16. TRANSFORMASJONAR. Fig Identitetstransformasjon

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "16. TRANSFORMASJONAR. Fig Identitetstransformasjon"

Transkript

1 16. TRANSFORMASJONAR Ein transformasjon er ein overgong frå eit koordinatsystem til eit anna koordinatsystem og datum. Ordet har vore nytta om fleire ulike typar overgangar, men slik det er definert i Statens kartverk sin standard «Koordinatbaserte referansesystem» er det knytt til empirisk formelutvikling mellom koordinatsystem med ulike datum. Det kan vere både mellom same type koordinatsystem til dømes rettvinkla xykoordinatar med ulik origo, eller mellom ulike typar koordinatsystem. Overgang mellom system innanfor same datum, dvs. omrekning med bruk av eksakte formlar vert definert som «konvertering». Dette kan vere til dømes frå geosentriske til geodetiske koordinatar, eller frå geodetiske til kartplan («avbilding til kartplan»). I dette kapitlet er fokus på dei heilt enkle overgangane mellom to koordinatsystem i same plan, men med ulik origo, orientering og målestokk. Slike enkle transformasjonar kan nyttast for overføring av lokale koordinatar til eit meir omfattande (større) system. IDENTITETSTRANSFORMASJON Den enklaste forma for transformasjon er eit identisk bilete av ein figur (ein sverm av punkt) i to ulike koordinatsystem. Figurane skal med andre ord vere identiske i dei to systema, men dei kan dreiast og flyttast i høve til origo i koordinatsystemet. Fig syner ei slik endring av koordinatsystem. Ein kjenner punktet sine koordinatar i det merka (frå-) X',Y' systemet, og vil finne dei i det nye (til) X,Y systemet. Ein ser frå fig at origo er flytta lengdene C x og C y og dreiinga mellom dei to systema er vinkelen A. Ein del hjelpestorleikar er innført på figuren med enkle trigonometriske funksjonar med utgangspunkt i dei merka koordinatane og dreiingsvinkelen. Ein kan ved enkel summering av hjelpestorleikane finne koordinatane i det umerka systemet: Fig Identitetstransformasjon X P = X' P cos A - Y' P sin A + C x Y P = X' P sin A + Y' P cos A + C y Dei to likningane inneheld tre ukjende; dreiingsvinkelen A og flyttingane C x og C y. Desse storleikane vil oftast ikkje vere kjende, men me vil i staden kjenne nokre punkt sine koordinatar i båe systema. Dersom ein har to punkt som er kjende i båe systema, kan ein løyse ut dei ukjende parametrane (A, cx og cy). Etter at ein har funne desse parametrane kan alle andre punkt transformerast til det nye systemet. Eksempel: Eit område er kartlagt ved bruk av rettvinkelmetoden, eit punkt i kvar ende av målelina er målt inn, og har koordinatar i landsnettet. Ein vil finne koordinatane til punkta som er fastlagt ved rettvinkelmetoda, i hovudsystemet. Dei er fastlagt i eit system som har origo i eine endepunktet, og X akse langs målelina, eksempelvis kan koordinatane (i målelinesystemet) vere: Punkt 1:(100,100) og Punkt 2:(100,317.35) Koordinatane til dei same punkta er i landsnettet fastlagt til: 1:( , ) (x,y) og 2:( , ). Dei ukjende parametrane kan no løysast ut ved eliminasjon:

2 X1-likninga: = 100 cos A sin A + C x (I) X2-likninga: = 100 cos A sin A + C x (II) Eliminerer cos A og C x ved å trekkje II frå I. I - II : = -100 sin A -( )sin A => = sin A ( ) => sin A = / = => A = g Deretter kan ein finne C x og C y C x frå I : C x = cos A sin A => C x = C y : = 100 sin A cos A + C y => C y = sin A cos A => C y = Ein ser her at ein berre trong to korresponderande X-koordinatar og ein Y-koordinat for å finne dei ukjende. Dette stemmer og med at det var tre ukjende. Ofte forenklar ein skrivemåten for transformasjonslikningane. Ein kan setje: a = cos A = og b = sin A = Transformasjonslikningane vert då: X = a X' - b Y' + C x og Y = b X' + a Y' + C y Dersom ein lagrar koeffisientane i minnet på ein kalkulator er det no raskt gjort å transformere fleire punkt i området. Eit vilkårleg punkt (177.35,81.78) får til dømes koordinatane: X = ( ) = Y = = **** KONFORM TRANSFORMASJON (ofte kalla Helmerttransformasjon) er ei utviding av identitetstransformasjonen ved at det vert innført ulik målestokk mellom dei to systema. Det vil seie at punktfiguren er likeforma, men kan vere dreia, flytta og endra i målestokk i det nye systemet. Ein kan nytte figuren frå identitetstransformasjon, og tenkje oss at før omrekninga vert koordinatane i utgangssystemet (det merka) endra med ein målestokksfaktor m. Ein får såleis transformasjonslikningane: X P = X' P m cos A - Y' P m sin A + C x Y P = X' P m sin A + Y' P m cos A + C y No er talet på ukjende auka til fire, slik at ein treng to komplette korresponderande koordinatar i dei to systema for å finne transformasjonsparametrane. Den enklaste måten å utføre dette på er å finne retningsvinkel og avstand mellom dei to (samsvarande) punkta i båe system, og deretter utleie dreiing og målestokk: Finn: ϕ' AB og S' AB (retningsvinkel og avstand) i det merka systemet Og ϕ AB og S AB (retningsvinkel og avstand) i det umerka systemet då er: A = ϕ AB - ϕ' AB og m = S AB / S' AB Ein dreg ofte saman ledda i transformasjonen slik at ein skriv transformasjonsformelen på den enklare forma: X P = X' P a - Y' P b + C x Y P = X' P b + Y' P a + C y der a = m cos A og b = m sin A

3 Helmerttransformasjonar er særleg nytta i fotogrammetrien der ein kan overføre modellkoordinatar (målt i eit maskinsystem) til terreng-koordinatar ved hjelp av passpunkt. I gamle analoge instrument er absoluttorientering i instrumentet ein mekanisk helmerttransformasjon der ein ved hjelp av dreiing og flytting av folien roterer og flyttar systemet, og ved hjelp av basisjustering kan ein endre målestokken i modellen (utgangssystemet) til det mekaniske overføringshøvet mellom modell og bord høver. TRANSFORMASJONAR MELLOM PUNKT I ULIKE PLAN Dersom punkta i dei to systema ligg i ulike plan, er tilfellet langt vanskelegare. Det er til dømes tilfellet ved overgong frå norske Gauss Krüger- til UTM-koordinatar. Desse to systema har ulike projeksjonsplan med ulike akseplasseringar. Enkle transformasjonar som føreset felles plan kan dermed ikkje nyttast. For å rekne om koordinatar mellom to slike system må ein gå vegen om geografiske koordinatar eller eit anna koordinatsystem som representerer eit punkt på den krumme flata. Frå desse koordinatane kan ein så rekne seg til det nye systemet. Dette er for å få eit strengt korrekt resultat, men slike omrekningar er arbeidskrevjande med mindre ein har ferdige datamaskinprogram som kan gjere dei. Ved NGO er det i staden utvikla ein tilnærma transformasjon som dekkjer overgongen GK til UTM og omvendt. Koeffisientar og omtale av desse formlane finst i "Kart og Plan" nr side 23 (av Jan Danielsen, NGO). Der er og skildra korleis ein kan rekne seg via geografiske koordinatar. Som nemnt over er ikkje Helmert-transformasjon eigna til slike oppgåver når systema ligg i ulike plan. Det kan likevel i nokre tilfelle vere aktuelt å nytte ein slik transformasjon når det ikkje vert stilt serskilde krav til resultatet. Ein skal difor sjå på eit eksempel der feila som ein får kjem klårt fram: Utgangspunktet er eit UTM- og eit Gauss-Krügersystem med aksar to grader (ca. 40 km) frå kvarandre. Ein firkanta figur med 5 km side er gitt i båe systema, punkt 1-4, jfr. fig Gitte UTM koordinatar Gitte GK-koordinatar N E X Y Fig UTM og GK system. Ein nyttar punkt 1 og 4 som grunnlag for utrekning av transformasjons-parametrane: I UTM-systemet: ϕ 1,4 = 50; I GK-systemet : ϕ 1,4 = 52,17685; S 1,4 = m S 1,4 = m Dermed er dreiing og målestokk når ein set GK-systemet som merka: A = ϕ 1,4 - ϕ' 1,4 = 50-52,17685;; = g (397,82315 g) m = S 1,4 / S 1,4 = / = Ein finn parametrane a og b: a = m cos A = b = m sin A = Frå punkt 1 løyser ein ut translasjonane: = a b C x

4 => C x = Dermed kan dei andre punkta transformerast: = b a C y => C y = N E DN DN Punkt 2: avvik: m m Punkt 3: avvik: m m Dersom ikkje kravet til resultatet er spesielt strengt, kan ein med andre ord nytte ein Helmerttransformasjon til ein slik overgong dersom ein ikkje kan løyse oppgåva på ein meir eksakt måte. Konvertering - Overgong frå ein UTM-akse til ein annan Rekning mellom ulike UTM soner kan gjerast med eksakte formlar, men ein må gjere rekninga ved å konvertere den aktuelle UTM-koordinaten til geodetisk, og deretter frå geodetiske koordinatar til den nye UTM-sonen. Dette er relativt tunge rekningar om det skal gjerast med kalkulator (men lett match for ein datamaskin). Eit alternativ kan vere å gjere det direkte med ein konform transformasjon. Det er enkelt men ikkje feilfritt. Eksempelet under illustrerer dette med transformasjon frå UTM-akse 15 (sone 33), til akse 27 (sone 35), (på Svalbard). UTM-sone 33 (15 ) UTM-sone 35 (27 ) N E N E Det er gitt punkt i eit 5 kilometers kvadrat pluss midtpunktet. Ein reknar transformasjonsparametrar som i førre eksempelet frå punkt 1 og 3: A = ϕ 1,3 - ϕ' 1,3 = = g m = S 1,3 / S 1,3 = / = Dermed: a = m cos A = b = m sin A = C x = X - m cos A X' + m sin A Y' = C y = Y - b X' - a Y' = Transformerte punkt: Avvik (mm) N E N E Reknegrannsemda er her svært kritisk, det krevst mange signifikante siffer. Eksempelet syner og at for små område der kravet til grannsemd er lågt kan ei slik metode nyttast til overgongen mellom to system, men det bør gjerast med varsemd. Transformasjonar frå GK til UTM (eller motsett) eller konvertering mellom UTM aksar bør gjerast med særskilde program. Det vanlege er å rekne om dei plane koordinatane til geografiske koordinatar på ellipsoiden, og desse til rettvinkla koordinatar i det nye kartplanet.

5 BRUK AV PROGRAMSYSTEM TIL TRANSFORMASJONAR Dersom ein skal ha utført transformasjonar til dømes mellom ulike aksesystem finst det ei rad datamaskinprogram som kan gjere dette. Ein kan difor ofte finne nett det programsystemet ein treng. Slike program kan og ofte utføre ein affin transformasjon som er ein transformasjon som til ei viss grad endrar forma på det transformerte biletet. Transformasjonen har ulik målestokk langs X og Y aksen og kan innehalde andregradsledd. Dette er ein transformasjon som kan vere godt eigna i spesielle tilfelle, men ein må vere varsam av di den kan gi uheldige utslag. Eit aktuelt bruksområde for ein affin transformasjon er digitalisering på digitaliseringsbord. Dersom ein skal digitalisere eit papirkart, kan dette ha ulik krymping i ulike retningar, og ved å nytte ein affin transformasjon kan ein til ei viss grad kompensere for denne krympinga. Vilkåret for å nytte ein slik transformasjon er at ein har fleire punkt gitt i båe system, og dei kan ikkje ligge på ei line. Dei system som nyttar affin transformasjon gjer vanlegvis ei utrekning av parametrane med utjamning, slik at ein kan nytte fleire gitte punkt enn det som trengst for å rekne ut parametrane. Dermed får ein betre kontroll på at ein ikkje har gjort noko fundamentalt gale.

Dersom summen vert over 400 g må ein trekkje dette frå.

Dersom summen vert over 400 g må ein trekkje dette frå. 13. POLYGONDRAG Nemninga polygondrag kjem frå ein tidlegare nytta metode der ein laga ein lukka polygon ved å måle sidene og vinklane i polygonen. I dag er denne typen lukka polygon lite, om i det heile

Detaljer

Fig. 3.2 Utsetting av rett vinkel

Fig. 3.2 Utsetting av rett vinkel 3 UTSETTING AV RETTE VINKLAR Den rette vinkelen spelar ei viktig rolle i landmålinga. Ved oppmåling skal ein felle ned normalar og ved utstikking reise normalar på måleliner. Arbeidet må gå snøgt, og vere

Detaljer

Utfordringer med EUREF

Utfordringer med EUREF Utfordringer med EUREF v/ Bjørn Godager, Høgskolen i Gjøvik Email: bjoern.godager@hig.no Hjemmeside: http://www.hig.no/geomatikk/ Tlf: 61 13 52 75 41 25 24 68 Temaer Innledning/ bakgrunn/ temaer i foredraget

Detaljer

10. ELEKTRONISK AVSTANDSMÅLING. D = (λ x + λ) / 2. Fig. 10.1 Prinsipp for elektronisk avstandsmåling

10. ELEKTRONISK AVSTANDSMÅLING. D = (λ x + λ) / 2. Fig. 10.1 Prinsipp for elektronisk avstandsmåling 1. ELEKTRONISK AVSTANDSMÅLING For nokre tiår sidan kom dei fyrste elektroniske avstandsmålarar i bruk. Moderne elektronikk har sett fart i denne utviklinga og gitt oss små, hendige avstandsmålarar som

Detaljer

FLYBILETE. Biletsentrum er sentrum i biletet og vert definert ved hjelp av ramemerke i kanten av biletet.

FLYBILETE. Biletsentrum er sentrum i biletet og vert definert ved hjelp av ramemerke i kanten av biletet. FLYBILETE Førelesingsnotat - GEG1240 - ver. 1.3-2006 Trond Eiken Institutt for geofag, UiO Kartet er ein ortogonalprojeksjon av terrenget terrenget er projisert til kartplanet, og deretter framstilt i

Detaljer

11. AKSESYSTEM OG KOORDINATAR

11. AKSESYSTEM OG KOORDINATAR 11. AKSESYSTEM OG KOORDINATAR Så godt som alle landkarta i Noreg vert utarbeidde i ein konform sylinderprojeksjon. I 1993 vart det vedteke å skifte datum frå det norske NGO systemet til EUREF89, og samstundes

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: GEG2210 Eksamensdag: Onsdag 8. juni 2005 Tid for eksamen: 3 timer Oppgavesettet er på 3 sider Vedlegg: 1 vedlegg (2 sider)

Detaljer

Å løyse kvadratiske likningar

Å løyse kvadratiske likningar Å løyse kvadratiske likningar Me vil no sjå på korleis me kan løyse kvadratiske likningar, og me tek utgangspunkt i ei geometrisk tolking der det kvadrerte leddet i likninga blir tolka geometrisk som eit

Detaljer

.ASJONALE -ATEMATIKK 1MX 3KOLENR

.ASJONALE -ATEMATIKK 1MX 3KOLENR Delprøve 1MX Du skal prøve å svare på alle oppgåvene i dette heftet så godt du kan, sjølv om nokre av dei kan vere vanskelegare eller annleis enn du er van med. Somme svar skal du rekne ut, nokre gonger

Detaljer

Biletbruk på nettet 1 2

Biletbruk på nettet 1 2 Innleiing Denne vesle rettleiinga vil syne deg ein arbeidsflyt for å tilretteleggje bilete for publikasjon på internett. Desse operasjonane fordrar bruk av eit bilethandsamingsprogram. Slike er det mange

Detaljer

EKSAMEN I EMNE SIB 6005 GEOMATIKK-1. Torsdag 25. november 1999 Tid: 0900-1500

EKSAMEN I EMNE SIB 6005 GEOMATIKK-1. Torsdag 25. november 1999 Tid: 0900-1500 NORGES TEKNISK-NTURVITENSKPELIGE UNIVERSITET (GM1-99h) side 1 av 5 INSTITUTT FOR KRT OG OPPMÅLING EKSMEN I EMNE SIB 65 GEOMTIKK-1 Torsdag 25. november 1999 Tid: 9-15 Faglig kontakt under eksamen: Oddgeir

Detaljer

1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet.

1.8 Binære tal DØME. Vi skal no lære å omsetje tal mellom totalssystemet og titalssystemet. 1.8 Binære tal Når vi reknar, bruker vi titalssystemet. Korleis det verkar, finn vi ut ved å sjå på til dømes talet 2347. 2347 = 2 1000 + 3 100 + 4 10 + 7 Dersom vi bruker potensar, får vi 2347 = 2 10

Detaljer

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06)

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06) Matematikk i skulen 5. - 7. årssteget Tal og algebra etter 7. steg Beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal, og prosent, og plassere dei på tallinja

Detaljer

Hvordan få riktige grunnlagsdata til prosjektering?

Hvordan få riktige grunnlagsdata til prosjektering? Hvordan få riktige grunnlagsdata til prosjektering? Datum og projeksjoner (UTM/NTM, NN2000) Transformasjoner Metadata/koding av data Asbjørn Eilefsen Statens vegvesen Geodata Region sør Datum og projeksjoner

Detaljer

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: MAT-1003 Dato: Tirsdag 15. desember 2015 Tid: Kl 15:00 19:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: MAT-13 Dato: Tirsdag 15. desember 215 Tid: Kl 15: 19: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Pedersen et al.: Teknisk formelsamling med tabeller, Rottmanns formelsamling,

Detaljer

ÅRSPLAN I MATEMATIKK KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle. Kjelde: DELMÅL ARBEIDSMÅTAR/ VURDERING KJELDER

ÅRSPLAN I MATEMATIKK KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle. Kjelde:  DELMÅL ARBEIDSMÅTAR/ VURDERING KJELDER Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Faks 56375055 VEK E 34-38 TEMA Geometri ÅRSPLAN I MATEMATIKK 2015-2016 KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle KOMPETANSEMÅL I LÆREPLANEN

Detaljer

Matematikk, ungdomstrinn 8-10

Matematikk, ungdomstrinn 8-10 Matematikk, ungdomstrinn 8-10 Tal og algebra samanlikne og rekne om mellom heile tal, desimaltal, brøkar, prosent, promille og tal på standardform, uttrykkje slike tal på varierte måtar og vurdere i kva

Detaljer

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet -Kunne lese og tolke en Mål for opplæringa er at eleven skal kunne rutetabell Måling: -velje høvelege målereiskapar

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Framtidige utfordringer for landmåleren Bransjens behov/ forventninger. Nye krav, ny kunnskap. Når har du kontroll?

Framtidige utfordringer for landmåleren Bransjens behov/ forventninger. Nye krav, ny kunnskap. Når har du kontroll? Framtidige utfordringer for landmåleren Bransjens behov/ forventninger. Nye krav, ny kunnskap. Når har du kontroll? v/ Bjørn Godager, Høgskolen i Gjøvik Email: bjoern.godager@hig.no Hjemmeside: http://www.hig.no/geomatikk/

Detaljer

ÅRSPLAN Hordabø skule 2015/2016

ÅRSPLAN Hordabø skule 2015/2016 ÅRSPLAN Hordabø skule 2015/2016 Fag: Matematikk Klassetrinn: 5 Lærar: Jannicke Blommedal Bauge Veke Veke Kompetansemål Tema Læringsmål Vurderingskriterier Forslag I startgropa Undervegs Eigenvurd. I mål

Detaljer

Young-Laplace si likning

Young-Laplace si likning Young-Laplace si likning Dette er Appendiks A i hovedoppgaven til Leiv Magne Siqveland, Høgskolen i Stavanger, Sivilingeniørutdanningen, innlevert 8. juni 996. Krumme flater z Z (a,b) X Y y x Figur : Flate

Detaljer

En koordinat er ikke bare en koordinat

En koordinat er ikke bare en koordinat En koordinat er ikke bare en koordinat En enkel innføring i koordinatsystem og kartprojeksjoner i Norge Versjon 1.0 Yngvar Amlien og Terje Omtveit Gilde 15. mai 2013 http://hovedprosjekter.hig.no/v2013/tol/geo/utmntm/koordinatsystem.pdf

Detaljer

Kartleggingsprøve K1, nynorsk. Del 1

Kartleggingsprøve K1, nynorsk. Del 1 Kartleggingsprøve K1, nynorsk. Del 1 Namn: Oppgåve 1 a) 2 3 = b) 4 = c) 1 0 = d) 3 = e) 4 7 = f) 9 = Oppgåve 2 a) 6 9 = b) 7 = c) 6 6 = d) 9 = e) 7 9 = f) 6 = 1 Oppgåve 3 a) 493 10 = b) 32 100 = c) 3000

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Side 1 Eksamen i: GEG2210 Eksamensdag: 9. juni 2006 Tid for eksamen: 1430 1730 (3 timer) Oppgavesettet er på 3 sider Vedlegg: 2 vedlegg

Detaljer

Matematikk, barnetrinn 1-2

Matematikk, barnetrinn 1-2 Matematikk, barnetrinn 1-2 Matematikk, barnetrinn 1-2 Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper opp til 100 og dele tosifra tal i tiarar og einarar bruke

Detaljer

Eksamen MAT1006 Matematikk 1T-Y. Nynorsk/Bokmål

Eksamen MAT1006 Matematikk 1T-Y. Nynorsk/Bokmål Eksamen 23.05.2016 MAT1006 Matematikk 1T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del 2 Bruk av kjelder Eksamen varer i 4 timar. Del 1: 1,5 time Del 2: 2,5

Detaljer

Løysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016

Løysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016 Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som

Detaljer

Merk: Tidspunkta for kor tid me arbeider med dei ulike emna kan avvika frå planen. Me vil arbeida med fleire emne samtidig.

Merk: Tidspunkta for kor tid me arbeider med dei ulike emna kan avvika frå planen. Me vil arbeida med fleire emne samtidig. Merk: Tidspunkta for kor tid me arbeider med dei ulike emna kan avvika frå planen. Me vil arbeida med fleire emne samtidig. ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2017-2018 Hovudlæreverk: Multi Veke TEMA MÅL

Detaljer

[2017] FAG - OG VURDERINGSRAPPORT. Matematikk. 10a & 10b. For kommunane: Gjesdal Hå Klepp Sola Time. 40 elevar. Lye ungdomsskule

[2017] FAG - OG VURDERINGSRAPPORT. Matematikk. 10a & 10b. For kommunane: Gjesdal Hå Klepp Sola Time. 40 elevar. Lye ungdomsskule Nynorsk utgåve FAG - OG VURDERINGSRAPPORT Matematikk 10a & 10b 40 elevar Lye ungdomsskule Beate Gederø Torgersen og Jørn Serigstad [2017] For kommunane: Gjesdal Hå Klepp Sola Time Fag og vurderingsrapporten

Detaljer

ÅRSPLAN HORDABØ SKULE 2015/2016

ÅRSPLAN HORDABØ SKULE 2015/2016 Fag: Matematikk Klassetrinn: 7 Lærar: Kristin Helland ÅRSPLAN HORDABØ SKULE 2015/2016 Veke Kompetansemål Tema Læringsmål Låg måloppnåing Middels måloppnåing Høg måloppnåing 35 KAPITTEL 1 -beskrive plassverdisystemet

Detaljer

Hver av oppgavene 1-3 teller likt dvs 1/3 hver. Oppgave 1: Fotogrammetri.

Hver av oppgavene 1-3 teller likt dvs 1/3 hver. Oppgave 1: Fotogrammetri. Hver av oppgavene 1-3 teller likt dvs 1/3 hver. Oppgave 1: Fotogrammetri. a. Forklar forskjellen på sentralprojeksjon og ortogonalprojeksjon. Orthogonalprojeksjon er proj. Vinkelrett på flate (à la kartproj)

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Årsplan Matematikk 5. trinn 2015/2016

Årsplan Matematikk 5. trinn 2015/2016 Årsplan Matematikk 5. trinn 2015/2016 Tid (veke ) 3439 Heile tal Tema Kompetansemål Delmål Arbeidsmåt e (Øve til nasjonale prøver) 40 Statistikk Beskrive og bruke plassverdisystemet for desimaltal, rekne

Detaljer

Årsplan i matematikk 2015/16

Årsplan i matematikk 2015/16 Årsplan i matematikk 2015/16 Kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster.

Detaljer

Terminprøve i matematikk for 10. trinnet

Terminprøve i matematikk for 10. trinnet Terminprøve i matematikk for 10. trinnet Hausten 2005 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Delprøve 1 Maks. poengsum:

Detaljer

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett 34 behandle, faktorisere og forenkle algebrauttrykk, knyte uttrykka til praktiske situasjonar, rekne med formlar, parentesar og brøkuttrykk og bruke kvadratsetningane samanlikne og rekne om mellom heile

Detaljer

ÅRSPLAN I MATEMATIKK KLASSE:

ÅRSPLAN I MATEMATIKK KLASSE: Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Faks 56375055 VEK E 34-39 TEMA Geometri ÅRSPLAN I MATEMATIKK 2017-2018 KLASSE: 10a og 10b FAGLÆRAR: Hege Bårdsen og Hanne Vatshelle KOMPETANSEMÅL I LÆREPLANEN

Detaljer

ÅRSPLAN I MATEMATIKK KLASSE:

ÅRSPLAN I MATEMATIKK KLASSE: Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Faks 56375055 VEK E 34-39 TEMA Geometri ÅRSPLAN I MATEMATIKK 2017-2018 KLASSE: 10a og 10b FAGLÆRAR: Hege Bårdsen og Hanne Vatshelle KOMPETANSEMÅL I LÆREPLANEN

Detaljer

Rettleiing del 3. Oppfølging av. resultata frå. nasjonal prøve i rekning. 8. steget

Rettleiing del 3. Oppfølging av. resultata frå. nasjonal prøve i rekning. 8. steget Versjon 8. september 2009 Nynorsk Rettleiing del 3 Oppfølging av resultata frå nasjonal prøve i rekning 8. steget Hausten 2009 1 Dette heftet er del 3 av eit samla rettleiingsmateriell til nasjonal prøve

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

ÅRSPLAN FOR 9. TRINN 2015-2016

ÅRSPLAN FOR 9. TRINN 2015-2016 ÅRSPLAN FOR 9. TRINN 2015-2016 Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Klasse: 9.trinn Fag: Matematikk Faglærar: Turid Åsebø Angelskår, Hanne Vatshelle og Anne Britt Svendsen Hovudkjelder: Nye Mega

Detaljer

ENDELEG TILSYNSRAPPORT

ENDELEG TILSYNSRAPPORT Sakshandsamar, innvalstelefon Jarle Berggraf, 55572264 Vår dato 18.05.2016 Dykkar dato 13.04.2016 Vår referanse 2015/6484 611 Dykkar referanse Bergen kommune Postboks 7700 5020 Bergen ENDELEG TILSYNSRAPPORT

Detaljer

Årsplan Matematikk 2015 2016 Årstrinn: 6. årstrinn Eli Aareskjold, Anlaug Laugerud, Måns Bodemar

Årsplan Matematikk 2015 2016 Årstrinn: 6. årstrinn Eli Aareskjold, Anlaug Laugerud, Måns Bodemar Årsplan Matematikk 2015 2016 Årstrinn: 6. årstrinn Lærere: Eli Aareskjold, Anlaug Laugerud, Måns Bodemar Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett 34 Tal og algebra behandle, faktorisere og forenkle algebrauttrykk, knyte uttrykka til praktiske situasjonar, rekne med formlar, parentesar og brøkuttrykk og bruke kvadratsetningane samanlikne og rekne

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Løysingsforslag for TMA4120, Øving 9

Løysingsforslag for TMA4120, Øving 9 Løysingsforslag for TMA4, Øving 9 October, 6 7..5) La z = x + iy og w = a + bi. Biletet til x = c, c konstant, under mappinga w = z,erallepunktidetkomplekseplanetpåforma w = z =(c + iy) = c y +ciy, det

Detaljer

REVIDERT Årsplan i matematikk, 8. klasse,

REVIDERT Årsplan i matematikk, 8. klasse, Elevane Innhald/Lære v. 34-38 Tal og algebra Samanlikne og rekne om mellom heile tal, desimaltal, og uttrykkje slike tal på varierte måtar. Bruke faktorar, potensar og primtal i berekningar Utvikle, bruke

Detaljer

Årsplan Matematikk Årstrinn: 6. årstrinn Lærere: Kjetil Kolvik, Michael Solem og Birgitte Kvebæk

Årsplan Matematikk Årstrinn: 6. årstrinn Lærere: Kjetil Kolvik, Michael Solem og Birgitte Kvebæk Årsplan Matematikk 2016 2017 Årstrinn: 6. årstrinn Lærere: Kjetil Kolvik, Michael Solem og Birgitte Kvebæk Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tidspunkt Tema/Innhold Lærestoff Arbeidsmåter

Detaljer

Årsplan i matematikk 2017/18

Årsplan i matematikk 2017/18 Årsplan i matematikk 2017/18 Kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster.

Detaljer

36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400

36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400 Geodesi 2-99v 1 INSTITUTT FOR GEOMATIKK NTNU side 1 av 6 36038 GEODESI 2 LØSNINGSFORSLAG, EKSAMEN 10.1.2000, kl 0900 1400 (Det synes som om også dette års oppgaver var mer arbeidskrevende enn tidligere

Detaljer

Læreplan i matematikk fellesfag - kompetansemål

Læreplan i matematikk fellesfag - kompetansemål ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 6. TRINN Songdalen for livskvalitet Årstimetallet i faget: _114_ Læreplan i matematikk fellesfag - kompetansemål Kompetansemål etter 7. årssteget Tal og algebra Hovudområdet

Detaljer

Terminprøve i matematikk for 8. trinnet

Terminprøve i matematikk for 8. trinnet Terminprøve i matematikk for 8. trinnet Våren 2006 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Namn: DELPRØVE 1 Maks.

Detaljer

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018. Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar. Anne Fosse Tjørhom

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018. Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar. Anne Fosse Tjørhom ÅRSPLAN I MATEMATIKK FOR 5. KLASSE 2017/2018 Læreverk: Lærar: Bjerke m.fl, Matemagisk 5a og 5b, samt oppgåvebøker og digitale ressursar Anne Fosse Tjørhom Mål for matematikkundervisinga på Sinnes skule:

Detaljer

FARNES SKULE ÅRSPLAN

FARNES SKULE ÅRSPLAN Fag : Matematikk Lærek : Cappelen Damm Faktor 2 Klasse/ trinn: 9A / 9.klasse Skuleåret : 2016-17 Lærar : Bjarne Søvde FARNES SKULE ÅRSPLAN Veke / Månad Kompetansemål Innhald/ Lærestoff Arbeidsmåter Vurdering

Detaljer

Årsplan i matematikk 9.klasse

Årsplan i matematikk 9.klasse Heile året Tal og algebra Mål for opplæringa er at eleven skal kunne: analysere samansette problemstillingar, identifisere faste og variable storleikar, kople samansette problemstillingar tilkjende løysingsmetodar,

Detaljer

DEL 2 med lommereknar, passar og gradskive

DEL 2 med lommereknar, passar og gradskive Alt du gjer, skal du skrive i dette heftet. Når det står kladderute, kan du velje om du vil skrive noko i ruta. Alle andre rekneruter er det meininga at du skal skrive noko i. LYKKE TIL! DEL 2 med lommereknar,

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6.

LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6. LOKAL LÆREPLAN ETTER LK-06 VED HÅNES SKOLE FAG: Matematikk TRINN: 6. Uke Kompetansemål i LK-06 1-2 Rekne med desimaltal. Utvikle, bruke og diskutere metodar for overslagsrekning. Bruke digitale verktøy

Detaljer

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgåver som kan løysast ved hjelp av lommereknar. Tid: 90 minutt.

NASJONALE PRØVER. Matematikk 10. trinn delprøve 2. Skolenr. Elevnr. Oppgåver som kan løysast ved hjelp av lommereknar. Tid: 90 minutt. Nynorsk Skolenr. Elevnr. NASJONALE PRØVER Matematikk 10. trinn delprøve 2 Tid: 90 minutt 15. april 2004 Gut Jente Oppgåver som kan løysast ved hjelp av lommereknar. Tillatne hjelpemiddel: lommereknar,

Detaljer

Bilete og figurar i Word

Bilete og figurar i Word Bilete og figurar i Word av Kjell Skjeldestad Ofte har me behov for å setje inn ulike illustrasjonar i teksten vår. Det kan vere bilete, teikningar, diagram osv. Me skal sjå på nokre av dei mulegheitene

Detaljer

Breiddegradene er linjer som gôr parallelt med ekvator. Lengdegradene er linjer som gôr frô pol til pol. Den vassrette aksen, ogsô kalla försteaksen

Breiddegradene er linjer som gôr parallelt med ekvator. Lengdegradene er linjer som gôr frô pol til pol. Den vassrette aksen, ogsô kalla försteaksen Breiddegrader Lengdegrader Koordinatsystem Breiddegradene er linjer som gôr parallelt med ekvator. Lengdegradene er linjer som gôr frô pol til pol. Eit koordinatsystem har to aksar. Aksane er tallinjer

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge Fall 2009 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære og å lese Det kan vere litt vanskelegare

Detaljer

Læreplan i matematikk fellesfag - kompetansemål

Læreplan i matematikk fellesfag - kompetansemål Læreplan i matematikk fellesfag - kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system

Detaljer

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål

Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole Heidi Sandvik, Jostein Torvnes og Elizabeth N Malja

Årsplan i matematikk Trinn 10 Skoleåret Haumyrheia skole Heidi Sandvik, Jostein Torvnes og Elizabeth N Malja Årsplan i matematikk Trinn 10 Skoleåret 2017-2018 Tids rom 33-38 Kompetansemål Hva skal vi lære? (Læringsmål) Metoder og ressurser Vurdering/ tilbakemelding behandle, faktorisere og forenkle algebrauttrykk,

Detaljer

Språk og skrift som er brukt i SOS3003

Språk og skrift som er brukt i SOS3003 Språk og skrift som er brukt i SOS3003 Erling Berge Erling Berge 2010 1 Ei typisk setning i regresjonsspråket: Y i = β 0 + β 1 x 1i + ε i, i=1,...,n Det vi må lære først er rett å slett å lese ei setning

Detaljer

Åkra ungdomsskole- Helårsplan matematikk 2016

Åkra ungdomsskole- Helårsplan matematikk 2016 Åkra ungdomsskole- Helårsplan matematikk 2016 Halvårsplan i matematikk Klasse: 10F Semester: Haust + vår Lærebok : Grunntal 10 Hovedområde Kompetansemål Antall uker. Arbeidsmetode (Forslag) Vurdering Grunntal

Detaljer

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål

Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande

Detaljer

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE HOVUDEMNE UNDEREMNE MÅL KAP 1 Tal (s.9-62) Kap 2 Brøk (s.63-86) Kap 3 Prosent og promille (s.87-102) Kap 4 Teikning

Detaljer

ÅRSPLAN Øyslebø oppvekstsenter. Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland. Tidsr om (Dato er/ ukenr, perio der.

ÅRSPLAN Øyslebø oppvekstsenter. Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland. Tidsr om (Dato er/ ukenr, perio der. Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland Tidsr om (Dato er/ ukenr, perio der. Tema Lærestoff / læremidler (lærebok kap./ s, bøker, filmer,

Detaljer

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.

Detaljer

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark frå Del 2. Nynorsk

Eksamen MAT0010 Matematikk Del 1. Del 1 + ark frå Del 2. Nynorsk Eksamen 16.05.017 MT0010 Matematikk el 1 Skole: Kandidatnr.: el 1 + ark frå el Nynorsk Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på el 1: Framgangsmåte og forklaring: 5 timar totalt. el 1 og

Detaljer

Døme på eit skrivebord i P360, beståande av: Det same skrivebordet sett frå redigeringsmodus. Namnet til skrivebordet. Eigendefinert tekst.

Døme på eit skrivebord i P360, beståande av: Det same skrivebordet sett frå redigeringsmodus. Namnet til skrivebordet. Eigendefinert tekst. Døme på eit skrivebord i P360, beståande av: Namnet til skrivebordet Eigendefinert tekst Bilete Filer Link til nettside Og tabellar tinga ligg i, som styrer layout HTML Kodesnutt webdelar Det same skrivebordet

Detaljer

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000, 2012/2013. Eksamensaktuelle numerikk-oppgåver Matematikk 1, 1/13 Eksamensaktuelle numerikk-oppgåver Oppgåve 1 Skript-jeopardy a) Vi ser at skriptet inneheld ei for-løkke der variabelen n tar verdiane 1,,..., 1. For kvar gong blir n 3 lagt til variabelen

Detaljer

Faktor terminprøve i matematikk for 9. trinn

Faktor terminprøve i matematikk for 9. trinn Faktor terminprøve i matematikk for 9. trinn Hausten 2007 nynorsk Til nokre av oppgåvene skal du bruke opplysningar frå informasjonsheftet. Desse oppgåvene er merkte med dette symbolet: Namn: DELPRØVE

Detaljer

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning.

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning. MATEMATIKK 8. KLASSE ÅRSPLAN Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE 34 35 36 Kapittel 1 Naturlige tall Primtall Faktorisering Hoderegning Tall og algebra punkt: 1, 2, 3 og 4 37 38 Tall og tallforståelse

Detaljer

Storleiken på brevet avg jer prisen. Prisar 2013. Les meir på: posten.no

Storleiken på brevet avg jer prisen. Prisar 2013. Les meir på: posten.no Storleiken på brevet avg jer prisen Prisar 2013 Les meir på: posten.no 8 3............ Brev Pakker Frimerker til samling Hvordan motta post Bank og finans Billetter Adresseendring Fortolling og kort Frimerker

Detaljer

Halvårsplan i matematikk fellesfag; Notodden voksenopplæring våren 2013

Halvårsplan i matematikk fellesfag; Notodden voksenopplæring våren 2013 Halvårsplan i matematikk fellesfag; Notodden voksenopplæring våren 2013 Periodens tema Uke 1-2 Innhold Arbeidsmåter Evaluering/ vurdering Tegning og konstruksjon Mål for det du skal lære: Geometriske ord

Detaljer

Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra

Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra Undervisningsopplegg for ungdomstrinnet om likningar og annan algebra Kjelde: www.clipart.com 1 Likningar og annan algebra. Læraren sitt ark Kva seier læreplanen? Tal og algebra Mål for opplæringa er at

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN NYNORSK TEKST UNIVERSITETET I BERGEN Det matematisk-naturvitskaplege fakultet, V. 2004. Eksamen i emnet MAT25 - Mekanikk. Måndag 7. juni 2004, kl 09.00-4.00. Tillatne hjelpemiddel: Ingen Oppgåver med svar

Detaljer

SPV DOKUMENTASJON. GDPR artikkel 5 og 30. v/håvard Hanto-Haugse, juridisk rådgjevar og personvernombod i SPV

SPV DOKUMENTASJON. GDPR artikkel 5 og 30. v/håvard Hanto-Haugse, juridisk rådgjevar og personvernombod i SPV SPV DOKUMENTASJON GDPR artikkel 5 og 30 v/håvard Hanto-Haugse, juridisk rådgjevar og personvernombod i SPV VIKTIG PRIORITERING TUNG Å SELJA INN Fram til mai -18 handlar dette om å: laga lister, kontrollera

Detaljer

Høring - finansiering av private barnehager

Høring - finansiering av private barnehager Høring - finansiering av private barnehager Uttalelse - Giske kommune ved formannsakapet Status: Innsendt til Utdanningsdirektoratet. Bekreftet av høringsinstans via: gufr@giske.kommune.no Innsendt av:

Detaljer

Årsplan i matematikk, 8. klasse,

Årsplan i matematikk, 8. klasse, v. 34-38 Samanlikne og rekne om mellom heile tal, desimaltal, og uttrykkje slike tal på varierte måtar. Bruke faktorar, potensar og primtal i berekningar Kap.1 Tal og talforståing Rekne med Tital-systemet

Detaljer

Rettleiing. Nasjonale prøver i rekning for 5. trinn. Versjon: juli 2010, nynorsk

Rettleiing. Nasjonale prøver i rekning for 5. trinn. Versjon: juli 2010, nynorsk Rettleiing Nasjonale prøver i rekning for 5. trinn Versjon: juli 2010, nynorsk Nasjonale prøver i rekning for 5. steget Her får du informasjon om nasjonale prøver i rekning og kva prøva måler. Vidare er

Detaljer

Niels Henrik Abels matematikkonkurranse Første runde

Niels Henrik Abels matematikkonkurranse Første runde Niels Henrik Abels matematikkonkurranse 9. november 2017 (nynorsk) Ikkje bla om før læraren seier frå! I den første runden av Abelkonkurransen er det 20 fleirvalsoppgåver som skal løysast på 100 minutt.

Detaljer

Eksamen Del 1. MAT0010 Matematikk. Del 1 + ark frå Del 2. Nynorsk

Eksamen Del 1. MAT0010 Matematikk. Del 1 + ark frå Del 2. Nynorsk Eksamen 0.05.01 MAT0010 Matematikk Del 1 Skole: Nynorsk Kandidatnr.: Del 1 + ark frå Del Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Framgangsmåte og forklaring: 5 timar totalt. Del

Detaljer

Fusjonsprogrammet for Høgskulen på Vestlandet

Fusjonsprogrammet for Høgskulen på Vestlandet Sak Leiing og fagleg organisering (16/05229) delprosjekt i hovudprosjekt 2 Fagleg og administrativ organisering Dato utsendt på høyring 21.11.16 Høyringsfrist 9.12.16 Send høyringsinnspel til Bakgrunn

Detaljer

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45 Nynorsk utgåve FAG - OG VURDERINGSRAPPORT [2016] FAG: Matematikk KLASSE/GRUPPE: 10. TALET PÅ ELEVAR: 45 SKULE: Lye ungdomsskule FAGLÆRAR: Jørn Serigstad For kommunane: Gjesdal Hå Klepp Sola Time Tema 1

Detaljer

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett Heile året Mål for opplæringa er at eleven skal kunne: analysere samansette problemstillingar, identifisere faste og variable storleikar, kople samansette problemstillingar tilkjende løysingsmetodar, gjennomføre

Detaljer

ehandel og lokalt næringsliv

ehandel og lokalt næringsliv ehandel og lokalt næringsliv Kvifor ehandel? Del av regjeringas digitaliseringsarbeid det offentlege skal tilby digitale løysingar både til enkeltpersonar og næringsliv Næringslivet sjølve ønskjer ehandel

Detaljer

E39 Stord Os Kommunedelplan med konsekvensutgreiing

E39 Stord Os Kommunedelplan med konsekvensutgreiing Statens vegvesen NOTAT E39 Stord Os Kommunedelplan med konsekvensutgreiing Fagtema - Støy Dato: Juni 2016 Innhald Støy-KU E39 Stord-Os... 2 Prissett konsekvens... 7 Støy ved realisering av prosjektet...

Detaljer

SOS3003 Eksamensoppgåver

SOS3003 Eksamensoppgåver SOS33 Eksamensoppgåver Gjennomgang våren 24 Erling Berge Vår 24 Gjennomgang av Oppgåve 2 gitt hausten 2 Vår 24 2 Haust 2 OPPGÅVE 2I tabellvedlegget til oppgåve 2 er det estimert 6 modellar av eiga inntekt

Detaljer

Bruk av reiserekning i Agresso

Bruk av reiserekning i Agresso Bruk av reiserekning i Agresso Generell saksgang: 1. Reiserekning på web skal fyllast ut av den tilsette. 2. Når reiseregning er ferdig utfylt, skal den tilsette skrive ut reisebilag og stifte kvitteringar

Detaljer

.ASJONALE -ATEMATIKK 1M 3KOLENR

.ASJONALE -ATEMATIKK 1M 3KOLENR Delprøve 1M Du skal prøve å svare på alle oppgåvene i dette heftet så godt du kan, sjølv om nokre av dei kan vere vanskelegare eller annleis enn du er van med. Somme svar skal du rekne ut, nokre gonger

Detaljer

Farnes skule, årsplan

Farnes skule, årsplan Fag : Matematikk Læreverk : Faktor 3, Cappelen Klasse/ trinn: 10 A Skuleåret : 2017-2018 Lærar : Bjarne Søvde Kompetansemål Innhald/ Lære Vurdering Arbeidsmåter 34 behandle, faktorisere og forenkle algebrauttrykk,

Detaljer