PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering"

Transkript

1 PG4200 Algoritmer og datastrukturer Forelesning 3 Rekursjon Estimering Lars Sydnes, NITH 22.januar 2014

2 I. Rekursjon

3 commons.wikimedia.org

4 Rekursjon i naturen En gren er et tre som sitter fast på et tre. Følgelig er et tre sammensatt av trær. Hva består blomkål av? Små blomkål som sitter fast på en sentral stamme. Vi kan lese selvrefererende struktur inn i disse fenomenene. REKURSJON

5 Rekursjon i matematikken Potenser: 2 n = 2 2 n 1 i.e. pow(2, n) = 2 pow(2, n 1) Summer: i.e. n i = n + i=1 n 1 i=1 sumints(n) = n + sumints(n 1) i

6 Algoritmisk rekursjon: Hvordan lage blomkål? public Blomk(double size) { Stamme stamme = new Stamme(); while ( stamme.hasnextfeste()) { stamme.nextfeste().add(new Blomk(size/3)); OBS: Hva er galt her?!

7 Rekursiv Noe som refererer til seg selv Rekursiv funksjon = Funksjon som kaller på seg selv. funksjon() { if stoppbetingelse { /*direkte strategi*/ else { /*rekursiv strategi*/ funksjon() Mønster: (i) Stoppbetingelse basis-tilfellet (base-case) (ii) Ellers rekursiv løsning.

8 Indirekte rekursjon public... funksjon1() { if (stoppbetingelse()) { return enkeltsvar(); else { return funksjon2(); private... funksjon2() { return bearbeid(funksjon1()); Dette kalles indirekte rekursjon. Det er ingen ting som forhindrer oss fra å ha mange lag av indirekte rekursjon.

9 Eksempel Backtracking SubsetSum.java Problem: Se på en gitt liste med tall, la oss si n 0, n 1,..., n k = 1, 43, 2, 5, 2, 3, 67, 5, 3, 6, 8 Velge en delmengde med gitt sum S, la oss si S = 13. Her har vi løsningen n 0 + n 2 + n 3 + n 7 = = 13 = S

10 Rekursiv løsning: (i) Prøv først å bygge en løsning med det første elementet n 0 (ii) Prøv å finne en delmengde av n 1,..., n k med sum S n 0 Det lykkes: Vi har en løsning! Det mislykkes: Prøv å finne en delmengde av n 1,..., n k med sum S. Dette kalles Backtracking TEGNE FIGUR PÅ TAVLEN: VALGTRE. GJØRE OVERSLAG OVER KJØRETID.

11 II. Rekursjon, stakker, iterasjon

12 Eksempel int fak(int n) { // rekursiv variant if (n == 0) {//stoppbetingelse return 1; else { // Rekursiv strategi return n*fak(n-1); fak(n) = (n 1) n = fak(n 1) n

13 Organisering av rekursive kall public static void main(string[] args){ int k = fak(4); return 24 return 6 return 2 return 1 main fak fak fak fak fak(4) fak(3) fak(2) fak(1) Argumenter og lokale variabler lagres i programmets funksjonskallstakk. (Call stack) Rekursive funksjonskall fører med seg implisitt strukturering og ressursbruk.

14 Hva er en stakk En stakk er en sist inn, først ut -kø. Papirer i en bunke. Funksjonskallstakken. De første skal bli de siste

15 Iterasjon rekursjon public static int fak(int n){ if (n <= 1){ return 1; else { return n*fak(n-1); public static int fak(n){ int output = 1; while (n > 1){ output *= n; n--; return output;

16 Oversikt Rekursivt kall Stoppbetingelse Rekursjon vs iterasjon Rekursjon kan iblant gi nærmest magiske løsninger. Det kan være krevende å estimere ressursbruken. Problemer som er av rekursiv natur: Web-crawling. Løsningsstrategier som kaller på rekursjon: Backtracking.

17 III. Mer om kjøretidsberegninger

18 Eksempel: Fakultet int fak(int n) { if (n <=1) { return 1; else { return n*fak(n-1); Hvordan estimere ressursbruken? Hva er det lurt å telle? Antall funksjonskall? Antall multiplikasjoner?

19 Eksempel: Fakultet Antall funksjonskall i beregning av fak(n): F n (Name and conquer) int fak(int n) { // F_n kall if (n <=1) { return 1; // ingen kall else { return n*fak(n-1); // F_(n-1) kall (i) F 1 = 1. Vi teller her kun det opprinnelige kallet fak(1). (ii) F n+1 = F n + 1. Følgelig er F n = n Konklusjon: Kall av fak(n) medfører n funksjonskall.

20 Eksempel: TowersOfHanoi.java Problem: Flytt tårnet fra venstre til høyre pinne. Se Applet Regeler: Én brikke om gangen. Store brikker får ikke ligge oppå små. Løsning for to brikker: 0 top bottom 1 bottom top 2 top bottom 3 top bottom

21 Eksempel: TowersOfHanoi.java 0 1 top bottom bottom top 2 top bottom 3 top bottom Rekursiv tankegang: (i) Flytt de n 1 øverste brikkene til midten. (ii) Flytt den nederste brikken. (iii) Flytt de n 1 øverste brikkene til høyre.

22 Eksempel: TowersOfHanoi.java M n = Antall trekk i tilfellet med n brikker. (Name and conquer) Rekursivt steg:... movetower(n-1,...); // M_(n-1) trekk moveonedisk(...); // 1 trekk movetower(n-1...); // M_(n-1) trekk... M n = 2M n Basis-steg: if (n<1) { /* do nothing*/ M 0 = 0

23 Regning: Induksjonsbevis Innledende undersøkelse: M n = 2M n 1 + 1, M 0 = 0; M 1 = 2 M 0 +1 = = 1 M 2 = = 3, M 3 = = 7 M 4 = = 15, M 5 = = 31 Hypotese: H n : M n = 2 n 1. (H n er sann for n = 1, 2, 3, 4, 5.) Kan H n være sann for alle n? Anta at H n er sann for alle n < k. Da er M k = 2M k = 2 (2 k 1 1) + 1 = 2 2 k = 2 k 1. Dette medfører at H n stemmer for n = k! Hurra! Vi vet fra før at hypotesen stemmer for n = 1, 2, 3, 4, 5. Men dette må bety at den stemmer også for n = 6. På tilsvarende måte ser vi at H n er sann for alle n.

24 Regning: Et lurt knep M n = 2M n 1 + 1, M 0 = 0; La U n = M n + 1. Da er U n = M n +1 = 2M n = 2(M n 1 +1) = 2U n 1, U 0 = 1 Dette medfører at U 0 = 1, U 1 = 2, U 2 = 2 2,..., U k = 2 k,..., Altså: M n = U n 1 = 2 n 1.

25 Eksempel: TowersOfHanoi.java Lukket formel: M n = 2 n 1 Data fra kjøring: Antall brikker: Antall trekk:

26 Aritmetiske rekker S n = A + (A + B) + (A + 2B) + + (A + nb) Knep: Paring av ledd med totalsum (2A + nb) 2S n =S n + S n =(A + (A + B) + (A + 2B) + + (A + nb)) Dette betyr: + (A + (A + B) + + (A + (n 1)B) + (A + nb)) =(A + (A + nb) + (A + B) + (A + (n 1)B) + + (A + nb) + A) =((2A + nb) + (2A + nb) + + (2A + nb)) =(n + 1)(2A + nb) S n = 1 (n + 1)(2A + nb) 2

27 Aritmetiske rekker Se på summen Her er A = 0 og B = 1. Vi får S n = n S n = 1 n(n + 1) 2 for(int i = 0 ; i < n; i ++){ function(i); // O(i) Dette betyr at det finnes en konstant K slik at kjøretiden til funksjon(i) er mindre enn K i. Total kjøretid blir da: T n = K 0 + K 1 + K K n = 1 Kn(n + 1). 2

28 Geometriske rekker Knep: Det vil si: altså: S n = A + AB + AB 2 + AB n På de ene side: S n+1 = S n + AB n+1 På den annen side: S n+1 = A + BS n S n + AB n+1 = A + BS n, S n = A(1 Bn+1 ) 1 B Spesialtilfelle: A = 1: 1 + B + B 2 + B n = 1 Bn+1 1 B

29 Utnyttelse: Skarpere estimater for(int i = 1; i < n; i*=3){ function(i); // O(i) Her går i gjenom verdiene 1, 3,..., 3 k, der n 3 k < 3n. Anta at kjøretiden for funksjon(i) er mindre enn K i. Da er total kjøretid lik t(n) = K + 3 K k K = K(1 3k+1 ) 1 3 = 3K 2 3k K 2. Siden 3 k < 3n, medfører dette at t(n) < 9K 2 n K 2, altså at t(n) er av orden O(n).

30 Utnyttelse: Skarpere estimater Dette gir estimatet for(int i = 1; i < n; i*=3){ // O(log(n)) function(i); // O(i) // O(n) Tommelfingerregelestimatet: for(int i = 1; i < n; i*=3){ // O(log(n)) function(i); // O(n) // O(n*log(n)) Dette estimatet gir en gyldig øvre grense for worst case-kjøretid: Kjøretiden er ikke værre enn O(n log n). MEN, det finnes et skarpere estimat: O(n).

31 Utnyttelse: Skarpere estimater? for(int i = 1; i < n; i*=3){ function(i); // O(log(i)) Her går i gjenom verdiene 1, 3,..., 3 k, der n 3 k < 3n. Anta at kjøretiden for funksjon(i) er mindre enn M log i. Da er total kjøretid lik t(n) = M + M log(3) + M log(3 2 ) + + M log(3 k ) = M + M log 3 + 2M log km log(3) = M + M log 3( k) = M + M log 3 1 k(k + 1) 2 3 k < 3n medfører at k < log n log < M log n for en eller annen M. t(n) < M log M log n(m log n + 1) < M log(n) 2

32 Utnyttelse: Skarpere estimater? Dette gir: for(int i = 1; i < n; i*=3){ // O(log(n)) function(i); // O(log(i)) // O(log(n)^2) Tommelfingerregelestimatet er : for(int i = 1; i < n; i*=3){ // O(log(n)) function(i); // O(log(n)) // O(log(n)^2)

33 Skarpere estimater II for(int i = 1; i < n; i*=a){ // a > 1 function(i); // O(i^m) Anta kjøretiden for function(i), t(i) < Mi m. i gjennomløper verdiene 1, a, a 2,..., a k, der a k < an. Total kjøretid T(n) = t(1) + t(a) + + t(a k ) = M1 m + Ma m + M(a 2 ) m + + M(a k ) m = M + Ma m + M(a m ) M(a m ) k = M(1 (am ) k+1 ) 1 a m < K(a m ) k = K(a k ) m < Ka m n m Dette betyr at T(n) vokser med orden O(n m ).

34 Skarpere estimater II for(int i = 1; i < n; i*=a){ function(i); // O(i^m) // O(n^m) Tommelfingerregelestimat: for(int i = 1; i < n; i*=a){ // O(log(n)) function(i); // O(n^m) // O(n^m*log(n))

35 Se it s learning. Oppgaver

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014 PG4200 Algoritmer og datastrukturer forelesning 3 Lars Sydnes 29. oktober 2014 Plan Måling av kjøretid (delvis repetisjon) Matematisk analyse av kjøretid Presentasjon av innlevering 1 I Innlevering 1 Innlevering

Detaljer

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00

PG 4200 Algoritmer og datastrukturer Innlevering 1. Frist: 2.februar kl 21.00 PG 4200 Algoritmer og datastrukturer Innlevering 1 Frist: 2.februar kl 21.00 Utdelt materiale: Alle filer som nevnes er inneholdt i zip-filen innlevering1.zip. Innlevering: Besvarelsen skal være i form

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Algoritmer og Datastrukturer IAI 21899

Algoritmer og Datastrukturer IAI 21899 Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt

Detaljer

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Rekursjon som programmeringsteknikk

Rekursjon som programmeringsteknikk Rekursjon Kap.7 Sist oppdatert 15.02.10 Rekursjon som programmeringsteknikk 10-1 Rekursiv tenkning Rekursjon er en programmeringsteknikk der en metode kan kalle seg selv for å løse problemet. En rekursiv

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014

Løsningsforslag til eksamen i PG4200 Algoritmer og datastrukturer 10. desember 2014 Løsningsforslag Dette er et utbygd løsningsforslag. D.v.s at det kan forekomme feil og at løsningene er mer omfattende enn det som kreves av studentene på eksamen. Oppgavesettet består av 5 (fem) sider.

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister

PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister PG4200 Algoritmer og datastrukturer Forelesning 5 Implementasjon av lister Lars Sydnes, NITH 5. februar 2014 I. Implementasjoner Tabell-implementasjon av Stakk Tabellen er den lettest tilgjengelige datastrukturen

Detaljer

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen

Søking i strenger. Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen Suffiks-søking Boyer-Moore-algoritmen Hash-basert Karp-Rabin-algoritmen Indeksering av

Detaljer

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet 1 A B D C Prim: Kruskal: AB, BD, DC DC, AB, BD 2 0 + 1 + + n 1; antall

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 7 (syv) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side av 7 Varighet: 3 timer Dato:.august 203 Fagansvarlig:

Detaljer

Turingmaskiner.

Turingmaskiner. Turingmaskiner http://www.youtube.com/watch?v=e3kelemwfhy http://www.youtube.com/watch?v=cyw2ewoo6c4 Søking i strenger Vanlige søkealgoritmer (on-line-søk) Prefiks-søking Naiv algoritme Knuth-Morris-Pratt-algoritmen

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014

PG4200 Algoritmer og datastrukturer forelesning 10. Lars Sydnes 21. november 2014 PG4200 Algoritmer og datastrukturer forelesning 10 Lars Sydnes 21. november 2014 I Grafer Grafisk fremstilling av en graf D A B C Ikke-rettet graf Grafisk fremstilling av en graf D A B C Rettet graf Grafisk

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Et detaljert induksjonsbevis

Et detaljert induksjonsbevis Et detaljert induksjonsbevis Knut Mørken 0. august 014 1 Innledning På forelesningen 0/8 gjennomgikk vi i detalj et induksjonsbevis for at formelen n i = 1 n(n + 1) (1) er riktig for alle naturlige tall

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 7

PG4200 Algoritmer og datastrukturer Forelesning 7 PG4200 Algoritmer og datastrukturer Forelesning 7 Lars Sydnes, NITH 19. mars 2014 I. TERMINOLOGI FOR TRÆR TRÆR Lister: Lineære Trær: Hierarkiske Modell / Språk: Bestanddeler: Noder, forbindelser. Forbindelse

Detaljer

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger.

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. Hva slags kjøretid har denne sangen? Hvordan kan du formulere det som en rekurrensligning? Ninety-nine

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 20 ette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. et er altså ikke et eksempel

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme* er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

Ukeoppgaver INF1000: 12. feb 16. feb

Ukeoppgaver INF1000: 12. feb 16. feb Ukeoppgaver INF1000: 12. feb 16. feb Tema: Øve på programmering med forgreninger, løkker og arrayer. Klasseroms/teoritimer: 1. Oppgave 2 og 4 i kapittel 4 i læreboka. 2. En blokk er en samling programsetninger

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

Rekursjon. Binærsøk. Hanois tårn.

Rekursjon. Binærsøk. Hanois tårn. Rekursjon Binærsøk. Hanois tårn. Hvorfor sortering (og søking) er viktig i programmering «orden» i dataene vi blir fort lei av å lete poleksempel internett «alt» er søking og sortering alternativer til

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 12

PG4200 Algoritmer og datastrukturer Forelesning 12 PG4200 Algoritmer og datastrukturer Forelesning 12 Lars Sydnes, NITH 30. april 2014 I. SIST: NOTAT OM HARDE PROBLEMER INNHOLD Håndterlige problemer: Problemer med kjente algoritmer med polynomisk kjøretid

Detaljer

INF1000 oppgaver til uke 38 (17 sep 23 sep)

INF1000 oppgaver til uke 38 (17 sep 23 sep) INF1000 oppgaver til uke 38 (17 sep 23 sep) Formål: Øve på programmering med forgreninger, løkker og arrayer. Teoritimer (plenumsøvinger): 1. Oppgave 4 og 6 i kapittel 4 i læreboka. 2. En blokk er en samling

Detaljer

Rekursjon. Hanois tårn. Milepeler for å løse problemet

Rekursjon. Hanois tårn. Milepeler for å løse problemet Rekursjon. Hanois tårn. Milepeler for å løse problemet Hanois tårn. Milepeler for å løse problemet Forstå spillet Bestemme/skjønne hvordan spillet løses Lage en plan for hva programmet skal gjøre (med

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

MED TIDESTIMATER Løsningsforslag

MED TIDESTIMATER Løsningsforslag Oppgavesettet består av 12 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 12 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer Løsningsforslag Eksamen 30. november 2010 Oppgave 1A Et turneringstre for en utslagsturnering med n deltagere blir et komplett binærtre med 2n 1 noder. I vårt tilfelle får

Detaljer

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {}

En implementasjon av binærtre. Dagens tema. Klassestruktur hovedstruktur abstract class BTnode {} En implementasjon av binærtre Dagens tema Eksempel på binærtreimplementasjon Rekursjon: Tårnet i Hanoi Søking Lineær søking Klassestruktur hovedstruktur abstract class { class Person extends { class Binaertre

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

Generelle trær BINÆRTRÆR. Binærtrær

Generelle trær BINÆRTRÆR. Binærtrær BINÆRTRÆR Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse Eksempel: Ibsens skuespill Generelle trær

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet LØSNINGSFORSLAG - KOMMENTARER til SENSOR N.B. RETTELSE 23.05 og 26.05 pkt. e) :UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 5 Eksamensdag : Lørdag 20 mai, 2000 Tillatte

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 10

PG4200 Algoritmer og datastrukturer Forelesning 10 PG4200 Algoritmer og datastrukturer Forelesning 10 Lars Sydnes, NITH 9. april 2014 NOE Å STUSSE PÅ? Quadratic probing i Hash-tabell: ( ) 2 i + 1 p = p + ( 1) i+1 2 Underforstått forutsetning: Heltallsaritmetikk

Detaljer

INF1010. Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: Introduksjon til Rekursiv programmering

INF1010. Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: Introduksjon til Rekursiv programmering Introduksjon til Rekursiv programmering To iterate is human; to recurse, divine. L. Peter Deutsch, Robert Heller Rekursjon En rekursiv definisjon av rekursjon, slik det kunne stå i en ordbok: rekursjon

Detaljer

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf:

Oppgave 1 LØSNINGSFORSLAG. Eksamen i INF desember Betrakt følgende vektede, urettede graf: INF100 Algoritmer og datastrukturer INF100 Algoritmer og datastrukturer Oppgave 1 LØSNINGSFORSLAG Betrakt følgende vektede, urettede graf: V 1 V Eksamen i INF100 1. desember 004 V V 4 V 4 V V Ragnar Normann

Detaljer

"behrozm" Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009

behrozm Oppsummering - programskisse for traversering av en graf (dybde først) Forelesning i INF februar 2009 Rekursiv programmering BTeksempel Datastruktur I klassen Persontre (rotperson==) Rekursjon Noen oppgaver/problemer er rekursive «av natur» Eksempel på en rekursiv definisjon Fakultetsfunksjonen

Detaljer

Løsnings forslag i java In115, Våren 1998

Løsnings forslag i java In115, Våren 1998 Løsnings forslag i java In115, Våren 1998 Oppgave 1 // Inne i en eller annen klasse private char S[]; private int pardybde; private int n; public void lagalle(int i) if (i==n) bruks(); else /* Sjekker

Detaljer

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt

Detaljer

Oppgave 1. Sekvenser (20%)

Oppgave 1. Sekvenser (20%) Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I BERGEN Eksamen i emnet I 20 - Algoritmer, datastrukturer og programmering Mandag 2.Mai 200, kl. 09-5. Ingen hjelpemidler tillatt. Oppgavesettet

Detaljer

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3).

Plenumsregning 9. Diverse ukeoppgaver. Roger Antonsen april Oppgaver fra forelesningene. Oppgave (fra forelesningen 10/3). Plenumsregning 9 Diverse ukeoppgaver Roger Antonsen - 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3). a) Ved å bruke den rekursive definisjonen av PL, vis hvordan vi skritt

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Prøveeksamen i : INF2440 Praktisk parallell programmering Prøveeksamensdag : 26. mai 2014 Tidspunkter: 11.00 Utdeling av prøveeksamen 15:15

Detaljer

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist

Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Stack Hva er en stack? En lineær datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi ta ut et element, tar

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag 1 Algoritmer og datastrukturer Løsningsforslag Eksamen 29. november 2011 Oppgave 1A Verdien til variabelen m blir lik posisjonen til den «minste»verdien i tabellen, dvs. bokstaven A, og det blir 6. Oppgave

Detaljer

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen

Binære søketrær. En ordnet datastruktur med raske oppslag. Sigmund Hansen Binære søketrær En ordnet datastruktur med raske oppslag Sigmund Hansen Lister og trær Rekke (array): 1 2 3 4 Lenket liste (dobbelt-lenket): 1 2 3 4 Binært søketre: 3 1 4 2 Binære

Detaljer

Stack. En enkel, lineær datastruktur

Stack. En enkel, lineær datastruktur Stack En enkel, lineær datastruktur Hva er en stack? En datastruktur der vi til enhver tid kun har tilgang til elementet som ble lagt inn sist Et nytt element legges alltid på toppen av stakken Skal vi

Detaljer

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn

Dagens temaer. Sortering: 4 metoder Søking: binærsøk Rekursjon: Hanois tårn Dagens temaer Sortering: 4 metoder Hvorfor sortering (og søking) er viktig i programmering Sortering når objektene som skal sorteres er i et array 1. Sorterering ved bruk av binærtre som «mellomlager»

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 6 (seks) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 6 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 6. august 2014 Fagansvarlig:

Detaljer

Kjøretidsanalyse. Hogne Jørgensen

Kjøretidsanalyse. Hogne Jørgensen Kjøretidsanalyse Hogne Jørgensen Program Presentasjon/tips til Øving 5 Kompleksitetsanalyse Kahoot Rekurrensligninger Kahoot 2 Øving 5 Veibygging i Ogligogo Finne dyreste kant i minimalt spenntre Prim

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Oppgavesettet består av 8 (åtte) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE PG4200 Algoritmer og datastrukturer Tillatte hjelpemidler: Ingen Side 1 av 8 Varighet: 3 timer Dato: 4.juni 2013 Fagansvarlig:

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Oppgave 1. Løsningsforslag til eksamensoppgave. ITF20006 Algoritmer og datastrukturer Postorden traversering:

Oppgave 1. Løsningsforslag til eksamensoppgave. ITF20006 Algoritmer og datastrukturer Postorden traversering: Løsningsforslag til eksamensoppgave ITF20006 Algoritmer og datastrukturer 22.05.2007 Oppgave 1 A. Postorden traversering: 1-16-11-2-35-61-81-47-30 B. velformet = sann ; Stack s = new Stack(); while(

Detaljer

INF 4130 Oppgavesett 3, 20/ m/løsningsforslag

INF 4130 Oppgavesett 3, 20/ m/løsningsforslag INF 4130 Oppgavesett 3, 20/09-2011 m/løsningsforslag Oppgave 1 1.1 Løs oppgave 20.19 (B&P), (a) er vist på forelesningen og kan vel bare repeteres, men løs (b). (a) er altså løst på forelesningen. (b)

Detaljer

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær:

INF110 Algoritmer og datastrukturer TRÆR. Vi skal i denne forelesningen se litt på ulike typer trær: TRÆR Vi skal i denne forelesningen se litt på ulike typer trær: Generelle trær (kap. 4.1) Binærtrær (kap. 4.2) Binære søketrær (kap. 4.3) Den siste typen trær vi skal behandle, B-trær (kap. 4.7) kommer

Detaljer

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer.

Eksempel: Uttrykkstrær I uttrykkstrær inneholder bladnodene operander (konstanter, variable,... ), mens de interne nodene inneholder operatorer. TRÆR Generelle trær Dagens plan: Kort repetisjon Generelle trær Binærtrær Implementasjon Traversering Binære søketrær Definisjon Søking, innsetting og sletting Gjennomsnitts-analyse (!) Eksempel: Ibsens

Detaljer

Norges Informasjonsteknologiske Høgskole

Norges Informasjonsteknologiske Høgskole Oppgavesettet består av 13 (mange) sider. Norges Informasjonsteknologiske Høgskole PG4200 Algoritmer og datastrukturer Side 1 av 13 Tillatte hjelpemidler: Ingen Varighet: 3 timer Dato: 4. juni 2014 Fagansvarlig:

Detaljer

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013

NITH PG4200 Algoritmer og datastrukturer Løsningsforslag Eksamen 4.juni 2013 NITH PG00 Algoritmer og datastrukturer Løsningsforslag Eksamen.juni 0 Dette løsningsforslaget er til tider mer detaljert enn det man vil forvente av en eksamensbesvarelse. Det er altså ikke et eksempel

Detaljer

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden.

EKSAMEN. Algoritmer og datastrukturer. Eksamensoppgaven: Oppgavesettet består av 11 sider inklusiv vedlegg og denne forsiden. EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2008 kl 09.00 til kl 13.00 Hjelpemidler: 4 A4-sider (2 ark) med valgfritt innhold Kalkulator Faglærer: Mari-Ann

Detaljer

Divide-and-Conquer II

Divide-and-Conquer II Divide-and-Conquer II Lars Vidar Magnusson 1712014 Kapittel 4 Analyse av divide-and-conquer algoritmer ved hjelp av rekursjonstrær Analyse av divide-and-conquer algoritmer ved hjelp av masterteoremet Løse

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00

EKSAMEN. Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 EKSAMEN Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: 18. mai 2017 Eksamenstid: 09:00 13:00 Hjelpemidler: Alle trykte og skrevne Kalkulator Faglærer: Jan Høiberg Om eksamensoppgavene: Oppgavesettet

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

MAT1030 Forelesning 2

MAT1030 Forelesning 2 MAT1030 Forelesning 2 Kontrollstrukturer, tallsystemer, basis Dag Normann - 20. januar 2010 (Sist oppdatert: 2010-01-20 12:31) Kapittel 1: Algoritmer (fortsettelse) Kontrollstrukturer I går innførte vi

Detaljer

Innføring i matematisk analyse av algoritmer

Innføring i matematisk analyse av algoritmer DUMMY Innføring i matematisk analyse av algoritmer Lars Sydnes September 2014 Dette er ment som et supplement til læreboka Algorithms, 4.utgave av Sedgewick & Wayne, heretter omtalt som læreboka. Etter

Detaljer

En algoritme for permutasjonsgenerering

En algoritme for permutasjonsgenerering Innledning La oss tenke oss at vi har en grunnskole-klasse på 25 elever der enkelte av elever er uvenner med hverandre. Hvis uvenner sitter nær hverandre blir det bråk og slåssing. Er det mulig å plassere

Detaljer

EKSAMEN Løsningsforslag. med forbehold om bugs :-)

EKSAMEN Løsningsforslag. med forbehold om bugs :-) 1 EKSAMEN Løsningsforslag med forbehold om bugs :-) Emnekode: ITF20006 000 Dato: 20. mai 2011 Emne: Algoritmer og datastrukturer Eksamenstid: 09:00 til 13:00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater

Detaljer

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013

Binære søketrær. Et notat for INF1010 Stein Michael Storleer 16. mai 2013 Binære søketrær Et notat for INF Stein Michael Storleer 6. mai 3 Dette notatet er nyskrevet og inneholder sikkert feil. Disse vil bli fortløpende rettet og datoen over blir oppdatert samtidig. Hvis du

Detaljer

Kapittel 12: Rekursjon

Kapittel 12: Rekursjon Kapittel 12: Rekursjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

Algoritmer og datastrukturer Løsningsforslag

Algoritmer og datastrukturer Løsningsforslag Algoritmer og datastrukturer ved Høgskolen i OsloSide 1 av 6 Algoritmer og datastrukturer Løsningsforslag Eksamen 24. februar 2010 Oppgave 1A 1. Komparatoren sammenligner først lengdene til de to strengene.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler

Detaljer

INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon.

INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. INF2810: Funksjonell programmering: Mer om Scheme. Rekursjon og iterasjon. Stephan Oepen & Erik Velldal Universitetet i Oslo 25. januar, 2013 På blokka 2 Forrige uke Introduksjon og oversikt Funksjonell

Detaljer

Argumenter fra kommandolinjen

Argumenter fra kommandolinjen Argumenter fra kommandolinjen Denne veiledningen er laget for å vise hvordan man kan overføre argumenter fra kommandolinjen til et program. Hvordan transportere data fra en kommandolinje slik at dataene

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7)

Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7) Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7) Repetisjon Språk med rekursjon (C3) og blokker (C4) Statisk link Dynamisk allokering (C5) Parameteroverføring 1/25 Forelesning 11 5.11.2003 Repetisjon:

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF1010 Sortering. Marit Nybakken 1. mars 2004

INF1010 Sortering. Marit Nybakken 1. mars 2004 INF1010 Sortering Marit Nybakken marnybak@ifi.uio.no 1. mars 2004 Dette dokumentet skal tas med en klype salt og forfatter sier fra seg alt ansvar. Dere bør ikke bruke definisjonene i dette dokumentet

Detaljer

Om Kurset og Analyse av Algoritmer

Om Kurset og Analyse av Algoritmer Om Kurset og Analyse av Algoritmer Lars Vidar Magnusson 8.1.2014 Praktisk informasjon om kurset Hva er en algoritme? (kapittel 1) Hvordan analysere en algoritme? (kapittel 2) Praktisk Informasjon Introduction

Detaljer

O-notasjon og kompleksitet

O-notasjon og kompleksitet 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Kunnskap for en bedre verden Amanuensis Terje Rydland Kontor: ITV-021 i IT-bygget vest (Gløshaugen) Epost: terjery@idi.ntnu.no Tlf:

Detaljer

i=0 Repetisjon: arrayer Forelesning inf Java 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker 0*0 0*2 0*3 0*1 0*4

i=0 Repetisjon: arrayer Forelesning inf Java 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker 0*0 0*2 0*3 0*1 0*4 Forelesning inf - Java 4 Repetisjon: arrayer Tema: Løkker Arrayer Metoder Ole Christian Lingjærde,. september Deklarere og opprette array - eksempler: int[] a = new int[]; String[] a = new String[]; I

Detaljer

Forelesning inf Java 4

Forelesning inf Java 4 Forelesning inf1000 - Java 4 Tema: Løkker Arrayer Metoder Ole Christian Lingjærde, 12. september 2012 Ole Chr. Lingjærde Institutt for informatikk, 29. august 2012 1 Repetisjon: arrayer Deklarere og opprette

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 2: Kontrollstrukturer, tallsystemer, basis Roger Antonsen Institutt for informatikk, Universitetet i Oslo 14. januar 2009 (Sist oppdatert: 2009-01-14 16:45) Kapittel

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Java PRP brukermanual

Java PRP brukermanual Java PRP brukermanual 1.1 Introduksjon 1.1.1 Hva er Java PRP Java PRP (Parallel Recursive Procedure) gir oss muligheten til automatisk parallellisering av programmer, som baserer seg på noen rekursive

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Eksamen i UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamensdag: 14. desember 2015 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF2220

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF 110 Algoritmer og datastrukturer Eksamensdag : Lørdag 8. desember 2001 Tid for eksamen : 09.00-15.00 Oppgavesettet er på

Detaljer