstte oersjoner. de foregående kitlene hr vi sett ulike måter vi kn derivere funksjoner i flere vrible. Neste skritt er

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Tillegg om kurveintegraler, fluks, sirkulasjon, divergens, virvling

Tillegg om kurveintegraler, fluks, sirkulasjon, divergens, virvling Kpittel 4 Tillegg om kurveintegrler, fluks, sirkulsjon, divergens, virvling 4. Representsjon v kurver Kurveintegrler spiller en viktig rolle i mnge grener v fysikken. Senere skl vi se eksempler på integrler

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Løsning til utvalgte oppgaver fra kapittel 15, (13).

Løsning til utvalgte oppgaver fra kapittel 15, (13). Løsning til utvlgte oppgver fr kpittel 5, (). Oppgve 5..7 (..7) Kurven r( t) (, t, t), t ligger i - plnet. Dette gir lterntiv b eller f. Setter inn t som gir punktet (, ) som bre er med i lterntiv f. Vi

Detaljer

Eksamen R2, Va ren 2014, løsning

Eksamen R2, Va ren 2014, løsning Eksmen R, V ren 04, løsning Tid: timer Hjelpemidler: Vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler er tilltt. Oppgve ( poeng) Deriver funksjonene ) f sin Vi bruker kjerneregelen på sin,

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a = TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i

Detaljer

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1 NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)

Detaljer

1 Mandag 25. januar 2010

1 Mandag 25. januar 2010 Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t

Detaljer

Kap. 3 Krumningsflatemetoden

Kap. 3 Krumningsflatemetoden SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

Numerisk Integrasjon

Numerisk Integrasjon Numerisk Integrsjon Anne Kværnø Mrch 1, 018 1 Problemstilling Vi skl ltså finne en numerisk tilnærmelse til integrlet for en gitt funksjon f (x). I(, b) = f (x)dx Teknikken vi skl diskutere klles numeriske

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

Multippel integrasjon. Geir Ellingsrud

Multippel integrasjon. Geir Ellingsrud Multippel integrsjon. Geir Ellingsrud 2. pril 24 2 NB: Dette er en midlertidig versjon dtert 2. pril 24. Den kommer til å bli utvidet og korrigert fortløpende!!. Dobbelt integrlet over rektngler og iterert

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen) Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

Kapittel 4.7. Newtons metode. Kapittel 4.8.

Kapittel 4.7. Newtons metode. Kapittel 4.8. Ekskt løsning Newtons metode - Integrsjon Forelesning i Mtemtikk TMA00 Hns Jko Rivertz Institutt for mtemtiske fg 0. septemer 0 Kpittel.7. Newtons metode Den ekskte løsningen v x x = 0er ikke særlig rukelig

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Løsningsforslag til prøveeksamen Mat1110 våren 2004 Oppgave 1 (a) Elemetære rekkeoperasjoner anvendt på den utvidete matrisen til systemet gir oss:

Løsningsforslag til prøveeksamen Mat1110 våren 2004 Oppgave 1 (a) Elemetære rekkeoperasjoner anvendt på den utvidete matrisen til systemet gir oss: Løsningsforslg til prøveeksmen Mt våren 4 Oppgve () Elemetære rekkeopersjoner nvendt på den utvidete mtrisen til systemet gir oss: b b b b b Setter vi = og b = får vi d mtrisen: som gir likningssystemet:

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

2 Differensiering. 2.1 Geometrien til reelle funksjoner. 2.3 Derivasjon. 2.2 Grenser og kontinuitet

2 Differensiering. 2.1 Geometrien til reelle funksjoner. 2.3 Derivasjon. 2.2 Grenser og kontinuitet Generelle teoremer og definisjoner MA03 Flerdimensjonl nlyse - NTNU Lærebok: Vetor Clulus, 6 utgve v Jerrold E Mrsden og Anthony Tromb Jons Tjemslnd 8 pril 05 Geometrien til euklidske vektorrom Vektorer

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

Midtsemesterprøve torsdag 6. mars 2008 kl

Midtsemesterprøve torsdag 6. mars 2008 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige

Detaljer

Løsningsforslag Kollokvium 6

Løsningsforslag Kollokvium 6 Løsningsforslg Kollokvium 6 25. februr 25 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 6. Oppgve Diskusjonsoppgve Diskuter følgende spørsmål med hverndre og prøv å bli

Detaljer

I = (xy + z 2 ) dv. = z 2 dv. 1 1 x 1 x y z 2 dz dy dx,

I = (xy + z 2 ) dv. = z 2 dv. 1 1 x 1 x y z 2 dz dy dx, TMA5 Mtemtikk Vår 7 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 8 Alle oppgvenummer referer til 8 utgve v Adms & Essex Clculus: A Complete Course 57: Vi

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA4 Mtemtikk Høst 8 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 6 5..5 Gjennomsnittet v f(x) = x på intervllet [, ] er lik relet A under grfen dividert

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er Kpittel Projeksjon En projeksjon er en lineærtrnsformsjon P som tilfredsstiller P x P x. for lle x. Denne ligningen sier t intet nytt skjer om du benytter lineærtrnsformsjonen for ndre gng, og mn kn tenke

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4115/4120 TERMODYNAMIKK 1 (KONT) Fredag 19. august 2005 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4115/4120 TERMODYNAMIKK 1 (KONT) Fredag 19. august 2005 Tid: kl. 09:00-13:00 Side v 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 45/40 TERMODYNAMIKK (KONT) Fredg 9. ugust 005 Tid: kl. 09:00

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Midtsemesterprøve fredag 13. mars 2009 kl (Versjon B)

Midtsemesterprøve fredag 13. mars 2009 kl (Versjon B) Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Midtsemesterprøve fredg 13. mrs 2009 kl 1415 1615. (Versjon ) Oppgver på side 3 9. Svrtbell på side 11. Sett

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen 3 Oversikt over Mtemtikk Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens v ekstrempunkt Elementære funksjoner Derivsjon Sekntsetningen Integrsjon Differensilligninger Kurver i plnet Rekker

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

Eksamen våren 2016 Løsninger

Eksamen våren 2016 Løsninger DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve,8,8 (,8 ) 3,6 3, 6 3, 6,5 5, (5, ) Oppgve 3, 5 Vi ser på tllinj t,5 tilsvrer punkt F. Vi ser

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA42 og REA42f EKSAMENSDATO:. desember 2 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 Forord Dette kompendiet dekker nlysedelen v pensum i kurset MAT 2 ved Universitetet i Oslo. Kurset bygger på MAT og legger mer vekt på nvendelser v teorien enn på dens

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Kosmologisk perturbasjonsteori: Einsteintensoren vender tilbake

Kosmologisk perturbasjonsteori: Einsteintensoren vender tilbake Kosmologisk perturbsjonsteori: Einsteintensoren vender tilbke Vi hr funnet Boltzmnnligninger for fotoner, bryoner og mørk mterie. Om vi hdde ønsket det, kunne vi også stt opp ligningene for msseløse nøytrinoer.

Detaljer

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007 Msteroppgve i mtemtikkdidktikk Fkultet for relfg Ho/gskolen i Agder - V ren 2007 Integrl og integrsjon Roger Mrkussen Roger Mrkussen Integrl og integrsjon Msteroppgve i mtemtikkdidktikk Høgskolen i Agder

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon Integrsjon del Deprtment of Mthemticl Sciences, NTNU, Norwy Octoer 5, 4 Integrsjon Sustitusjon for estemte integrler Husk kjærneregel d dt f (g(t)) = f (g(t)) g (t) ved fundmentlteoremet (del ) vi får

Detaljer

Arne B. Sletsjøe. Kompendium, MAT 1012

Arne B. Sletsjøe. Kompendium, MAT 1012 Arne B. Sletsjøe Kompendium, MAT 2 En-vribel klkulus I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

Feilestimeringer. i MAT-INF1100

Feilestimeringer. i MAT-INF1100 Feilestimeringer i MAT-INF11 Ett v de viktigste punktene i MAT-INF11, og smtidig det som nsees som det vnskeligste i pensum, er feilestimter. Vi bruker mye tid på å beregne tilnærmede verdier for funksjoner,

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Numerisk matematikk. Fra Matematikk 3MX (2002) Side

Numerisk matematikk. Fra Matematikk 3MX (2002) Side Numerisk mtemtikk Fr Mtemtikk 3MX (2002) Side 142 147 142 Kpittel 4: Integrlregning 47 NUMERISK MATEMATIKK pffiffiffiffiffi På lommeregneren finner du rskt t 71 er lik 8,426150, og t lg 5 er lik 0,698970

Detaljer

Løsningsforslag Eksamen 30. mai 2007 FY2045 Kvantefysikk

Løsningsforslag Eksamen 30. mai 2007 FY2045 Kvantefysikk Eksmen FY045 30. mi 007 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 30. mi 007 FY045 Kvntefysikk. I grensen 0 er potensilet V x et enkelt okspotensil, V = V 0 for < x < 0 og uendelig ellers. Den

Detaljer

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u

Detaljer

Eksempel Funksjonen f (x)=x 3 er strengt voksende. vokser på intervallet [0, ) og avtar på intervallet

Eksempel Funksjonen f (x)=x 3 er strengt voksende. vokser på intervallet [0, ) og avtar på intervallet Kpittel Derivsjon I det første kpitlet skl vi friske opp teorien for funksjoner i en vribel, se på hvordn de vokser/vtr, studere deres kritiske punkter og beskrive krumning og vendepunkter. For intervller

Detaljer

Fasit. Oppgavebok. Kapittel 4. Bokmål

Fasit. Oppgavebok. Kapittel 4. Bokmål Fsit 9 Oppgvebok Kpittel 4 Bokmål Kpittel 4 Geometri og beregninger Arel og omkrets 4.1 54 m b 106 m 4.2 162 m2 b 484 m2 4.3 26,0 cm2 b 22,5 cm2 c 20,0 cm2 d De tre rektnglene hr lik omkrets, 21 cm 4.4

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO:. desember 9 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9. 3.. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

Institutt for elektroteknikk og databehandling

Institutt for elektroteknikk og databehandling Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.

Detaljer