OPPGAVESETT MAT111-H16 UKE 34

Størrelse: px
Begynne med side:

Download "OPPGAVESETT MAT111-H16 UKE 34"

Transkript

1 OPPGAVESETT MAT111-H16 UKE 34 Avsnittene (og appendiksene) viser til utgave 8 av læreboken, som er like i utgavene 7 og 6 når ikke annet er oppgitt. Gruppene starter opp i uke 35. Hver student er satt opp på en gruppe og gruppetiden er oppgitt i timeplanen. Det er selvsagt også mulig å spørre gruppeleder om oppgavene fra Kapittel P fra oppgavesettet Uke 33. Appendiks I: 46, 53. Avsnitt P.6: 7, 8 På settet: S.1, S.2, S.3. Oppgaver til seminaret 26/08 Husk at seminaret finnes i to varianter, begge fredag : Seminar 1 Rask variant, Aud. A, Allégaten 66, der oppgavene gjennomgås på 1 time (og andre time brukes på gjennomgang av oppgavene under Mer dybde fra oppgavesettet uken før); Seminar 2 Sakte variant, Aud. B, Allégaten 66, der oppgavene gjennomgås på 2 timer. Fredag 26/08 vil det raske seminaret imidlertid kun gå 12:15-13:00, siden det ikke finnes noen ukesoppgaver under Mer dybde fra forrige uke. Oppgaver til gruppene uke 35 (Røde tall i parentes viser til utgave 7 av læreboken og er de samme som i utgave 6 når ikke annet er oppgitt.) Løs disse først så disse Mer dybde Appendiks I 5, 23, 34, 37, 51 10, 29, 41, 47, Avsnitt P.6 3, 4 10, 11 23(17), 24(18), 25(19) På settet G.1, G.2, G.3 G.4, G.5, G.6 G.7, G.8, G.9, G.10 Oppgavene under Mer dybde vil behandles i 2. time av det raske seminaret 2/9. Husk også orakeltjenesten som går hver fredag etter seminarene, der dere kan få hjelp til oppgaver og teori. Obligatoriske oppgaver Oppgavene 1 og 2 i Obligatorisk innlevering 1 (innleveringsfrist mandag 26/09). 1

2 2 OPPGAVESETT MAT111-H16 UKE 34 OPPGAVE S.1 (Eksamen UiB-H02-Oppg. 1) La z 1 = i 2, z2 = i (a) Beregn z 1 + z 2 og z 1 /z 2 og skriv løsningene på formen x + iy. Tegn z 1, z 2, z 1 + z 2 og z 1 /z 2 i det komplekse planet. (b) Skriv z 1 på polar form. Regn ut z1. 4 (c) Finn alle komplekse løsninger til ligningen z = 0. OPPGAVE S.2 (Eksamen UiO) La z 1 være et komplekst tall med z = 1. (a) Vis at z 1 er rent imaginær. z+1 (b) Hvilken kjent plangeometrisk setning er en konsekvens av (a). OPPGAVE S.3 Vis ved hjelp av induksjon at n 3 n er delelig på 3 for alle naturlige tall n. OPPGAVE G.1 (Eksamen UiB-H04-Oppg. 1) (a) Betrakt de to komplekse tallene z = 3 + i og w = 2 i 2. Regn ut z + w og z/w. Skriv z, w og z/w på polar form. Avmerk z, w, z + w og z/w i det komplekse plan. (b) Finn alle løsningene til z 3 = 8i. OPPGAVE G.2 Løs ligningen iz = 0 ved å bruke Oppgave G.1(b).

3 OPPGAVESETT MAT111-H16 UKE 34 3 OPPGAVE G.3 (Eksamen UiB-H09-Oppg. 8) OPPGAVE G.4 (Eksamen UiB-H00-Oppg. 4) (a) Skriv det komplekse tallet 2+5i 2+ på formen a + bi. 5i (b) Finn et argument og absoluttverdien (modulus) til det komplekse tallet z = 3 3i. Hva blir z 6? (c) Finn alle komplekse løsninger til ligningen z z = 0. OPPGAVE G.5 (Eksamen UiB-V99-Oppg. 3b) Løs ligningen z 2 + z = 1/4 og og merk av løsningene i det komplekse planet. OPPGAVE G.6 (Bernoullis ulikhet) Vis ved hjelp av induksjon at for alle heltall n 0 gjelder (1 + x) n 1 + nx for x 1. OPPGAVE G.7 Bruk Oppgave P.6.25(19) til å konkludere at et polynom med reelle koeffisienter av odde grad alltid har en reell rot.

4 4 OPPGAVESETT MAT111-H16 UKE 34 OPPGAVE G.8 (Eksamen UiO) (a) Finn alle komplekse løsninger av ligningen (1 + z) 5 = (1 z) 5, for eksempel uttrykt ved w = e 2πi/5. (b) Finn alle komplekse løsninger av ligningen (1 + z) n = (1 z) n, der n er et gitt naturlig tall. (c) Vis at løsningene i (b) alle ligger på en rett linje i det komplekse planet. OPPGAVE G.9 (Eksamen UiO) Anta at w = 1+ti, der t er reell. 1 ti (a) Vis at når t varierer, så ligger w på en sirkel S i det komplekse plan. (b) Vis at argumentvinkelen θ til w er bestemt ved tan(θ/2) = t. OPPGAVE G.10 Tårnet i Hanoi eller Brahmas Tårn er et matematisk spill som sies å ha blitt oppfunnet av den franske matematikeren Édouard Lucas i Spillet består av tre pinner og en rekke runde skiver med et hull i midten. Skivene er av varierende bredde, og kan plasseres i en hvilken som helst av de tre pinnene. Spillet starter med alle diskene plassert over en pinne, ordnet etter størrelse, med den minste øverst, som vist i figuren under. Spillet går ut på å flytte alle skivene til en annen pinne, etter følgende regler: Bare én skive av gangen kan flyttes. Flyttingen foregår ved at den øverste skiven fra en av pinnene flyttes til en annen pinne og legges på toppen av andre skiver som allerede er der. Ingen skive kan plasseres over en mindre skive. Hensikten med spillet er å få flyttet alle skivene fra en pinne til en annen med så få flyttinger som mulig.

5 OPPGAVESETT MAT111-H16 UKE 34 5 I denne oppgaven skal vi regne ut minste antall flyttinger F (n) når vi starter med n 1 ringer. (a) Vis at vi har F (n) = 2F (n 1) + 1 for n 2. (Dette kalles en rekursjonsformel.) (b) Bruk formelen i (a) og matematisk induksjon til å vise at F (n) = 2 n 1. (c) Spillet tar utgangspunkt i følgende gamle legende, som finnes i flere varianter: Ved jordens begynnelse plasserte guden Brahma tre stolper i et tempel i Benares i India, verdens midtpunkt. På en av stolpene plasserte han 64 gullskiver, med den største nederst, og så ble skivene mindre og mindre oppover stolpen. Rundt år 3500 f.kr. fikk munkene i byen i oppgave av guden å flytte alle ringene fra en stolpe til en annen ved å følge reglene gitt over. Når oppgaven var fullført skulle verden gå under og bli til støv. Hvis vi antar at munkene klarer å flytte en skive i sekundet og aldri gjør noen feil, hvor lang tid vil det da ta før verden går under? Om dere ønsker, kan dere spille på denne vevsiden Fasit/hint på neste side

6 6 OPPGAVESETT MAT111-H16 UKE 34 Fasit og hint til oppgavene For fasit/løsningsforslag til gamle eksamensoppgaver fra UiB, se vevsiden Oppgave G.2: Hint: gang med i og flytt over, så får du samme ligning som i Oppgave G.1(b). Oppgave G.6: Se fullstendig løsningsforlag neste side. Oppgave G.7: Oppgave P.6.25(19) sier at alle ikke-relle røtter forekommer i par (z og dens kompleks konjugerte z). Faktorteoremet (Teorem 1 i P.6) gir at det må forekomme minst én reell rot. Oppgave G.8: (a) wk 1, k = 1, 2, 3, 4, 5. (b) wk n 1 w k +1 wn k+1, k = 1, 2,..., n, w n = e 2πi/n. Oppgave G.10. (a) Kall pinnen hvor de n skivene er for A og de to andre for B og C. Anta at vi vil flytte alle skivene fra A og C. For å flytte n skiver fra pinne A til pinne C, bruk følgende strategi: Flytt n 1 skiver fra A til B. Dette etterlater én skive alene på A, den største skiven. Flytt den største skiven fra A til C. Flytt de n 1 skivene som er på B over til C slik at de plasseres oppå den største skiven. Overbevis deg selv om at dette er strategien med minst antall flyttinger og bruk dette til å utlede formelen. (c) Det ville ta munkene minst = sekunder, som er ca. 580 milliarder år. Til sammenligning mener forskere at universet er mellom 12 og 16 milliarder år gammelt.

7 OPPGAVESETT MAT111-H16 UKE 34 7 Vi viser ulikheten Løsningsforslag Oppgave G.6 (1) (1 + x) n 1 + nx for x 1. for alle heltall n 0 ved induksjon og kontrollerer først at den er riktig for n = 0. Setter vi inn n = 0 i (1) får vi 1 = (1 + x) 0 (1 + 0 x) = 1 for x 1, som er (åpenbart) riktig. Anta så at ulikheten holder for et heltall k 0, dvs. vi antar at (2) (1 + x) k 1 + kx for x 1. Multipliserer vi begge sidene av (2) med x + 1 (som er ikkenegatv siden x 1, får vi: (1 + x) k+1 (1 + kx)(1 + x) og ved hjelp av dette får vi: (1 + x) k+1 (1 + kx)(1 + x) = 1 + (k + 1)x + kx (k + 1)x, som viser at (1) er riktig for n = k + 1. Ved induksjon følger Bernoullis ulikhet for alle heltall n 0. LYKKE TIL! Andreas Leopold Knutsen

INNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10

INNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10 INNHOLD Side Eksempeleksamen 2T - Hele oppgavesettet 1 Oppgave 1 Eksempeleksamen 10 Oppgave 1a Eksempeleksamen 12 Teori oppgave 1a Eksempeleksamen 12 Løsning oppgave 1a Eksempeleksamen 14 Oppgave 1b Eksempeleksamen

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

Løsningsforslag til underveiseksamen i MAT 1100

Løsningsforslag til underveiseksamen i MAT 1100 Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Kort innføring i polynomdivisjon for MAT 1100

Kort innføring i polynomdivisjon for MAT 1100 Kort innføring i polynomdivisjon for MAT 1100 I dette notatet skal vi se litt på polynomdivisjon. Mange vil kjenne denne teknikken fra før, men etter siste læreplanomlegning er den ikke lenger pensum i

Detaljer

Andre spill. Sprouts eller «bønnespirer»

Andre spill. Sprouts eller «bønnespirer» Andre spill Sprouts eller «bønnespirer» Nettverk. Strategier og logisk tenking. Tallmønster., og Dere trenger blanke ark og fargeblyanter. Dette spillet ble oppfunnet i 1967 av to engelske matematikere,

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag

Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Institutt for matematiske fag Eksamensoppgave i MA0301 Elementær diskret matematikk løsningsforslag Faglig kontakt under eksamen: Martin Strand Tlf: 970 27 848 Eksamensdato:. august 2014 Eksamenstid (fra

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

LO118D Forelesning 6 (DM)

LO118D Forelesning 6 (DM) LO118D Forelesning 6 (DM) Rekurrensrelasjoner 10.09.2007 1 Rekurrensrelasjoner Rekurrensrelasjoner En rekurrensrelasjon definerer det n-te elementet i en følge i forhold til de foregående elementene. Følgen

Detaljer

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo

K A L K U L U S. Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok. ved Klara Hveberg. Matematisk institutt Universitetet i Oslo K A L K U L U S Løsningsforslag til utvalgte oppgaver fra Tom Lindstrøms lærebok ved Klara Hveberg Matematisk institutt Universitetet i Oslo Forord Dette er en samling løsningsforslag som jeg opprinnelig

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører

Oppgaver og løsningsforslag i undervisning. av matematikk for ingeniører Oppgaver og løsningsforslag i undervisning av matematikk for ingeniører Trond Stølen Gustavsen 1 1 Høgskolen i Agder, Avdeling for teknologi, Insitutt for IKT trond.gustavsen@hia.no Sammendrag Denne artikkelen

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

TOD063 Datastrukturer og algoritmer

TOD063 Datastrukturer og algoritmer TOD063 Datastrukturer og algoritmer Øving : 4 Utlevert : Veke 9 Innleveringsfrist : 19. mars 2010 Klasse : 1 Data og 1 Informasjonsteknologi Ta gjerne 1 og 2 først! Gruppearbeid: 2 personar pr. gruppe

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

Velkommen til eksamenskurs i matematikk 1

Velkommen til eksamenskurs i matematikk 1 Velkommen til eksamenskurs i matematikk 1 Haakon C. Bakka Institutt for matematiske fag 4.-5. desember 2010 Program I dag og i morgen skal vi holde på fra 10-16 med en pause fra 13-14. Vi skal gjennom:

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matematikk 5 V-008 Løsningsforslag til øving 9 OPPGVE Husk at N = {alle naturlige tall} = {0,,,,... }, Z = {alle heltall} = {...,,, 0,,,,... }, R = {alle reelle tall} og = {alle komplekse tall} = { z :

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3

. Følgelig er csc 1 ( 2) = π 4. sinθ = 3 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)

Detaljer

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003

Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003 Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Versjon 01/15 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som

Detaljer

201303 ECON2200 Obligatorisk Oppgave

201303 ECON2200 Obligatorisk Oppgave 201303 ECON2200 Obligatorisk Oppgave Oppgave 1 Vi deriverer i denne oppgaven de gitte funksjonene med hensyn på alle argumenter. a) b) c),, der d) deriveres med hensyn på både og. Vi kan benytte dee generelle

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

Notater fra forelesning i MAT1100 torsdag 27.08.09

Notater fra forelesning i MAT1100 torsdag 27.08.09 Notater fra forelesning i MAT1100 torsdag 27.08.09 Amandip Sangha, amandips@math.uio.no 28. august 2009 Definisjon 1.1. En delmengde A R kalles oppad begrenset dersom det finnes et tall b R slik at b x

Detaljer

VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus

VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus VELKOMMEN TIL MAT-INF1100(L) Knut Mørken knutm@ifi.uio.no Rom 1033, Niels Henrik Abels hus Forelesere Knut Mørken og Martin Reimers, Matematisk institutt, 10. etg i Niels Henrik Abels hus Arbeider med

Detaljer

Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler

Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler Uke:11 og 12 Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler Matematikk - kunne tegne enkle linje-, stolpe- og søylediagrammer - kunne lese av ulike typer diagrammer - kunne tegne

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 2 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 2 Program for teknostart Torsdag 15. aug 10:15-11:00 Velkomst Informasjon om

Detaljer

ESERO AKTIVITET UNIVERSETS HISTORIE. Lærerveiledning og elevaktivitet. Klassetrinn 7-8

ESERO AKTIVITET UNIVERSETS HISTORIE. Lærerveiledning og elevaktivitet. Klassetrinn 7-8 ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 60 min Å: lære at universet er veldig kaldt oppdage at Jorden ble dannet relativt nylig lære

Detaljer

TDT4225 Lagring og behandling av store datamengder

TDT4225 Lagring og behandling av store datamengder Eksamensoppgave i TDT4225 Lagring og behandling av store datamengder Kontinuasjonseksamen. Fredag 17. august 2012, kl. 0900-1300 Oppgaven er utarbeidet av faglærer Kjell Bratbergsengen. Kontaktperson under

Detaljer

Programmering i Java med eksempler

Programmering i Java med eksempler Simulering av differenslikninger Programmering i Java med eksempler Forelesning uke 39, 2006 MAT-INF1100 Differenslikn. p. 1 Løsning av differenslikninger i formel Mulig for lineære likninger med konst.

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

Guide til system for flervalgsprøver

Guide til system for flervalgsprøver Guide til system for flervalgsprøver Systemet skal i utgangspunktet være selvforklarende, og brukere oppfordres til å klikke seg rundt og bli kjent med systemet på egen hånd. Det er allikevel laget en

Detaljer

Miljøleder (Environmental Systems Manager) Oppgaver til skriftlig og muntlig eksamen, struktur og eksempler

Miljøleder (Environmental Systems Manager) Oppgaver til skriftlig og muntlig eksamen, struktur og eksempler QMCe OFFENTLIG VEILEDNING, MILJØLEDER Dato: 01.07.13 Oppgaver til skriftlig og muntlig eksamen Struktur og eksempler Side 1 av 6 Miljøleder (Environmental Systems Manager) Oppgaver til skriftlig og muntlig

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Arne B. Sletsjøe. Halden 18.09.2013

Arne B. Sletsjøe. Halden 18.09.2013 Arne B. Sletsjøe Universitetet i Oslo Halden 18.09.2013 Akkurat det samme som gårsdagens måtte ha, dvs. fagkunnskap, entusiasme, innsikt i matematikkens egenart og et vidt spekter av pedagogiske virkemidler,

Detaljer

Forskriftens intensjoner hva er utfordringen, og hva skal til for å lykkes? Et eksempel fra profesjonsfaget.

Forskriftens intensjoner hva er utfordringen, og hva skal til for å lykkes? Et eksempel fra profesjonsfaget. Forskriftens intensjoner hva er utfordringen, og hva skal til for å lykkes? Et eksempel fra profesjonsfaget. Kirsti L. Engelien ProTed Senter for fremragende lærerutdanning Institutt for lærerutdanning

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler

Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler Uke:11 og 12 Info: -fra uke 12 og frem mot påske vil vi gjennomføre utviklingssamtaler Matematikk - kunne tegne enkle linje-, stolpe- og søylediagrammer - kunne lese av ulike typer diagrammer - kunne tegne

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 9

Løsningsforslag for øvningsoppgaver: Kapittel 9 Løsningsforslag for øvningsoppgaver: Kapittel 9 Jon Walter Lundberg 10.03.2015 9.04 a) Hva er en elastisk pendel? Definer svingetida, perioden, frekvensen, utslaget og amlituden til en slik pendel. Definisjonene

Detaljer

+TIMEPLAN HØSTEN 2006 KULL 2006 1. SEMESTER Forbehold om endringer Redigert 24.10.06

+TIMEPLAN HØSTEN 2006 KULL 2006 1. SEMESTER Forbehold om endringer Redigert 24.10.06 +TIMEPLAN HØSTEN 2006 KULL 2006 1. SEMESTER Forbehold om endringer Redigert 24.10.06 Kullkontakt: Gabriele Kitzmüller Antall studenter : 50 Klasserom: Auditorium 5 (dersom ikke annet er oppgitt) Tidsplan

Detaljer

1 of 45 04/03/15 15:40

1 of 45 04/03/15 15:40 Alle svar på én side Svar-ID 914067 Navn Levert av Magne Tommy Aldrin den 14. januar 2015 10:42 E-postadresse Generelt Magne Tommy Aldrin magnetal@math.uio.no Denne rapporten for høsten 2014 skal skrives

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : IN 115 Eksamensdag : Lørdag 20 mai, 2000 Tid for eksamen : 09.00-15.00 Oppgavesettet er på : 5 sider Vedlegg : Intet. Tillatte

Detaljer

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04.

Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 2004. Hans Petter Hornæs Versjon per 26.10.04. Komplekse tall Forelesningsnotat til Matematikk 10 ved HiG, høst 004. Hans Petter Hornæs Versjon per 6.10.04. I Matematikk 10 er en kort innføring i komplekse tall pensum. Dette er dekket i Lorentzen,

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

Svarskjema for kurset 'Databaser' - evalueringsrunde 2 - Antall svar på eval: 13

Svarskjema for kurset 'Databaser' - evalueringsrunde 2 - Antall svar på eval: 13 Kurs: Databaser(10stp) Faglærer: Edgar Bostrøm Dato: 05.05.2009 1. Hvilke forventningen hadde du til kurset på forhånd? At det skulle være vanskelig og mye å gjøre, men at det også ville være spennende

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015

NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Godkjent april 2014 NTNU KOMPiS Studieplan for MATEMATIKK 1 (8. - 10. trinn) Studieåret 2014/2015 Profesjons- og yrkesmål Dette studiet er beregnet for lærere som har godkjent lærerutdanning med innslag

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

EKSAMEN med løsningsforslag

EKSAMEN med løsningsforslag EKSAMEN med løsningsforslag Emnekode: ITF20006 Emne: Algoritmer og datastrukturer Dato: Eksamenstid: 20. mai 2009 kl 09.00 til kl 13.00 Hjelpemidler: 8 A4-sider (4 ark) med egne notater Kalkulator Faglærer:

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 25. MARS 2010 Oppgaver med fasit

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 25. MARS 2010 Oppgaver med fasit ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN 25. MARS 2010 Oppgaver med fasit Sekskantede stjerner i en sekskantet stjerne, stråler som alltid forgrener seg i mindre stråler er de ikke fantastiske, disse

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154

EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:

Detaljer

TEMA: Kommunikasjon med Bruker INF1000 Plenumsgruppe 1, 08.09.02. -formatert utskrift

TEMA: Kommunikasjon med Bruker INF1000 Plenumsgruppe 1, 08.09.02. -formatert utskrift TEMA: Kommunikasjon med Bruker INF1000 Plenumsgruppe 1, 08.09.02 - terminal-i/o (bruker-i/o) - innlesing av ulike typer data - pakken easyio - klassene In og Out In in = new In(); Out ut = new Out(); int

Detaljer

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301

LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN VÅR07, MA0301 Oppgave 1 Om mengder. a) (10%) Sett opp en medlemsskapstabell (membership

Detaljer

UKE TEMA / EMNE LÆREMIDLER KOMPETANSEMÅL VURDERING ANSVAR 33 34 Begreper: rett linje nedover, rett linje bortover

UKE TEMA / EMNE LÆREMIDLER KOMPETANSEMÅL VURDERING ANSVAR 33 34 Begreper: rett linje nedover, rett linje bortover HALVÅRSPLAN HØST 2015 TRINN: 1. trinn FAG: Norsk UKE TEMA / EMNE LÆREMIDLER KOMPETANSEMÅL VURDERING ANSVAR 33 34 Begreper: rett linje nedover, rett linje bortover Zeppelin arbeidsbok Lytte, ta ordet etter

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Mekanikk FYS MEK 1110

Mekanikk FYS MEK 1110 Mekanikk FYS MEK 1110 Andreas Görgen Fysisk Institutt, UiO andreas.gorgen@fys.uio.no FYS-MEK 1110 19.01.2015 1 oversikt generelle opplysninger om kurset analytiske og numeriske metoder læringsmål lærebok

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014

ENT3R. Oppgavehefte. Basert på tidligere eksamener for 10. klasse. Tommy Odland 2/4/2014 ENT3R Oppgavehefte Basert på tidligere eksamener for 10. klasse Tommy Odland 2/4/2014 Dette er et oppgavehefte med oppgaver inspirert fra tidligere eksamener for 10. klassinger. Målet er at heftet skal

Detaljer

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014

Eneboerspillet del 2. Håvard Johnsbråten, januar 2014 Eneboerspillet del 2 Håvard Johnsbråten, januar 2014 I Johnsbråten (2013) løste jeg noen problemer omkring eneboerspillet vha partall/oddetall. I denne parallellversjonen av artikkelen i vil jeg i stedet

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen

Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 2002, ordinær eksamen Løsningsforslag: Deloppgave om heuristiske søkemetoder ALGKON 00, ordinær eksamen 1. september 003 Innledning Vi skal betrakte det såkalte grafdelingsproblemet (graph partitioning problem). Problemet kan

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

Noen betraktninger over det ontologiske gudbevis.

Noen betraktninger over det ontologiske gudbevis. 1 * Noen betraktninger over det ontologiske gudbevis. * Morten Rognes 1985 * Filosofisk institutt, Universitetet i Oslo 2 I dette arbeid vil vi fremsette noen betraktninger over det såkalte "ontologiske

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

Øvingsforelesning i Matlab (TDT4105)

Øvingsforelesning i Matlab (TDT4105) Øvingsforelesning i Matlab (TDT4105) Øving 1. Frist: 11.09. Tema: matematiske uttrykk, variabler, vektorer, funksjoner. Benjamin A. Bjørnseth 1. september 2015 2 Oversikt Praktisk informasjon Om øvingsforelesninger

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Simulering på regneark

Simulering på regneark Anne Berit Fuglestad Simulering på regneark Trille terninger eller kaste mynter er eksempler som går igjen i sannsynlighetsregningen. Ofte kunne vi trenge flere forsøk for å se en klar sammenheng og få

Detaljer

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no

Detaljer

Kapittel 12: Rekursjon

Kapittel 12: Rekursjon Kapittel 12: Rekursjon Redigert av: Khalid Azim Mughal (khalid@ii.uib.no) Kilde: Java som første programmeringsspråk (3. utgave) Khalid Azim Mughal, Torill Hamre, Rolf W. Rasmussen Cappelen Akademisk Forlag,

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM

MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM MATEMATIKK FOR REALFAG PROGRAMFAG I STUDIESPESIALISERENDE UTDANNINGSPROGRAM Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings- og

Detaljer

Arbeidsplan 9. klasse veke 11 &12

Arbeidsplan 9. klasse veke 11 &12 Arbeidsplan 9. klasse veke 11 &12 9A MANDAG TIRSDAG ONSDAG TORSDAG FREDAG 08:20-09:05 1 RLE Matte 09:05-09:50 2 Spansk/F.eng Norsk - 10:30-11:15 3 Matte Samfunnsfag Norsk øving 11:15-12:00 4 Norsk Samfunnsfag

Detaljer

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013

Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013 Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44

Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 3 (10 (-4) 9 + 1) = 3 (10 + 36 + 1) = 3 47 = -44 Hjemmearbeid matematikk eksamensklassen Ark 23 Leveres mandag 27. januar 2014 Løsningsforslag Oppgave 1. Regn ut. a) 8 + 3 (2 6) + 16 : 2 = 8 + 3 (-4) + 8 = 8 12 + 8 = 4 b) + - = 4 + 5 10 = -1 c) 5 + 5

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

TIMEPLAN HØSTEN 2007 KULL 2007 1. SEMESTER Forbehold om endringer Redigert 10.08.07

TIMEPLAN HØSTEN 2007 KULL 2007 1. SEMESTER Forbehold om endringer Redigert 10.08.07 TIMEPLAN HØSTEN 2007 KULL 2007 1. SEMESTER Forbehold om endringer Redigert 10.08.07 Kullkontakt: Anne S. Evju Antall studenter : 50 Klasserom: Auditorium 5 (dersom ikke annet er oppgitt) Tidsplan for undervisning;

Detaljer

Unge Abel NMCC. Prosesslogg. Nord-Trøndelag, Norge 27.03.2015

Unge Abel NMCC. Prosesslogg. Nord-Trøndelag, Norge 27.03.2015 2015 Unge Abel NMCC Prosesslogg Nord-Trøndelag, Norge 27.03.2015 Innhold UngeAbel logg... 2 Faglig rapport... 5 Innledning:... 5 UngeAbel oppgave Aa... 6 GeoGebra... 8 Excel... 9 Konklusjon... 10 UngeAbel

Detaljer