Analyseøving 9. Løsningsforslag. TTT4265 Elektronisk systemdesign og -analyse II. Oppgave 1. Signalegenskaper (4p)

Størrelse: px
Begynne med side:

Download "Analyseøving 9. Løsningsforslag. TTT4265 Elektronisk systemdesign og -analyse II. Oppgave 1. Signalegenskaper (4p)"

Transkript

1 TTT6 Elektroisk systemdesig og -aalyse II Aalyseøvig 9 Løsigsforslag Oppgave. Sigalegeskaper (p) a) Sigalee er vist i figuree uder:.. x[ ]. x[+] x[ ]. x[ +] x[]u[ ]. x[]

2 x[ ] skisseres ved å brette x[] rudt y-akse. x[ + ] skisseres ved å forskyve x[] tre sampler til vestre. x[ ] = x[ ( + )] skisseres ved å forskyve x[ ] tre sampler til vestre, eller ved å forskyve x[] tre sampler til høyre og så brette resultatet rudt y-akse. x[ ] = x[ + ] = x[ ( )] skisseres ved å brette x[ + ] rudt y-akse eller ved å forskyve x[ ] tre sampler til høyre. { {, <, < x[]u[ ] =, fordi u[ ] = x[],,. x[] skisseres ved å plukke ut aehvert sample (sampler med partallsidekser) fra x[]. Dee operasjoe kalles desimerig. b) x() ka skrives som e sum av forskjøve og skalerte ehetspulser på dee måte: c) Sigaleergi er defiert som x[] = δ[ + ] δ[ + ] + δ[ ] + δ[ ] + δ[ ]. E = x[], hvor absoluttverdioperasjoe ka sløyfes for reelle sigaler. I vårt tilfelle får vi: E = (x[ ]) + (x[ ]) + (x[]) + (x[]) + (x[]) + (x[]) = = 8 Oppgave. Kovolusjo (p) a) h [] og h [] har edelig legde og beskriver derfor FIR-systemer. h [] har uedelig legde, og beskriver således et IIR-system. Et LTI-system er kausalt hvis og bare hvis h[] = for <. Dee betigelse er oppfylt for h [] og h [], me ikke h []. Et LTI-system er BIBO-stabilt hvis og bare hvis = h[] <. Dee betigelse er oppfylt av alle FIR-systemer. Systemee beskrevet av h [] og h [] er derfor stabile. For systemet beskrevet av h [] har vi ( ) ( ) h [] = u[] = = = = = = < Dette systemet er derfor også stabilt. b) Merk at x [] = δ[]. Respose til dette sigalet er derfor ehetspulsrespose til systemet, h [] = δ[] + δ[ ] δ[ ].

3 c) Systemrespose er gitt av y[] = x [] h [] = x [k]h [ k] = ( ) k ( ) k u[k] u[ k] Merk at u[k]u[ k] = {, k, ellers. For <, er alle leddee i summasjoe lik ull, slik at vi får y[] =. For, ka vi fjere u[k]u[ k] hvis vi edrer summasjositervallet til k [, ]. ( ) k ( ) k y[] = = ( ) k = ( )+, k= hvor likige for geometrisk rekke ble brukt i de siste likhete. k= Dette ka til slutt bli foreklet til y[] = [( ) + ] = For alle ka resultatet sammefattes med ( y[] = ) u[]. d) Ehetspulsrespose for systemer koblet i serie er h[] = h [] h []. Side h [] består av tre ehetspulser, ka vi skrive Nå har vi h [] = δ[ + ] + δ[] + δ[ ]. h[] = h [] (δ[ + ] + δ[] + δ[ ]) = h [ + ] + h [] + h [ ]. Det er eklest å berege dette grafisk ved å summere h [] og des to forskjøve versjoer. Dette er illustrert i figur. Fra dee figure ser vi at h[] = δ[ + ] + δ[] + δ[ ] + δ[ ] δ[ ]. Et MATLAB-script som bereger og plotter h[] ved å bruke fuksjoe cov er gitt uder: h=[ -]; N=; N=; h=[ ]; M=-; M=; h=cov(h,h) =N+M:N+M; %idices of ozero values of the covolutio stem(,h), grid o, xlabel( ), ylabel( h[] ) Det produserer grafe gitt i figur.

4 h [+] h [] h [ ] h[] Figur : Bereger h[] = h [] h [] = h [ + ] + h [] + h [ ] h[] Figur : Bereger h[] = h [] h [] i MATLAB

5 Oppgave. Systemer i parallell og serie/arduio-implemetasjo (p) a) Side h [] og h [] er så korte, er det praktisk å utrykke dem som summer av ehetspulser: h [] = δ[] + δ[ ] + δ[ ] () h [] = δ[] + δ[ ] + δ[ ] + δ[ ] () Ehetspulsrespose til seriesystemet fier vi som kovolusjoe av delsystemee. Dette blir: h s [] = h [] h [] = (δ[] + δ[ ] + δ[ ]) h [] = h [] + h [ ] + h [ ] () der vi har utyttet at vi jobber med tidsivariate systemer (forsikede ehetspulser kovolvert med h [] resulterer i forsikede ehetspulsresposer). Videre ka vi sette i for h [] i likig (). Da får vi: h s [] = δ[] + δ[ ] + δ[ ] + δ[ ] + δ[ ] + δ[ ] () Grafisk blir dette slik: hs[] 6 Videre er ehetspulsrespose til parallellsystemet lik summe av ehetspulsresposee til delsystemee. Vi får: Plott: h p [] = h [] + h [] = δ[] + δ[ ] + δ[ ] + δ[ ] () hp[] 6

6 b) For å fie spragresposee, påtrykker vi ehetssprag x[] = u[] på systemigagee, og fier utgagssigalee ved kovolusjo med h s [] og h p []. For seriesystemet får vi: y s [] = h s [] x[] = h s [k]x[ k] = h s [k]u[ k] (6) Dette ka vi forekle ved å ise at u[ k] = år k, og ellers ull. Vi treger derfor bare å summere opp til k =, og ka da også ta bort u[ k] side de alltid er lik der vi å summerer. Videre iser vi at vi ka starte å summere på k = side vi har e kausal ehetspulsrespos (h s [] = for egative ). Vi får da: y s [] = Plott: h s [k] = δ[]+δ[ ]+6δ[ ]+9δ[ ]+δ[ ]+δ[ ]+δ[ 6]+... k= (7) ys[] For parallellsystemet blir det tilsvarede: y p [] = h p [] x[] = h p [k]x[ k] = h p [k]u[ k] = h p [k] k= = δ[] + δ[ ] + 6δ[ ] + 7δ[ ] + 7δ[ ] +... (8) Plott: yp[] c) Bruker implemetasjoe fra aalyseøvig 8, og bytter ut koeffisietee til e skalert (velger å multiplisere med ) og avrudet versjo av h s []. Vi ser av plottet av h s [] 6

7 at filteret vil ha e forsterkig lik, og vi må derfor også edre skalerigsfaktore på utgage i forhold til aalyseøvig 8. Ved å bruke samme formel som agitt der, kommer e frem til e faktor 88. Kode: #iclude <Wire. h> #iclude <Adafruit_MCP7. h> #iclude <TimerOe. h> // Piout : // F i l t e r i p u t A. //DAC SDA A. //DAC SDL A. it v a l ; //To h o l d t h e c u r r e t u f i l t e r e d value, i. e. x () it v a l F i l t ; //To h o l d t h e c u r r e t f i l t e r e d value, i. e. y () v o l a t i l e boolea sampletime ; // Flag to deote t h a t a ew c oversio s h o u l d t a k e p l a c e. cost it ORDER = ; // Order o f FIR f i l t e r. cost it DIVIDE = 88; //The output i s d i v i d e d by t h i s umber to ormalize i t. byte bufpoit = ; // Curret p o s i t i o i t h e c i r c u l a r b u f f e r. //The c o e f f i c i e t s. cost it COEFF[ORDER+] = { 96, 89, 88, 88, 89, 96; // C i r c u l a r b u f f e r used by t h e f i l t e r r o u t i e to h o l d c u r r e t ad p r e v i o u s x () v a l u e s. // log, to make t h e m u l t i p l i c a t i o s happe i b i t. it ibuf [ORDER+] = {,,,,, ; // I s t a t i a t e DAC. Adafruit_MCP7 dac ; void setup ( ) { // Set up timer to t r i g g e r t h e f u c t i o s a m p l i g I t e r r u p t each ms. Timer. i i t i a l i z e ( ) ; Timer. a t t a c h I t e r r u p t ( s a m p l i g I t e r r u p t ) ; // Set up DAC at c o r r e c t IC address. dac. begi ( x6 ) ; void loop ( ) { //Check i f i t s time f o r a ew coversio / f i l t e r ru. i f ( sampletime ) { //Read x () from t h e ADC. v a l = aalogread (A) ; //Ru FIR f i l t e r. The c u r r e t x () i s iput, t h e c u r r e t y () i s output. v a l F i l t = f i r F i l t ( v a l ) ; // Write c u r r e t y () to t h e DAC. dac. s e t V o l t a g e ( v a l F i l t, f a l s e ) ; // Reset f l a g. sampletime = f a l s e ; //ISR ( i t e r r u p t s e r v i c e r o u t i e ) t r i g g e r e d by timer each ms. void s a m p l i g I t e r r u p t ( void ) { // Set t h e f l a g t r u e each ms to deote t h a t i t s time to c o v e r t / f i l t e r. sampletime = t r u e ; 7

8 //FIR f i l t e r r o u t i e. Takes t h e c u r r e t x () as argumet, ad output t h e c u r r e t y ( ). it f i r F i l t ( it c u r r I ) { // V a r i a b l e to h o l d t h e c u r r e t output. log currout = ; //Put t h e c u r r e t x () i t h e c o r r e c t b u f f e r p o s i t i o. ibuf [ bufpoit ] = c u r r I ; //Do f i l t e r i g : Loop through a l l t h e c o e f f i c i e t s, ad m u l t i p l y with t h e c o r r e c t x v a l u e s i t h e b u f f e r. // Accumulate t h e r e s u l t i t h e v a r i a b l e currout. for ( it i =; i < ORDER; i ++) { currout += ( log )COEFF[ i ] ( log ) ibuf [ bufpoit ] ; //Wrap t h e b u f f e r p o i t e r aroud whe i t i s eeded. i f ( bufpoit >= ORDER) bufpoit = ; else bufpoit++; //Do t h e l a s t m u l t i p l i c a t i o / accumulatio w i t h o u t updatig t h e b u f f e r p o i t e r. // B e t t e r to j u s t do t h i s o u t s i d e t h e loop, tha to implemet e x t r a checks i s i d e t h e l o o p ( h i g h e r comp time ). currout += ( log )COEFF[ORDER] ( log ) ibuf [ bufpoit ] ; // Normalize ad r e t u r t h e output. retur currout /DIVIDE ; Bilde fra oscilloskopet: 8

Analyseøving 8 - løsningsforslag

Analyseøving 8 - løsningsforslag TTT4265 Elektronisk systemdesign og -analyse II Analyseøving 8 - løsningsforslag Innlevering tirsdag 3. November 8:00 Oppgave 1. Periodisitet, tidsskift, og tidsreversering (4p) Oppgave 2. Tidsskift (1p)

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Istitutt for data-, elektro-, og romtekologi Siviligeiørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital sigalbehadlig Tid: Fredag 06.03.2008, kl: 09:00-12:00 Tillatte

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim

e n . Videre er det en alternerende følge, da annenhvert ledd er positivt og negativt. Vi ser også at n a n = lim n e n = 0. lim n n 1 n 3n 2 = lim TMA400 Høst 206 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 9 9..8 Vi er gitt følge { ( ) } {a }. e De første leddee i følge er a e, a 2 2 e 2, a e, a 4 4

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)

Detaljer

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016 Numeriske metoder: Euler og Ruge-Kutta Matematikk 3 H 06 Iledig Differesiallikiger spiller e setral rolle i modellerigsproblemer i igeiør viteskap, matematikk, fsikk, aeroautikk, astroomi, damikk, elastisitet,

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

«Uncertainty of the Uncertainty» Del 5 av 6

«Uncertainty of the Uncertainty» Del 5 av 6 «Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:

Detaljer

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 9

INF3400 Digital Mikroelektronikk Løsningsforslag DEL 9 IF00 Digital Mikroelektroikk Løsigsforslag DEL 9 I. Oppgaver. Oppgave 6.7 Teg trasistorskjema for dyamisk footed igags D og O porter. gi bredde på trasistoree. va blir logisk effort for portee?. Løsigsforslag

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig 6..5g Ser på forholdet a + /a som er ( + )!4 + ( + ) + ( ) 4( + )! 4( + ) =!4 ( +

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt

Detaljer

LØSNING: Eksamen 17. des. 2015

LØSNING: Eksamen 17. des. 2015 LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade

Detaljer

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka

S2 kapittel 1 Rekker Løsninger til kapitteltesten i læreboka S kapittel Rekker Løsiger til kapittelteste i læreboka A a Det femte og sjette eiffeltallet ser slik ut: b De fire første leddee er det bare å telle opp:,5,9,4 For å komme til este ledd, legger vi til,

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 10, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 10, HØST 2009 NTNU Norges tekisk-aturviteskapelige uiversitet Fakultet for aturviteskap og tekologi Istitutt for materialtekologi TMT411 KJMI LØSNINGSFORSLAG TIL ØVING NR. 10, HØST 009 OPPGAV 1 a) A Saltbro Pt K Cr

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k

Oblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA41 Matte 4k Høst 1 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag til oppgaver fra Kreyzig utgave 1: 11.1.18 Fuksjoe er lik for < x

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013

Matematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013 .. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert

Detaljer

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene.

Gir vi de resterende 2 oppgavene til én prosess vil alle sitte å vente på de to potensielt tidskrevende prosessene. Figure over viser 5 arbeidsoppgaver som hver tar 0 miutter å utføre av e arbeider. (E oppgave ka ku utføres av é arbeider.) Hver pil i figure betyr at oppgave som blir pekt på ikke ka starte før oppgave

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

Fagdag 2-3mx 24.09.07

Fagdag 2-3mx 24.09.07 Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

INF3030 Uke 7, våren Eric Jul PSE Inst. for informatikk

INF3030 Uke 7, våren Eric Jul PSE Inst. for informatikk INF3030 Uke 7, våre 2019 Eric Jul PSE Ist. for iformatikk 1 Hva så vi på i uke 6 1. Eratosthees sil 2. Kokker og Kelere 3. Cocurrecy: De første to av tre måter å programmere moitorer i Java eksemplifisert

Detaljer

2.1 Polynomdivisjon. Oppgave 2.10

2.1 Polynomdivisjon. Oppgave 2.10 . Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1 Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund Total rullelegde i løpet av ett sekud: L Total rullelegde i løpet av to sekud: 4 L Total rullelegde i løpet av tre sekud: 9 L Total rullelegde i løpet av fire sekud: 6 L SYSTEM HER? Kulas posisjo etter

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

Løsningsforslag Eksamen MAT112 vår 2011

Løsningsforslag Eksamen MAT112 vår 2011 Løsigsforslag Eksame MAT vår OPPGAVE Gitt følge {a } defiert rekursivt ved a = 5, a + = a + 6, =,,, 3,.... (a) Vis (for eksempel ved iduksjo) at {a } er stregt avtagede og edtil begreset. (b) Avgjør om

Detaljer

Repetisjonsoppgaver kapittel 8 løsningsforslag

Repetisjonsoppgaver kapittel 8 løsningsforslag epetisjosoppgaver apittel 8 løsigsforslag Eletrisitet Oppgave 1 a) Ett eletro har ladige 1,6 10 19 C. Dee ladige aller vi e (egativ) elemetærladig. b) Siletørleet får e egativ ladig på 3,0 10 8 C. c) Stave

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider

Detaljer

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015

Matematikk for IT. Prøve 2. Onsdag 21. oktober 2015 Matematikk for IT Prøve Osdag. oktober 5 Løsigsforslag 6. oktober 5 Oppgave Gitt følgede slutig: Hvis fakturae ble sedt forrige madag så fikk du pegee i går. Du fikk pegee i går. Derfor ble fakturae sedt

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

FINNE n-te RØTTER AV KOMPLEKSE TALL

FINNE n-te RØTTER AV KOMPLEKSE TALL FINNE -TE RØTTER AV KOMPLEKSE TALL SHIRIN FALLAHI OG ANDREAS LEOPOLD KNUTSEN Vi utdyper det som står helt i slutte av Appediks I i læreboke etter Example 7. Ata at vi vil fie alle -te røttee til et gitt

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide

Detaljer

Algebra R2, Prøve 1 løsning

Algebra R2, Prøve 1 løsning Algebra R, Prøve løsig Del Tid: 70 mi Hjelpemidler: Skrivesaker Oppgave E rekke er gi ved a og a Du skal ) udersøke hva slags rekke de er Vi fier de førse leddee: a a a a, 6, 3 0, 4 4 3 4 De ser u som

Detaljer

INF3030 Uke 6, våren Eric Jul PSE Inst. for informatikk

INF3030 Uke 6, våren Eric Jul PSE Inst. for informatikk INF3030 Uke 6, våre 2019 Eric Jul PSE Ist. for iformatikk 1 Å dele opp algoritme Kode består e eller flere steg; som oftest i form av e eller flere samliger av løkker (som er ekle, doble, triple..) Vi

Detaljer

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1 Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2

Detaljer

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44,

5 y y! e 5 = = y=0 P (Y < 5) = P (Y 4) = 0.44, Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 9, blokk II Løsigsskisse Oppgave a) Vi lar her Y være atall fugler som kolliderer med vidmølla i løpet av de gitte

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 57 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO Uke 12 IN3030 v2019 Eric Jul PSE-gruppa Ifi, UiO Oblig 5 Kovekse Ihylliga Itroduksjo De kovekse ihylliga til pukter Oblig 5 Hva er det, defiisjo Hvorda ser de ut Hva brukes de til? Hvorda fier vi de? 24

Detaljer

Løsning eksamen S2 våren 2010

Løsning eksamen S2 våren 2010 Løsig eksame S våre 010 Oppgave 1 a) 1) f( ) l 1 f ( ) l l l l ( l 1) ) g ( ) 3e g( ) 3e 3e 6e b) Rekke er geometrisk med Rekke kovergerer. Summe er a1 1 1 s 1 k 1 1 1 1 1 k og oppfller dermed kravet 1

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

3. Beregning av Fourier-rekker.

3. Beregning av Fourier-rekker. Forelesigsoaer i maemaikk. 3. Beregig av 3.. Formlee for Fourier-koeffisieee. Vi går re på sak: a f være e sykkevis koiuerlig fuksjo med periode p. De uedelige rigoomeriske rekka cos( ) si ( ) a + a +

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1

Detaljert løsningsveiledning til ECON1310 seminaroppgave 9, høsten der 0 < t < 1 Detaljert løsigsveiledig til ECON30 semiaroppgave 9, høste 206 Dee løsigsveiledige er mer detaljert e det et fullgodt svar på oppgave vil være, og mer utfyllede e e valig fasit. De er met som e guide til

Detaljer

Løsningsforslag: Deloppgave om heuristiske søkemetoder

Løsningsforslag: Deloppgave om heuristiske søkemetoder Løsigsforslag: Deloppgave om heuristiske søkemetoder 6. mai 00 Iledig Vi skal betrakte det såkalte grafdeligsproblemet (graph partitioig problem). Problemet ka ekelt formuleres som følger: Gitt e graf

Detaljer

Mot3.: Støy i forsterkere med tilbakekobling

Mot3.: Støy i forsterkere med tilbakekobling Mo3.: Søy i forserkere med ilbakekoblig Hiil har vi diskuer forserkere ue ilbakekoblig ("ope-loop"). Nå vil vi diskuere virkige av ilbakekoblig. Geerel beyes ilbakekoblig for å... edre forserkig, edre

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember Oppgave a) Dette er e ANOVA-tabell for k-utvalg med k 4 og j 6 for j,,3,4.

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5 Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede

Detaljer

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid:

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk Fredag 16. januar 1998 Tid: Side av 4 Norges tekisk-aturviteskapelige uiversitet Istitutt for fysikk Faglig kotakt uder eksae: Nav: Ola Huderi Tlf.: 934 EKSAMEN I FAG 74435 - FASTE STOFFERS FYSIKK Fakultet for fysikk, iforatikk og

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

Algebra S2, Prøve 2 løsning

Algebra S2, Prøve 2 løsning Algebra S, Prøve løsig Del Tid: 90 mi Hjelpemidler: Skrivesaker Oppgave I rekkee edefor får du oppgitt a og e rekursiv formel for a. Du skal. skrive opp de fire første leddee og avgjøre om rekka er aritmetisk,

Detaljer

n / ($$ n 0$$/ $ " 1! <! ')! $ : ; $.+ $.5.+ .!)/!/ ) $.) 6$ 7$, $.5.,.9+- 5.+ 8$ 7$, + - 5.

n / ($$ n 0$$/ $  1! <! ')! $ : ; $.+ $.5.+ .!)/!/ ) $.) 6$ 7$, $.5.,.9+- 5.+ 8$ 7$, + - 5. "# %% & ' ()*,"""). / " %% &%% / ( 0/ " 1 /(232.,..5. 6 7,.5.,. / : ; 5.. )// ).) 8 < ') < 6 6 8 < 8 8 7,.5.,.9 5. 5. 5. 5. 5.. 5..9 /.> DB(?/ ( / (.?/. /?(5@"""6(?( 5@""6 &. A8 6 (."B 3 8 6 ) ("?/& =

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

Polynominterpolasjon

Polynominterpolasjon Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y

Detaljer

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering

Om Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering Uke9. mars 2005 rafisk brukergresesitt med Swig og awt Litt Modell Utsy - Kotroll Del I Stei jessig Ist for Iformatikk Uiv. i Oslo UI (raphical User Iterface)-programmerig I dag Hvorda få laget et vidu

Detaljer

I oppgave 2 og 3 brukes det R 2R nettverk i kretsene. Det anbefales å gjøre denne forberedelsen før gjennomføring av Lab 8.

I oppgave 2 og 3 brukes det R 2R nettverk i kretsene. Det anbefales å gjøre denne forberedelsen før gjennomføring av Lab 8. Forberedelse Lab 8: Datakonvertering Lab 8 består av: Oppgave 1: Binærteller (SN74HC393N). Oppgave 2: Digital til analog konvertering (DAC). Oppgvae 3: Analog til digital konvertering (ADC). I oppgave

Detaljer

Løsning eksamen R2 våren 2010

Løsning eksamen R2 våren 2010 Løsig eksame R våre 010 Oppgave 1 a) f( x) x cos3x f ( x) x cos 3x x cos 3x x cos 3x x si 3x 3x xcos 3x 3x si 3x b) 1) v v u v u 1 u x x 1 x 5 x 5 x 5xe dx 5x e 5 e dx xe e dx 5 5 1 5 5 x x x x xe e C

Detaljer

Eksamen Prosessteknikk 8.desember 2004 løsningsforslag

Eksamen Prosessteknikk 8.desember 2004 løsningsforslag Eksame Prosesstekikk 8.desember 4 løsigsforslag Oppgave dag = 4 timer (godtar også beregiger basert på 8 timer eller timer ute trekk). x to/dag = = 5466.67 kg/time 4 5466.67 Molvekt N = 7 = 86.7 kmol/time

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016 Løigforlag MatematikkN/M, TMA/TMA5, vår 6 Oppgave Skriver om ligigytemet på valig måte Gau Seidel blir da Setter vi x, y, z får vi x y z y x z z x y 6 x y z y x z z x y 6 Dv,,,, x y z x y z 6 Oppgave Side

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK2100 Løsigsforslag Eksamesdag: Torsdag 14. jui 2018. Tid for eksame: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

INF1010 våren 2017 Torsdag 9. februar. Interface - Grensesnitt

INF1010 våren 2017 Torsdag 9. februar. Interface - Grensesnitt INF1010 våre 2017 Torsdag 9. februar Iterface - Gresesitt og litt om geeriske klasser og geeriske iterface hvis tid Stei Gjessig Dages hovedtema Egelsk: Iterface (også et Java-ord) Norsk: Gresesitt Les

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

INF2440 Uke 4, v2018 Om å samle parallelle svar, matrisemultiplikasjon og The Java Memory Model. Eric Jul PSE, Inst.

INF2440 Uke 4, v2018 Om å samle parallelle svar, matrisemultiplikasjon og The Java Memory Model. Eric Jul PSE, Inst. INF2440 Uke 4, v2018 Om å samle parallelle svar, matrisemultiplikasjo og The Java Memory Model Eric Jul PSE, Ist. for iformatikk 1 Hva så vi på i uke 3 1. Presiserig av hva som er pesum 2. Samtidig skrivig

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Eksamen INF3350/INF4350 H2006 Løsningsforslag

Eksamen INF3350/INF4350 H2006 Løsningsforslag Eksame INF3350/INF4350 H2006 Løsigsforslag Oppgave. Score (eller bit score) S' er e statistisk idikator på hvor sigifikat e match er. Høyere bit score svarer til høyere sigifikas. Idikatore er uavhegig

Detaljer

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015

Løsningsforsalg til første sett med obligatoriske oppgaver i STK1110 høsten 2015 Løsigsforsalg til første sett med obligatoriske oppgaver i STK1110 høste 2015 Oppgave 1 (a Et 100(1 α% kofidesitervall for forvetigsverdie µ er gitt ved formel (8.15 på side 403 i læreboka. For situasjoe

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Læringsmål og pensum. Oversikt. Består av: Stabilt lager: Disk! Lagringsmotor Spørsmålshåndterer: SQL

Læringsmål og pensum. Oversikt. Består av: Stabilt lager: Disk! Lagringsmotor Spørsmålshåndterer: SQL 2 Lærigsmål og pesum Lærigsmål Forstå og bruke databaser TDT405 Iformasjostekologi grukurs: Uke 43 Databaser Pesum Usig Iformatio Techology, Chapter 8 Svei-Olaf Hvasshovd, IDI 3 Oversikt Hva er e database

Detaljer

ST1201 Statistiske metoder

ST1201 Statistiske metoder ST20 Statistiske metoder Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag - Eksame desember 2005 Oppgave a Ma beyttet radomisert blokkdesig. I situasjoe har ma k =

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk. Kp. 5 Estimering. ÅMA asylighetsregig med statistikk våre 008 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (ukt)estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (ukt)estimerig i målemodelle (kp. 5.3)

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer