Løsningsforslag uke 48

Størrelse: px
Begynne med side:

Download "Løsningsforslag uke 48"

Transkript

1 Løsningsforslag uke 48 Oppgave 1 Linjesvitsjing er en teknikk som tradisjonelt har vært i bruk i telefon-nettet, men som nå også benyttes for dataoverføring. ruken av en linjesvitsjet forbindelse foregår i tre faser: 1. Oppsett av linje: ved oppkall blir en fysisk linje blir satt opp mellom sender og mottager vha. mekaniske eller elektroniske svitsjer. 2. Linja brukes (for tale eller dataoverføring). 3. Nedkopling Fordelen ved linjesvitsjing er at man får en egen fysisk forbindelse som ingen andre bruker. Moderne datanett benytter imidlertid fortrinnsvis pakkesvitsjing som muliggjør deling av de fysiske linjene. Pakkesvitsjing innebærer at dataene som skal sendes først stykkes opp i pakker som sendes ut på de fysiske linjene. Hver pakke inneholder et hode og en hale i tillegg til de informasjonsbærende dataene. Hodet inneholder blant annet adresseinformasjon som er nødvendig for å rute pakken fram til mottager. Prinsippet er at pakker med data blir sendt ut på et nett og dirigert (svitsjet) til riktig sted via de pakkesvitsjene som finnes i nettet. Når en pakke kommer inn i en svitsj, avgjør svitsjen hvilken linje denne pakken skal sendes ut på ut ifra hva som ser best ut på det tidspunktet pakken prosesseres i svitsjen. Ulike pakker kan således bli sendt forskjellige veier mellom og. En fordel med pakkesvitsjing er at flere sendere og mottagere som utveksler data kan dele de samme fysiske linjene. Passer bra for asynkron trafikk (f.eks. e-post). En annen fordel er at pakkesvitsjing gir mulighet for å rute trafikk utenom linjer som er nede eller går ned. Forbindelsorientert overføring kan sammenlignes med det å kople opp en telefonsamtale eller en TCPforbindelse; Oppkopling - bruk - nedkopling av forbindelsen Forbindelsesfri overføring kan sammenliknes med å sende et brev i det vanlige postsystemet. En pakke (datagram) utstyres med en fullstendig adresse som gjøre det mulig å rute pakken fram til mottageren uten at det settes opp noen forbindelse på forhånd. C Multipleksere er innretninger i telenettet som gjør det mulig for flere linjer med lav bitrate å dele en linje med høy bitrate. Dataoverføringskapasiteten på den sistnevnte linja vil for en enkel type multiplekser, være større eller lik summen av bitratene for hver av lavkapasitets-linjene. 1

2 Oppgave 2 Punkt-til-punkt nett muliggjør dataoverføring mellom én avsender og én mottager av gangen. Nettet består av mange forbindelser mellom individuelle par av maskiner. For å komme fra kilde til destinasjon, kan en pakke i denne typen nett måtte gå innom mange mellomliggende maskiner (svitsjer). Det er viktig å finne en optimal rute gjennom nettet. Siden det her dreier seg om en sender og en mottager, kalles denne typen overføring gjerne unikast. Kringkastingsnett har gjerne en felles kommunikasjonskanal som deles av alle maskinene på nettet. Når en maskin sender en pakke ut på nettet, vil denne derfor mottas av alle de andre maskinene, men bare den eller de maskinene som pakken er adressert til, vil lese den inn i sin hukommelse. Pakker som ikke er adressert til en bestemt maskin, blir ignorert av denne maskinen. Kringkastingsnett muliggjør to nyttige kommunikasjonsmåter som kalles kringkasting og multikasting. Kringkasting betyr at en pakke som blir sendt ut på nettet, blir plukket opp og prosessert av alle de andre maskinene på nettet; Multikasting betyr at en pakke som sendes ut på nettet, blir plukket opp av et subsett av alle maskinene som er tilknyttet. Det som først og fremst kjennetegner Internet, er at det består av en meget stor samling med autonome nett, dvs. nett som i utgangspunktet er laget for å betjene en gruppe brukere (f.eks. lokalnettet ved UiO). Hvert av disse (sub-)nettene fungerer uavhengig av alle andre autonome nett i verden, men er knyttet sammen vha. ulike typer langdistansenett eller rene høyhastighets forbindelser. Internet-protokollen (IP) binder alle de autonome nettene sammen til det vi kaller Internet ved bl.a. å tilby en adresserings- mekanisme som er universell. Dette betyr i praksis at hvert enkelt subnett, tildeles et sett av Internet- adresser, som er unike ift. alle andre Internet- adresser og derved gjør det mulig for en maskin på ett subnett å kunne nå en hvilken som helst maskin på et annet subnett. Sentrale funksjoner som det må tas hånd om er bl.a.: Ruting på Internet nivå mellom subnett (globale Internet-adresser). Ruting på subnett nivå mellom lokale maskiner (lokale subnett-adresser). Fragmentering og reassemblering. C us lle maskinene er koplet til en lineær kabel (dvs. endene er ikke koplet sammen). enyttes for Ethernet-baserte lokalnett; denne protokollen tar høyde for at det vil oppstå kollisjoner på kabelen når to eller flere maskiner prøver å sende samtidig. Ring Kabelen som maskinene tilknyttes utgjør en sluttet ring (kan også være mer enn én fysisk ring). LN protokoller som benytter ring-topologi har sikre mekanismer som hindrer at kollisjoner oppstår (eks. Token ring, FDDI). Stjerne Maskinene er tilknyttet en felles enhet (svitsj) som sørger for at de når riktig mottager hvis denne maskinen/nettet også er koplet på svitsjen (eks. Ethernet svitsj) 2

3 Oppgave 3 båndbredde (bandwidth) Her skal man passe på at begrepet båndbredde benyttes ulikt ettersom det er snakk om digtale eller analoge systemer. Dersom det er snakk om analoge systemer, har båndbredden måleenheten Hertz (Hz). En analog telefonlinje har f.eks. ca. 3kHz bånbredde. Dersom man snakker om digitale systemer, mener man vanligvis kapasiteten til en link målt i bit pr.sekund. ndre betegnelser på sistnevnte er bitrate, overføringshastighet, transmisjonsrate mv. gjennomstrømning (throughput) Den datamengden vi faktisk får over en link pr. sekund (bit/s). Den teoretiske båndbredden er ofte ikke mulig å oppnå pga. pakketap, flere brukere, for langsom maskin med hensyn til programvaren som eksekveres ift. hastigheten man ønsker å sende med osv. Forsinkelsen oppstår flere steder: Fra applikasjonen som sender pakken, må pakken gå nedover i protokollstacken hvor det er mange buffere mellom lagene. Her er det viktig å unngå å kopiere pakkene, men heller flytte pekere. Kopiering tar tid. Hver protokoll har sine regler og funksjoner, dvs. at en pakke kan bli oppdelt i flere rammer som igjen legges i buffer. Propagation delay; selve mediet som det overføres på introduserer også forsinkelse: elektroner bruker tid på å forflytte seg i en kopperledning; det samme gjelder fotoner i et fiber. Prosesseringstid: Ute i nettverket vil det være mange rutere som pakken må passere; disse bruker tid på å få sendt pakker videre. Tid for å sende en pakke: Dette avhenger av kapasiteten på linken. En linje med 1Mbps og en pakkestørrelse 10 kb vil trenge 10 ms for å få hele pakken ut på linja. Retransmisjon av pakker fører selvfølgelig til forsinkelse. Ved bit-feil: Noen ganger vil enkeltbit bli feiltolket, men som oftest vil feil opptre i burst, dvs. feil i flere bit etter hverandre. Dette blir vanligvis forårsaket av elektrisk interferens, f.eks. lynnedslag. En node i nettet kan være nede. Pakken kan da eventuelt rutes rundt, men dette vil ikke alltid være mulig. Programvaren i en ruter kan dessuten bruke gale/ikke oppdaterte rutingtabeller, og derved framsende pakker i feil retning. Oppgave 4 Oppgaven til lag 1 er å klokke ut og ta i mot bit, multipleksing / demultipleksing, koding av bit i basisbånd, modulasjon av bit inn på en bærebølge (amplitude, frekvens og fase modulasjon). twisted pair mest brukt i telefonnettverk, billig og det mest brukte transmisjonsmediet. rukbar for kabling i bygninger. 3

4 coaxialkabel brukes til overføring av TV-signaler og i localnettverk. 50 omh (data) og 75 omh (tvsignaler). rukes til kortere avstander. Kan bære mange slags signaler samtidig (data, TV osv.). optisk fiber brukes omtrent over alt. Fiber har mange fordeler: stor kapasistet - høy båndbredde mindre størrelse og lettere enn kobberledninger (twisted pair) lavere demping av signalstyrke, og dempingen er konstant over en lengre rekkevidde elektromagnetisk isolasjon - påvirkes ikke av andre elektromagnetiske kilder (pga. bruk av lys, vanskelig å avlytte eller å bryte). større avstander mellom repeatere (eks. på 318 km uten repeatere). terrestrial mikrobølge alternativ til coax eller fiber. rukes i områder hvor det er vanskelig å legge kabel. Sender og mottaker må ha øyekontakt. satelitt mikrobølge brukes til TV, telefoner og private organisasjoner (egne linker). distribuering pga. stort footprint. Ypperlig til broadcast radio radiobølger vi kjenner fra vanlig radio og TV. I motsetning til satelittsignaler, krever ikke radiosignaler rettede antenner. infrarød sender og mottaker må ha øyekontakt, og infrarøde stråler går ikke igjennom vegger. ltså bedre sikkerhet og ingen interferensproblemer (slik som for mikrobølger). Det finnes heller ikke frekvensallokering infrarøde stråler. rukes mellom apparater som står nær hverandre (fjernkontroll, mobiltelefon og PC). Oppgave 5 Legge på en mottaker- og avsender-adresse. For å skille virkelige data fra støy o.l. på linjen. Oppdage feil (eks. CRC), rette feil (eks. FEC). Legge på flytkontroll. Man kan bruke både start- og sluttmerke på rammene, eller bare startmerke, variabel eller fast lengde (variabel krever vel sluttmerke eller angitt lengde i header, ettersom man vanskelig kan kreve at det skal gå en jevn strøm av pakker, slik at man kunne brukt startmerket på neste som sluttmerke). Se forøvrig forrige spørsmål. C Flytkontroll regulerer trafikken over en kanal, og går ut på å gjøre det mulig for mottaker å regulere hvor mye data den til enhver tid er i stand til å motta. Dette kan oppnås ved at mottaker sender en egen melding som ber avsender slutte å sende (eller bremse på sendehastigheten). Glidene vindu mekanismen kan også benyttes for å løse dette ved at mottager lar være å sende kvitteringer (CK) når den ikke kan motta for øyeblikket. Den siste metoden innebærer unødige retransmisjoner, men dette spiller ingen rolle siden linken likevel ikke kan brukes til noe annet når mottaker-noden ikke kan motta. 4

5 Oppgave 6 Hovedoppgaven til nettlaget er å transportere rammer fra SP på toppen av nettlaget hos avsender, gjennom nettet og til SP på toppen av nettlaget hos mottager. Ofte vil rammer måtte passere mange rutere på sin vei fra avsender til mottager. Nettlaget er det laveste laget som tar seg av ende til ende transmisjon, i motsetning til link laget som tar seg av det å flytte rammer fra en ende av en link til en den andre. Nett-tjenesten kan være forbindelsesorientert eller forbindelsesfri. Uavhengig av dette er oppgavene til nettlaget adressering og ruting. Dersom nett-tjenesten er er forbindelsesorientert må nettlaget i tillegg sørge for glidende vindu, flytkontroll og metningskontroll. Forbindelsesorientert: Pålitelig. Forbindelsesfri: Teleselskaper har 100 års erfaring med telefonsystemer. Medfører overhead i forbindelse med oppsettting av virtuell rute. ll kompleksitet i nettverksdelen, medfører mindre fleksibilitet. Nettverkslaget skal sørge for rimelig pålitelig overføring. oppsetting av forbindelser og forhandling av parametere som kostnader og pris. edre egnet for konferanse aktig trafikk som er avhengig av kort forsinkelse. Upålitelig og forbindelsesløs representert ved Internet. ca. 30 års erfaring. Nettverkslaget er upålitelig uansett. Derfor vil hostene uansett oppdage/korrigere for feil og sørge for flytkontroll. Kompleksiteten legges i transportlaget, men det gjør ikke så mye da regnekraft har blitt veldig billig. Oppgave 7 Datagrammer: Hver pakke inneholder den komplette adressen til destinasjonen. Switchen/ruteren benytter så denne informasjonen til å bestemme hvor pakken skal videre. Virtuelle forbindelser (Virtual Circuit, VC): En VC vil si at alle pakker fra en bestemt node,, går samme vei til en bestemt node,. For at en VC skal virke må det først opprettes en 5

6 forbindelse, dette gjøres ved at den hosten som vil opprette en VC, sender ut en setup-message. Denne spesielle pakken vil da traversere nettet og sette av resurser i de forskjellige ruterene den er innom. Hver ruter som kan tilby VC er, må vedlikeholde en tabell over de VC er den har. Datagrammer: Datagrammer er veldig enkle å sende, de kan sendes til enhver tid til enhver node. Dette gjør at avsender ikke trenger å bekymre seg med hvilken vei pakken tar. Datagrammer er imidlertid ikke garantert å nå mål, de kan gå tapt på veien, og avsender har ingen måte å finne ut av dette. En annen effekt av datagrammer, som til tider ikke er ønsket, er at de kan komme frem i en anne rekkefølge enn de ble sendt. Dette kommer av at datagrammer kan ta forskjellige veier. Datagrammer tilfører en del kompleksitet til ruterene. Ruterene må kunne bygge ruting-tabeller, og dette er ikke alltid en dans på roser. Et siste draw-back med datagrammer er at hver pakke må inneholde destinasjonsadressen. Virtuelle forbindelser: VC er har den fordelen at hver pakke som sendes kun trenger å inneholde VCI, noe som er en del mindre enn en hel adresse. VC sørger også for at alle pakker ankommer i den rekkefølge de blir sendt, noe som er en klar fordel i enkelte applikasjoner. VC er er på den annen side sårbare for brudd i kretsen. Skulle en ruter gå ned, må hele kretsen etableres på nytt. Oppgave 8 To hovedproblemer: Heterogenitet og skalering. Heterogenitet: rukere av forskjellige typer nettverk skal ha mulighet til å kommunisere med hverandre, til tross for at nettene har forskjellige medium aksessteknologi, tjenestemodeller og adresseringsskjema. Skalering: Internett ekspanderer med en nærmest utrolig hastighet. Denne veksten resulterer i følgende delproblemer: Ruting: hvordan finne en effektiv sti i et nettverk av flere millioner noder? dressering: Hvordan identifisere alle nodene i nettet? Heterogene subnett skal kommunisere og opptre som ett operativt system. Sub-autonomitet: det skal ikke kreves endringer i subnettene. Størst mulig adaptivitet overfor kabelbrudd, node- kræsj og trafikkbelastning. Gjøre minst mulige forutsetninger om underliggende teknologi. Skal utnytte ulike nett- og transmisjonsteknologier (konvergensteknologi). Endesystemene skal håndtere påliteligheten. 6

7 C Se sammenkobling av store nett figuren. Når man sammenkobler nett vha TCP/IP må man alltid opp på IP laget før pakkene kan sendes videre på en fysisk link. Figure 1: Sammenkobling av store nett. D Transporten av pakker skjer på raskest mulig måte. Vi har derfor ingen garanti for vellykket overføring. En best effort overføring betyr at: pakker kan bli borte. pakker kan ankomme i feil rekkefølge. pakker kan dupliseres. pakker kan bli unormalt forsinket. det settes en øvre grense for pakkestørrelsen. 7

8 Oppgave 9 Transportlaget er det første laget med ende til ende kontroll. Lagene fra transport- laget og over finnes typisk bare i endesystemene og ikke i rutere og switcher. Over transportlaget finner vi protokoller som understøtter samvirke mellom distribuerte applikasjoner; disse protokollene beskjeftiger seg ikke med selve overføringen av data, men forutsetter at dette ivaretas av underliggende lag. Under transportlaget har vi det fysiske nettet, med rammer og ruting. Disse lagene (Fysiske, link, nett, transport) har det kollektive ansvaret for overføring av data mellom sender og mottaker, og at kvaliteten på overføringen tilsvarer applikasjonens behov. Hvis vi ønsker å oppnå/garantere full pålitelighet i Transportlaget, må vi ha: - Pålitelig oppkobling av forbindelser. - Pålitelig overføring av data, dvs: alle meldinger kommer fram ingen meldinger dupliseres meldinger bytter ikke rekkefølge meldingene inneholder ikke feil (feilsjekk ende-til-ende) Pålitelig nedkobling av forbindelser uten tap av datapakker (graceful close). C Valget mellom TCP og UDP gjøres når man skal implementere en applikasjon. Mer spesielt velger man det når man oppretter f.eks en socket, som kan ta parameter TCP eller UDP. Man velger den protokollen man tror best vil oppfylle sine behov til netteverks- kommunikasjon effektivitet/hastighet/sikkerhet. Det vil vel ofte ende opp med ett kompromiss, og man bruker den protokollen som har flest av de egenskapene man trenger. UDP vil typisk være velegnet for å sende mange spredte små pakker, eller lyd/bilde strømmer, interaktiv bruk, hvor det ikke er vesentlig om alle pakker kommer frem. TCP er velegnet til store filoverføringer o.l. 8

Løsningsforslag til oppgaver i datakommunikasjons-delen i inf1060, uke 48, 2004.

Løsningsforslag til oppgaver i datakommunikasjons-delen i inf1060, uke 48, 2004. Løsningsforslag til oppgaver i datakommunikasjons-delen i inf1060, uke 48, 2004. 1. Kommunikasjonsformer Gi en kort definisjon på følgende begrep: a) Linje/pakkesvitsjing Linjesvitsjing er en teknikk som

Detaljer

Løsningsforslag Gruppeoppgaver, januar INF240 Våren 2003

Løsningsforslag Gruppeoppgaver, januar INF240 Våren 2003 Løsningsforslag Gruppeoppgaver, 27. 31. januar INF240 Våren 2003 1. Kommunikasjonsformer Gi en kort definisjon på følgende begrep: a) Linje/pakkesvitsjing Linjesvitsjing er en teknikk som tradisjonelt

Detaljer

Løsningsforslag Gruppeoppgaver 17. - 21.mars 2003

Løsningsforslag Gruppeoppgaver 17. - 21.mars 2003 Løsningsforslag Gruppeoppgaver 17. - 21.mars 2003 1. Nettverkslaget a) Gi en beskrivelse av hovedoppgavene til nettlaget. Hovedoppgaven til nettlaget er å transportere rammer fra SAP på toppen av nettlaget

Detaljer

Oppsummering: Linjesvitsjing kapasiteten er reservert, og svitsjing skjer etter et fast mønster. Linjesvitsj

Oppsummering: Linjesvitsjing kapasiteten er reservert, og svitsjing skjer etter et fast mønster. Linjesvitsj Oppsummering: Linjesvitsjing kapasiteten er reservert, og svitsjing skjer etter et fast mønster Linjesvitsj Pakkesvitsjing Ressursene er ikke reservert; de tildeles etter behov. Pakkesvitsjing er basert

Detaljer

Gjennomgang av kap. 1-4. Kommunikasjonsformer Typer av nettverk Adressering og routing Ytelse Protokoller

Gjennomgang av kap. 1-4. Kommunikasjonsformer Typer av nettverk Adressering og routing Ytelse Protokoller Uke 6 - gruppe Gjennomgang av kap. 1-4 Kommunikasjonsformer Typer av nettverk Adressering og routing Ytelse Protokoller Gruppearbeid Diskusjon Tavle Gi en kort definisjon av følgende: 1. Linje/pakkesvitsjing

Detaljer

Kommunikasjonsnett. Et kommunikasjonsnett er utstyr (maskinvare og programvare) for utveksling av informasjon

Kommunikasjonsnett. Et kommunikasjonsnett er utstyr (maskinvare og programvare) for utveksling av informasjon Kommunikasjonsnett Et kommunikasjonsnett er utstyr (maskinvare og programvare) for utveksling av informasjon Hva er informasjon? Tale, bilde, lyd, tekst, video.. Vi begrenser oss til informasjon på digital

Detaljer

Computer Networks A. Tanenbaum

Computer Networks A. Tanenbaum Computer Networks A. Tanenbaum Kjell Åge Bringsrud (med foiler fra Pål Spilling) Kapittel 1, del 2 INF3190 Våren 2004 Kjell Åge Bringsrud; kap.1 Foil 1 Direkte kommunikasjon: dedikert punkt-til-punkt samband

Detaljer

Detaljerte funksjoner i datanett

Detaljerte funksjoner i datanett Detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud INF1060 1 Litt mer detaljer om: Multipleksing Feildeteksjon, flytkontroll Adressering LAN Repeatere, broer TCP/IP Øvre lag Applikasjonsprotokoller

Detaljer

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing Litt mer detaljer om: Detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud Multipleksing Feildeteksjon, flytkontroll Adressering LAN Repeatere, broer TCP/IP Øvre lag Applikasjonsprotokoller

Detaljer

Linklaget. Olav Lysne. (med bidrag fra Stein Gjessing og Frank Eliassen) Oppsummering 1

Linklaget. Olav Lysne. (med bidrag fra Stein Gjessing og Frank Eliassen) Oppsummering 1 laget Olav Lysne (med bidrag fra Stein Gjessing og Frank Eliassen) Oppsummering 1 Internettets Overlay Arkitektur IP-link C.b B.a A.a a C b d a b A.c c a B c b A Oppsummering 2 Lagets tjenester Framing

Detaljer

Hva består Internett av?

Hva består Internett av? Hva består Internett av? Hva er et internett? Et internett = et nett av nett Ingen sentral administrasjon eller autoritet. Mange underliggende nett-teknologier og maskin/programvareplatformer. Eksempler:

Detaljer

Kapittel 6: Lenkelaget og det fysiske laget

Kapittel 6: Lenkelaget og det fysiske laget Kapittel 6: Lenkelaget og det fysiske laget I dette kapitlet ser vi nærmere på: Lenkelaget Oppgaver på lenkelaget Konstruksjon av nettverk Aksessmekanismer Det fysiske laget Oppgaver på det fysiske laget

Detaljer

Sentrale deler av pensum i INF240. Hensikt. Pål Spilling og Kjell Åge Bringsrud

Sentrale deler av pensum i INF240. Hensikt. Pål Spilling og Kjell Åge Bringsrud Sentrale deler av pensum i INF240 Pål Spilling og Kjell Åge Bringsrud 07.05.2003 1 Hensikt Her følger en (ikke fullstendig) liste i stikkords form for sentrale temaer vi forventer at studentene skal kunne

Detaljer

Sentrale deler av pensum i INF

Sentrale deler av pensum i INF Sentrale deler av pensum i INF3190 31.05.2005 1 Hensikt Her følger en (ikke fullstendig) liste i stikkords form for sentrale temaer vi forventer at studentene skal kunne til eksamen. Prioriteringen ligger

Detaljer

Nettverkslaget. Fragmentering/framsending Internetworking IP

Nettverkslaget. Fragmentering/framsending Internetworking IP Uke 9 - gruppe Nettverkslaget Fragmentering/framsending Internetworking IP Gruppearbeid Diskusjon 1. Forklar prinsippet for fragmentering og reassemblering. Anta at maskinen som tar iniativet til kommunikasjonen

Detaljer

ITF20205 Datakommunikasjon - høsten 2011

ITF20205 Datakommunikasjon - høsten 2011 ITF20205 Datakommunikasjon - høsten 2011 Løsningsforslag til teoretisk øving nr. 4. Nr.1. - Hvordan foregår multipleksing og demultipleksing på transportlaget? Det kan være flere applikasjoner som kjører

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 240 og IN270 Datakommunikasjon Eksamensdag: Onsdag 21. mai 2003 Tid for eksamen 9.00-15.00 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Kapittel 5 Nettverkslaget

Kapittel 5 Nettverkslaget Kapittel 5 Nettverkslaget I dette kapitlet ser vi nærmere på: Nettverkslaget IP-protokollen Format Fragmentering IP-adresser Rutere Hierarkisk ruting og ruteaggregering Autonome soner 1 Nettverkslaget

Detaljer

2EOLJDWRULVNRSSJDYHQU L GDWDNRPPXQLNDVMRQ + VWHQ.,QQOHYHULQJVIULVWRNWREHU *MHQQRPJnVWRUVGDJRNWREHU

2EOLJDWRULVNRSSJDYHQU L GDWDNRPPXQLNDVMRQ + VWHQ.,QQOHYHULQJVIULVWRNWREHU *MHQQRPJnVWRUVGDJRNWREHU 2EOLJDWRULVNRSSJDYHQU L GDWDNRPPXQLNDVMRQ + VWHQ,QQOHYHULQJVIULVWRNWREHU *MHQQRPJnVWRUVGDJRNWREHU 2SSJDYH D)RUNODUKYLONHWRHOHPHQWHUHQ,3DGUHVVHEHVWnUDY En IP-adresse består av to deler, nettverksdel og

Detaljer

Computer Networks A. Tanenbaum

Computer Networks A. Tanenbaum Computer Networks A. Tanenbaum Kjell Åge Bringsrud (Basert på foiler av Pål Spilling) Kapittel 1, del 3 INF3190 Våren 2004 Kjell Åge Bringsrud; kap.1 Foil 1 Tjenestekvalitet, mer spesifikt Overføringskapasitet

Detaljer

Nettlaget. Nettlagets oppgaver

Nettlaget. Nettlagets oppgaver Ruting og Pakke- svitsjing Mål Oversikt over hvor ruting passer inn i Internett arkitekturen Prinsippene for vanlige ruting protokoller Styrker og svakheter Disposisjon primæroppgavene til nettlaget datagram

Detaljer

Kapittel 4: Transportlaget

Kapittel 4: Transportlaget Kapittel 4: Transportlaget Noen mekanismer vi møter på transportlaget Adressering Glidende vindu Deteksjon av bitfeil Pålitelig overføring med TCP Etablering av TCP-forbindelse Flyt- og metningskontroll

Detaljer

IT Grunnkurs Nettverk 3 av 4

IT Grunnkurs Nettverk 3 av 4 1 IT Grunnkurs Nettverk 3 av 4 Foiler av Yngve Dahl og Rune Sætre Del 1 og 3 presenteres av Rune, satre@ntnu.no Del 2 og 4 presenteres av Yngve, yngveda@ntnu.no 2 Nettverk Oversikt Del 1 1. Introduksjon

Detaljer

Detaljerte Funksjoner i Datanett

Detaljerte Funksjoner i Datanett Detaljerte Funksjoner i Datanett Tor Skeie Email: tskeie@ifi.uio.no (Foiler fra Kjell Åge Bringsrud) INF1060 1 Litt mer detaljer om: Multiplexing Link-laget: Feildeteksjon og flytkontroll LAN typer Broer

Detaljer

Løsningsforslag Gruppeoppgaver 24. - 28.mars 2003

Løsningsforslag Gruppeoppgaver 24. - 28.mars 2003 Løsningsforslag Gruppeoppgaver 24. - 28.mars 2003 1. Fragmentering a) Forklar prinsippet for fragmentering og reassemblering. Anta at maskinen som tar initiativet til kommunikasjonen benytter maksimale

Detaljer

Det fysiske laget, del 2

Det fysiske laget, del 2 Det fysiske laget, del 2 Kjell Åge Bringsrud (med foiler fra Pål Spilling) 02.02.2005 INF3190 1 Analog og digital transmisjon forsterker analog overføring med forsterker, støy er additiv regenerator og

Detaljer

Kapittel 9 Teletjenester

Kapittel 9 Teletjenester Kapittel 9 Teletjenester I dette kapitlet ser vi nærmere på: Infrastruktur for telekommunikasjon ISDN Digital Subscriber Lines Leide linjer Frame Relay ATM X.25 1 Infrastruktur for Telekommunikasjon Ønsker

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 7. desember 2007 Tid for eksamen: 14.30 17.30 Oppgavesettet

Detaljer

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing Litt mer detaljer om: Detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud Multipleksing Feildeteksjon, flytkontroll Adressering LAN Repeatere, broer TCP/IP Øvre lag Applikasjonsprotokoller

Detaljer

IT Grunnkurs Nettverk 2 av 4

IT Grunnkurs Nettverk 2 av 4 1 IT Grunnkurs Nettverk 2 av 4 Foiler av Yngve Dahl og Rune Sætre Del 1 og 3 presenteres av Rune, satre@ntnu.no Del 2 og 4 presenteres av Yngve, yngveda@ntnu.no 2 Nettverk Oversikt Del 1 1. Introduksjon

Detaljer

Flere detaljerte funksjoner i datanett

Flere detaljerte funksjoner i datanett Flere detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud INF1060 1 Ennå litt mer detaljer: IP Adressering TCP, UDP Øvre lag Applikasjonsprotokoller INF1060 2 Internett Best-effort overføring

Detaljer

Linklaget - direkte forbindelser mellom noder

Linklaget - direkte forbindelser mellom noder Linklaget - direkte forbindelser mellom noder Foreleser: Kjell Åge Bringsrud E-mail: kjellb 2/11/2004 1 Tilbakeblikk Kursets fokus nett for generell bruk pakkebaserte nett A Noder 1 2 3 4 5 D 6 Link 2/11/2004

Detaljer

TDT4110 IT Grunnkurs: Kommunikasjon og Nettverk. Læringsmål og pensum. Hva er et nettverk? Mål. Pensum

TDT4110 IT Grunnkurs: Kommunikasjon og Nettverk. Læringsmål og pensum. Hva er et nettverk? Mål. Pensum 1 TDT4110 IT Grunnkurs: Kommunikasjon og Nettverk Kommunikasjon og nettverk 2 Læringsmål og pensum Mål Lære det mest grunnleggende om hvordan datanettverk fungerer og hva et datanettverk består av Pensum

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 9. desember 2005 Tid for eksamen: 14.30 17.30 Oppgavesettet

Detaljer

KTN1 - Design av forbindelsesorientert protokoll

KTN1 - Design av forbindelsesorientert protokoll KTN1 - Design av forbindelsesorientert protokoll Beskrivelse av A1 A1 skal tilby en pålitelig, forbindelsesorientert tjeneste over en upålitelig, forbindelsesløs tjeneste A2. Det er flere ting A1 må implementere

Detaljer

Løsningsforslag Gruppeoppgaver, 28. april 2. mai. 1. Metningskontroll ( Congestion control ) og ressursallokering.

Løsningsforslag Gruppeoppgaver, 28. april 2. mai. 1. Metningskontroll ( Congestion control ) og ressursallokering. Løsningsforslag Gruppeoppgaver, 28. april 2. mai 1. Metningskontroll ( Congestion control ) og ressursallokering. a) Hva menes med metning og metningskontroll i et nettverk? Metning er overbelastning i

Detaljer

6105 Windows Server og datanett

6105 Windows Server og datanett 6105 Windows Server og datanett Leksjon 8b TCP/IP del 2: Transportlaget TCP og UDP Transportlagets oppgaver Adressering i transportlaget TCP Transmission Control Protocol UDP User Datagram Protocol TCP/IP

Detaljer

Introduksjon til nettverksteknologi

Introduksjon til nettverksteknologi Avdeling for informatikk og e- læring, Høgskolen i Sør- Trøndelag Introduksjon til nettverksteknologi Olav Skundberg og Boye Holden 23.08.13 Lærestoffet er utviklet for faget IFUD1017- A Nettverksteknologi

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 4. desember 2009 Tid for eksamen: 14.30 17.30 Oppgavesettet

Detaljer

6105 Windows Server og datanett

6105 Windows Server og datanett 6105 Windows Server og datanett Leksjon 8b /IP del 2: Transportlaget og UDP Transportlagets oppgaver Adressering i transportlaget Transmission Control Protocol UDP User Datagram Protocol /IP verktøy i

Detaljer

Hva er en protokoll? INF1060 Introduksjon 2

Hva er en protokoll? INF1060 Introduksjon 2 Oversikt: Hva er Internet? Hva er en protokoll? Endesystemer Kjernenett Aksessnett og fysiske media Gjennomstrømning (throughput), tap og forsinkelse Protokoll lag IP, TCP, UDP Applikasjoner INF1060 1

Detaljer

Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett

Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud IP Adressering TCP, UDP Øvre lag Applikasjonsprotokoller INF1060 1 INF1060 2 Internett Best-effort overføring

Detaljer

Medium Access Control (MAC) Linklaget avslutning. Kjell Åge Bringsrud kjellb. Foreleser: 14/02/2006 1

Medium Access Control (MAC) Linklaget avslutning. Kjell Åge Bringsrud   kjellb. Foreleser: 14/02/2006 1 Linklaget avslutning Medium Access Control (MAC) Foreleser: Kjell Åge Bringsrud E-mail: kjellb 14/02/2006 1 Retransm. og kvitterings strategi Kvitteringsstrategi: eksplisitt kvittering for hver mottatte

Detaljer

MTU i nettverk Ei lita innføring i generelt nettverk. Av Yngve Solås Nesse Bildeseksjonen/MTA/Haukeland universitetssjukehus

MTU i nettverk Ei lita innføring i generelt nettverk. Av Yngve Solås Nesse Bildeseksjonen/MTA/Haukeland universitetssjukehus MTU i nettverk Ei lita innføring i generelt nettverk Av Yngve Solås Nesse Bildeseksjonen/MTA/Haukeland universitetssjukehus Nettverk To eller fleire datamaskiner som deler ressurser eller data. LAN og

Detaljer

Transport - laget (ende-til-ende protokoller) Internett Best-effort overføring. Best-effort nett kvaliteter

Transport - laget (ende-til-ende protokoller) Internett Best-effort overføring. Best-effort nett kvaliteter Transport - laget (ende-til-ende protokoller) Best effort med multipleksing (UDP) Pålitelig byte-strøm () Foreleser: Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no 04.04.2003 1 Internett Best-effort overføring

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 17.Des 2008 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing

Litt mer detaljer om: Detaljerte funksjoner i datanett. Fysisk Lag. Multipleksing Litt mer detaljer om: Detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud Multipleksing Feildeteksjon, flytkontroll Adressering LAN Repeatere, broer TCP/IP Øvre lag Applikasjonsprotokoller

Detaljer

Det fysiske laget, del 2

Det fysiske laget, del 2 Det fysiske laget, del 2 Kjell Åge Bringsrud (med foiler fra Pål Spilling) 1 Pulsforvrengning gjennom mediet Linje g(t) innsignal Dempning A(f) v(t) utsignal A(f) 0% 50% Frekvensresponsen Ideell Frekv.

Detaljer

Innhold. Innledning til Input/Output. Ulike typer Input/Output. Input/Output internt i datamaskinen. Input/Output mellom datamaskiner

Innhold. Innledning til Input/Output. Ulike typer Input/Output. Input/Output internt i datamaskinen. Input/Output mellom datamaskiner Innhold Innledning til Input/Output Ulike typer Input/Output Input/Output internt i datamaskinen Input/Output mellom datamaskiner 23.04.2001 Input/Output 1 Input/Output (I/O) En datamaskin kommuniserer

Detaljer

Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett

Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett Ennå litt mer detaljer: Flere detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud IP Adressering TCP, UDP Øvre lag Applikasjonsprotokoller INF1060 1 INF1060 2 Internett Best-effort overføring

Detaljer

Gruppe: D2A Dato: Tid: Antall oppgavesider: 3 Antall vedleggsider : 0

Gruppe: D2A Dato: Tid: Antall oppgavesider: 3 Antall vedleggsider : 0 Høgskolen i Østfold Avdeling for Informasjonsteknologi LØSNINGSFORSLAG EKSAMENSOPPGAVE FAG: IAD21003 - DATANETT LÆRER: ERLING STRAND Gruppe: D2A Dato: 16.12.2004 Tid: 0900-1300 Antall oppgavesider: 3 Antall

Detaljer

Flere detaljerte funksjoner i datanett

Flere detaljerte funksjoner i datanett Flere detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud INF1060 1 Ennå litt mer detaljer: IP Adressering TCP, UDP Øvre lag Applikasjonsprotokoller INF1060 2 Internett Best-effort overføring

Detaljer

Litt mer detaljer om: Tids multipleksing

Litt mer detaljer om: Tids multipleksing Detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud INF060 Litt mer detaljer om: Multipleksing Feildeteksjon, flytkontroll Adressering LAN Repeatere, broer TCP/ Øvre lag Applikasjonsprotokoller

Detaljer

Ola Edvart Staveli Mars 2010

Ola Edvart Staveli Mars 2010 Ola Edvart Staveli Mars 2010 Innholdsfortegnelse Innledning... 3 Nettverkskommunikasjon... 3 Standarder... 3 Protokoller... 3 Topologi... 4 Ethernet-adresse... 4 OSI-modellen... 5 Det fysiske laget...

Detaljer

Datakommunikasjon bak kulissene

Datakommunikasjon bak kulissene Forutsetninger for datakommunikasjon Sender og mottaker såkalte endesystemer Kommunikasjonsmedium dvs. datanettet kommunikasjon bak kulissene Regler og prosedyrer såkalte protokoller Kommunikasjonsprogrammer

Detaljer

Temaer: r Nettlagets oppgaver r Rutingprinsipp: veivalg r Hierarkisk ruting r IP r Internettets ruting protokoller. m intra-domain.

Temaer: r Nettlagets oppgaver r Rutingprinsipp: veivalg r Hierarkisk ruting r IP r Internettets ruting protokoller. m intra-domain. Nettlaget Mål: r Forstå prinsippene bak nettlagets oppgaver: m Ruting m Skalerbarhet m Hvordan en ruter virker r Hvordan dette er løst i Internett Temaer: r Nettlagets oppgaver r Rutingprinsipp: veivalg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 6. desember 2012 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

Kapittel 11. Multipleksing og multippel aksess

Kapittel 11. Multipleksing og multippel aksess Kapittel 11 Multipleksing og multippel aksess Innledning s. 657 Multipleksing og multippel aksess (MA) Flere datastrømmer, f.eks. brukere Én kanal Kommunikasjonsmedium Multiplekser Demultiplekser Flere

Detaljer

Linklaget - direkte. forbindelser mellom noder. Foreleser: Kjell Åge Bringsrud kjellb 2/8/2005 1

Linklaget - direkte. forbindelser mellom noder. Foreleser: Kjell Åge Bringsrud   kjellb 2/8/2005 1 Linklaget - direkte forbindelser mellom noder Foreleser: Kjell Åge Bringsrud E-mail: kjellb 2/8/2005 1 Tilbakeblikk Kursets fokus nett for generell bruk pakkebaserte nett A Noder 1 2 3 4 5 D 6 Link 2/8/2005

Detaljer

Input/Output. når tema pensum. 13/4 busser, sammenkobling av maskiner /4 PIO, DMA, avbrudd/polling

Input/Output. når tema pensum. 13/4 busser, sammenkobling av maskiner /4 PIO, DMA, avbrudd/polling Input/Output når tema pensum 13/4 busser, sammenkobling av maskiner 8.2 8.4 20/4 PIO, DMA, avbrudd/polling 8.5 8.6 in 147, våren 1999 Input/Output 1 Tema for denne forelesningen: sammenkobling inne i datamaskiner

Detaljer

EKSAMEN. Emne: Datakommunikasjon

EKSAMEN. Emne: Datakommunikasjon EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 04. Des 2015 Eksamenstid: kl. 9:00 til kl. 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt

Detaljer

1. Sikkerhet i nettverk

1. Sikkerhet i nettverk 1. Sikkerhet i nettverk Stiftelsen TISIP i samarbeid med Avdeling for informatikk og e-læring, Høgskolen i Sør-Trøndelag Nettverk Olav Skundberg Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er

Detaljer

Hva er en protokoll? Hva er Internet?

Hva er en protokoll? Hva er Internet? Oversikt: Hva er en protokoll? Hva er Internet? Hva er en protokoll? Endesystemer Kjernenett Aksessnett og fysiske media Gjennomstrømning (throughput), tap og forsinkelse Protokoll lag IP, TCP, UDP Applikasjoner

Detaljer

Datateknikk TELE1005-A 15H HiST-FT-IEFE

Datateknikk TELE1005-A 15H HiST-FT-IEFE Datateknikk TELE1005-A 15H HiST-FT-IEFE Delemne digitalteknikk og datakommunikasjon Øving 5 (del I); løysing Oppgåve 1 Lærestoff i kap. 2.4 og 2.5 Forklar (kort) med eigne ord kvifor ein bruker ein lagdelt

Detaljer

Fysisk Lag. Den primære oppgave

Fysisk Lag. Den primære oppgave Fysisk Lag Fysisk Fysisk Den primære oppgave flytte bits fra avsender til mottaker krever: standardisert måte å representere bit inn på transmisjonsmediet standardisering av kabler og tilkoplingsutstyr

Detaljer

Forelesning Oppsummering

Forelesning Oppsummering IN1020 - Introduksjon til datateknologi Forelesning 23.11.2018 Oppsummering Håkon Kvale Stensland & Andreas Petlund Nettverksdelen - Pensum Relevante kapitler fra boka (se pensumliste) Alt presentert på

Detaljer

Grunnleggende om datanett. Av Nils Halse Driftsleder Halsabygda Vassverk AL IT konsulent Halsa kommune

Grunnleggende om datanett. Av Nils Halse Driftsleder Halsabygda Vassverk AL IT konsulent Halsa kommune Grunnleggende om datanett Av Nils Halse Driftsleder Halsabygda Vassverk AL IT konsulent Halsa kommune LAN LAN Local Area Network. Et lokalt kommunikasjonsnettverk med datamaskiner, printere, filservere,

Detaljer

Kapittel 7: Nettverksteknologier

Kapittel 7: Nettverksteknologier Kapittel 7: Nettverksteknologier I dette kapitlet ser vi nærmere på: Kablede nettverk: Ethernet Funksjon: buss, pakkesvitsjing, adresser Svitsjet Ethernet, kollisjonsdomene, kringkastingsdomene Ethernet

Detaljer

Linklaget. Feildeteksjon/feilretting - pålitelig overføring. Foreleser: Kjell Åge Bringsrud kjellb 2/17/2004 1

Linklaget. Feildeteksjon/feilretting - pålitelig overføring. Foreleser: Kjell Åge Bringsrud   kjellb 2/17/2004 1 Linklaget Feildeteksjon/feilretting - pålitelig overføring Foreleser: Kjell Åge Bringsrud E-mail: kjellb 2/17/2004 1 Feildeteksjon/feilretting Oppgaver: 1. Finne feil 2. Rette feil To alternativer til

Detaljer

Computer Networks A. Tanenbaum

Computer Networks A. Tanenbaum Computer Networks A. Tanenbaum Kjell Åge Bringsrud (Basert på foiler av Pål Spilling) Kapittel 1, del 1 INF3190 V2004 Kjell Åge Bringsrud; kap.1 Foil 1 Problemområde og fokusering hvordan skal vi bygge

Detaljer

Lagene spiller sammen

Lagene spiller sammen Lagene spiller sammen Dere har lært om lagene, men hvordan virker dette i praksis? Utgangspunkt i Ethernet/IP/TCP/Applikasjonslag Trafikkpolitiet i Internett (ISP og congestion control) Hvordan oversettes

Detaljer

TTM4175 Hva er kommunikasjonsteknologi?

TTM4175 Hva er kommunikasjonsteknologi? 1 TTM4175 Hva er kommunikasjonsteknologi? Del 1 Bjørn J. Villa PhD, Senior Engineer, UNINETT AS bv@item.ntnu.no // bv@uninett.no 2 Innhold Begrepet Definisjon, historikk og en liten refleksjon Påvirker

Detaljer

EKSAMEN. Emne: Datakommunikasjon. Dato: 30. Nov 2016 Eksamenstid: kl. 9:00 til kl. 13:00

EKSAMEN. Emne: Datakommunikasjon. Dato: 30. Nov 2016 Eksamenstid: kl. 9:00 til kl. 13:00 EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 30. Nov 2016 Eksamenstid: kl. 9:00 til kl. 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt

Detaljer

EKSAMEN. Emne: Datakommunikasjon

EKSAMEN. Emne: Datakommunikasjon EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 4.Des 2006 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt ut

Detaljer

Internett Best-effort overføring Flere detaljerte funksjoner i datanett. Ennå litt mer detaljer: Formatet til IP-hodet

Internett Best-effort overføring Flere detaljerte funksjoner i datanett. Ennå litt mer detaljer: Formatet til IP-hodet Ennå litt mer detaljer: Internett Best-effort overføring Flere detaljerte funksjoner i datanett Foreleser: Kjell Åge Bringsrud IP Adressering, UDP Øvre lag Applikasjonsprotokoller IP IP Internett 23.11.2005

Detaljer

a) Vis hovedelementene i GSM-arkitekturen og beskriv hovedoppgavene til de forskjellige funksjonelle enhetene i arkitekturen

a) Vis hovedelementene i GSM-arkitekturen og beskriv hovedoppgavene til de forskjellige funksjonelle enhetene i arkitekturen Høst 2011 - Løsningsforslag Oppgave 1 - Mobilsystemer a) Vis hovedelementene i GSM-arkitekturen og beskriv hovedoppgavene til de forskjellige funksjonelle enhetene i arkitekturen MS: Mobile station BTS:

Detaljer

! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er:

! Ytelsen til I/O- systemer avhenger av flere faktorer: ! De to viktigste parametrene for ytelse til I/O er: Dagens temaer! Ulike kategorier input/output! Programmert! Avbruddstyrt! med polling.! Direct Memory Access (DMA)! Asynkrone vs synkrone busser! Med! Fordi! -enheter menes de enheter og mekanismer som

Detaljer

Extreme Fabric Connect / Shortest Path Bridging

Extreme Fabric Connect / Shortest Path Bridging Extreme Fabric Connect / Shortest Path Bridging Shortest Path Bridging en kort introduksjon Av Johnny Hermansen, Extreme Networks Extreme Fabric Connect / Shortest Path Bridging Extreme Fabric Connect,

Detaljer

Fysisk Lag. Overføringskapasitet. Olav Lysne med bidrag fra Kjell Åge Bringsrud, Pål Spilling og Carsten Griwodz

Fysisk Lag. Overføringskapasitet. Olav Lysne med bidrag fra Kjell Åge Bringsrud, Pål Spilling og Carsten Griwodz Fysisk Lag Olav Lysne med bidrag fra Kjell Åge Bringsrud, Pål Spilling og Carsten Griwodz Fysisk Lag 1 Overføringskapasitet r Faktorer som påvirker kvalitet og kapasitet: m Forvrengning av signal gjennom

Detaljer

Flere Detaljerte Funksjoner i Datanett

Flere Detaljerte Funksjoner i Datanett Flere Detaljerte Funksjoner i Datanett Tor Skeie Email: tskeie@ifi.uio.no Foiler fra Kjell Åge Bringsrud INF1060 1 Ennå litt mer detaljer: IP og adressering TCP, UDP Overføringssyntaks - koding Applikasjonsprotokoller

Detaljer

Alle enheter som skal sende datapakker fra forskjellige strømmer inn på samme link må forholde seg til hvordan strømmene skal prioriteres.

Alle enheter som skal sende datapakker fra forskjellige strømmer inn på samme link må forholde seg til hvordan strømmene skal prioriteres. Kø-disipliner Kødisipliner -1 Håndtering av køer Alle enheter som skal sende datapakker fra forskjellige strømmer inn på samme link må forholde seg til hvordan strømmene skal prioriteres. En endemaskin

Detaljer

Linklaget - avslutning

Linklaget - avslutning Linklaget - avslutning Retransm. og kvitterings strategi Kvitteringsstrategi: eksplisitt kvittering for hver mottatte ramme kvitter alle rammer opp til sist mottatte ved timeout Retransmisjonsstrategi:

Detaljer

in270 Datakommunikasjon, vår 03 forelesningsnotater kap. 6.2.1 og 7.1/7.2

in270 Datakommunikasjon, vår 03 forelesningsnotater kap. 6.2.1 og 7.1/7.2 in270 Datakommunikasjon, vår 03 forelesningsnotater kap. 6.2.1 og 7.1/7.2 c Ketil Danielsen Høgskolen i Molde 7. februar 2003 sammenkobling av DTE er innenfor lite område datakanalene er korte og brede

Detaljer

Oppgave 8.1 fra COD2e

Oppgave 8.1 fra COD2e Oppgave 8.1 fra COD2e To systemer brukes for transaksjonsprosessering: A kan utføre 1000 I/O operasjoner pr. sekund B kan utføre 750 I/O operasjoner pr. sekund Begge har samme prosessor som kan utføre

Detaljer

Notater: INF1060 - Datakommunikasjon

Notater: INF1060 - Datakommunikasjon Notater: INF1060 - Datakommunikasjon Veronika Heimsbakk veronahe@student.matnat.uio.no 9. januar 2013 Innhold 1 Internet 3 1.1 Pakkesvitsjing........................... 3 1.2 Linjesvitsjing...........................

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 3.Des 2007 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Gruppe: D2A Dato: 16.12.2003 Tid: 0900-1300. Antall oppgavesider: 3 Antall vedleggsider : 0

Gruppe: D2A Dato: 16.12.2003 Tid: 0900-1300. Antall oppgavesider: 3 Antall vedleggsider : 0 Høgskolen i Østfold Avdeling for Informatikk og Automatisering EKSAMENSOPPGAVE FAG: IAD21003 - DATANETT LÆRERE: ERLING STRAND OG CHRISTIAN HEIDE Gruppe: D2A Dato: 16.12.2003 Tid: 0900-1300 Antall oppgavesider:

Detaljer

Detaljerte Funksjoner i Datanett

Detaljerte Funksjoner i Datanett Detaljerte Funksjoner i Datanett Tor Skeie Email: tskeie@ifi.uio.no (Foiler fra Kjell Åge Bringsrud) INF1060 1 Litt mer detaljer om: Multiplexing Link-laget: Feildeteksjon og flytkontroll LAN typer Broer

Detaljer

INF2270. Input / Output (I/O)

INF2270. Input / Output (I/O) INF2270 Input / Output (I/O) Hovedpunkter Innledning til Input / Output Ulike typer I/O I/O internt i datamaskinen I/O eksternt Omid Mirmotahari 3 Input / Output En datamaskin kommuniserer med omverdenen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1060 Introduksjon til operativsystemer og datakommunikasjon Eksamensdag: 8. desember 2004 Tid for eksamen: 14.30 17.30 Oppgavesettet

Detaljer

in270 Datakommunikasjon, vår 03 forelesningsnotater, kap. 4

in270 Datakommunikasjon, vår 03 forelesningsnotater, kap. 4 in270 Datakommunikasjon, vår 03 forelesningsnotater, kap. 4 c Ketil Danielsen Høgskolen i Molde 7. februar 2003 Protocol Basics Feilkontroll to overføringsformer best-try, best-effort, connection-less

Detaljer

Temaer: ! Nettlagets oppgaver! Rutingprinsipp: veivalg! Hierarkisk ruting! IP! Internettets ruting. protokoller. " intra-domain.

Temaer: ! Nettlagets oppgaver! Rutingprinsipp: veivalg! Hierarkisk ruting! IP! Internettets ruting. protokoller.  intra-domain. Nettlaget Mål:! Forstå prinsippene bak nettlagets oppgaver: " Ruting " Skalerbarhet " Hvordan en ruter virker! Hvordan dette er løst i Internett Temaer:! Nettlagets oppgaver! Rutingprinsipp: veivalg! Hierarkisk

Detaljer

Løsningsforslag til EKSAMEN

Løsningsforslag til EKSAMEN Løsningsforslag til EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 16.Des 2009 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse,

Detaljer

Computer Networks A. Tanenbaum

Computer Networks A. Tanenbaum Computer Networks A. Tanenbaum Kjell Åge Bringsrud (med foiler fra Pål Spilling) Kapittel 1, del 2 INF3190 Våren 2005 Kjell Åge Bringsrud; kap.1 Foil 1 Litt historikk teleoperatørene har 150 års erfaring:

Detaljer

Obligatorisk oppgave nr 2 i datakommunikasjon. Høsten 2002. Innleveringsfrist: 04. november 2002 Gjennomgås: 7. november 2002

Obligatorisk oppgave nr 2 i datakommunikasjon. Høsten 2002. Innleveringsfrist: 04. november 2002 Gjennomgås: 7. november 2002 Obligatorisk oppgave nr 2 i datakommunikasjon Høsten 2002 Innleveringsfrist: 04. november 2002 Gjennomgås: 7. november 2002 Oppgave 1 a) Forklar hva hensikten med flytkontroll er. - Hensikten med flytkontroll

Detaljer

Trådløse Systemer. Arild Trobe Engineering Manager. Trådløse Systemer for å løse.. dette?

Trådløse Systemer. Arild Trobe Engineering Manager. Trådløse Systemer for å løse.. dette? Trådløse Systemer Arild Trobe Engineering Manager 1 Trådløse Systemer for å løse.. dette? 2 Trådløse systemer Hvorfor? 3 3. DELT TOPOLOGI 4 6 LAN WLAN (802.11X) ZigBee Bluetooth PAN WMAN (802.16) (802.20)

Detaljer

EKSAMEN. Emne: Datakommunikasjon

EKSAMEN. Emne: Datakommunikasjon EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 09.Des 2013 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt ut

Detaljer

Kapittel 10 Tema for videre studier

Kapittel 10 Tema for videre studier Kapittel Tema for videre studier I dette kapitlet ser vi nærmere på: Nettverksteknologi Virtuelle private nett Nettverksadministrasjon Mobilitet og flyttbare nettverkstilkoblinger Sikkerhet Garantert tjenestekvalitet

Detaljer

TTM4175 Hva er kommunikasjonsteknologi?

TTM4175 Hva er kommunikasjonsteknologi? 1 TTM4175 Hva er kommunikasjonsteknologi? Del 4 Bjørn J. Villa PhD, Senior Engineer, UNINETT AS bv@item.ntnu.no // bv@uninett.no 2 Innhold Begrepet «Kommunikasjonsteknologi» Definisjon, historikk og en

Detaljer

EKSAMEN. Emne: Datakommunikasjon

EKSAMEN. Emne: Datakommunikasjon EKSAMEN Emnekode: ITF20205 Emne: Datakommunikasjon Dato: 28.Nov 2005 Eksamenstid: kl 9:00 til kl 13:00 Hjelpemidler: 4 sider (A4) (2 ark) med egne notater. Kalkulator. Gruppebesvarelse, som blir delt ut

Detaljer