Gasser blandes spontant Entropi

Størrelse: px
Begynne med side:

Download "Gasser blandes spontant Entropi"

Transkript

1 Gasser blandes spontant Entropi Illustrativt eksempel av entropiens rolle Lukket system Fylt med to inerte gasser (her og ) ved samme trykk, atskilt med en tynn vegg Fjerner veggen (eller lager en åpning i den): Gassene blandes. Hvorfor skjer dette? 1

2 Spontan eller ikke Ethvert system vil gå mot en likevektstilstand Det finnes to typer prosesser: De som er spontane De som ikke er spontane Hva bestemmer om en reaksjon er spontan eller ikke? Ikke energien til systemet alene Om energien til systemet avtar under en spontan prosess må energien til omgivelsene øke like mye NB! Både system og omgivelse tar del i den spontane prosessen Spontane endringer er alltid knytta til spredning av energi til en mer uordna form

3 Entropi - S U tilstandsfunksjon som sier hvilke tilstandsendringer som er tilatte S tilstandsfunksjon som sier hvilken av de tillatte tilstandsendringer som vil finne sted S identifiserer spontan endring blandt tilatte endringer Spredning av energi 3

4 Entropi S Entropi er et mål på uorden S øker med fordi atomene vibrerer mer når øker S gass > S væske > S fast 4

5 Gasser blandes Entropi Illustrativt eksempel av entropiens rolle Lukket system Fylt med to inerte gasser (her og ) ved samme trykk, atskilt med en tynn vegg Fjerner veggen (eller lager en åpning i den): Gassene blandes. Hvorfor skjer dette? Mikro- og makrotilstander System av ideelle, uavhengige gassatomer Mikroskopisk er systemet beskrevet fullstendig med 3 posisjons- og 3 hastighetskomponenter for hver partikkel: System med -atomer i to beholdere: N*(3+3) = *6=1 parametre. For ett mol -atomer 6.*1 3 * 6 = 3.6*1 4 parametre Komplekst! P = 1/ * 1/ = 1/4 P = 1/ * 1/ = 1/4 Sum =1/ Makroskopisk kan en tilstand beskrives ved et antall ekvivalente mikrotilstander. Enkelt P = * (1/ * 1/) = 1/ Jo flere mikrotilstander som beskriver samme makrotilstand, jo høyere sannsynlighet for den makrotilstanden. P = 1/ * 1/ * 1/ * 1/ = (1/) 4 = 1/16 P = *3* (1/) 4 = 6/16 5

6 Mer kvantitativ utledning av antall mikrotilstander og sannsynlighet System av 9 pulter i en lesesal og 4 studenter. Hvordan vil de plassere seg? Anta at de ikke har noen følelser for hverandre og derfor plasserer seg tilfeldig. forts. Det er 9*8*7*6 = 34 måter å plassere seg på. Men studenter er så like! Det er derfor 4*3**1 = 4! = 4 forskjellige måter som de kan bytte plass på uten at noen oppdager det. Disse tilstandene representerer derfor samme mikrotilstand. Det er derfor 34 / 4 = 16 forskjellige tilstander (mikrotilstander). Alle er like sannsynlige. Mer matematisk: Fordeler 4 like studenter 9! 3688 og 5 like tomme på 9 plasser: W = = = 16 5!4! 1* 4 6

7 forts. Ordnede tilstander mindre sannsynlige enn uordnede Det er derfor mer sannsynlig å finne studentene sittende i det vi vil kalle usystematiske plasseringer enn slik eller slik (Disse ordnede konfigurasjonene kan kun vinne frem ved tiltrekkende eller frastøtende krefter mellom studentene.) Eks. 3-5: Et C 6 molekyl (buckeyball, fotball -molekyl) har 6 likeverdige karbonatomer. Vi tenker at vi absorberer hydrogenatomer på halvparten av dem. Hvor mange måter W er det å gjøre dette på? Løsning: W = (6*59*58 3*31)/(3*9 *1) = 6! / 3! 3! = 1,18*1 17 Øv. 3-5: En kubisk nano-krystall har 3 x 3 x 3 atomer, hvorav 4 plasser er tomme. a) Hvor mange måter er det å plassere atomene og vakansene på totalt? b) Hva er W (hvor mange adskilllbare måter)? 7

8 Boltzmann(-Planck)-uttrykket for entropi Ludwig Boltzmann (og senere Max Planck) foreslo at entropy var relatert til termodynamisk sannsynlighet ved følgende relasjon: S = k lnw k er Boltzmann-konstanten, med samme enhet som entropi (J/K) For de 4 studentene på 9 lesesalsplasser: S = k ln 16 = 6,67*1-3 J/K. Gasskonstanten R og Boltzmann-konstanten k er relatert gjennom Avogadros tall: R = k*n A S = R ln 16 = N A * 6,67*1-3 J/K = 4, J/molK (for ett mol lesesaler hver med 4 studenter og 9 plasser) ermodynamikkens. lov Entropien øker Entropien i et isolert system øker 1. og. lover sammen: I et isolert system er energien konstant, mens entropien øker. Eksempler: Universet En lukket termos For å illustrere entropi har vi nå vært innom statistisk termodynamikk Nå skal vi tilbake til mer klassisk termodynamikk 8

9 Entropi Endringen i entropi er definert som integralet over den reversible endringen i varmemengde dividert med : dqrev S = 1 q som ofte kan tilnærmes med S = H eller, ved konstant trykk : S = I et isolert ideelt reversibelt system som ikke er i likevekt, vil entropien forbli konstant i prosessen som følger. Reversible prosesser er idealiserte. I et isolert, reelt system som ikke er i likevekt, vil entropien øke i prosessen som følger. Alle reelle prosesser er irreversible. rev ermodynamikkens 3. lov; Entropiens nullpunkt For en perfekt krystall ved K er det bare én mikrotilstand: W K = 1 S K =k lnw K = For en perfekt krystall ved K er entropien. Dette gir et referansepunkt, slik at vi kan bruke absoluttverdier for entropien (ulikt indre energi og entalpi). 9

10 Perfekte krystaller ved K har entropi Glass og andre uordna systemer har endelig entropi ved K 1

11 Vi kan måle endringer i H eller U Vi kan måle absoluttverdier for S Måling av entropi trs f CPd S = i trsh S = trs 11

12 From C P to S S( ) = S() + fus boil fus boil C P( s) d + CP ( g) d fus C P( l) d + vap H + fus H + vap HUSK Du kan legge sammen eller trekke fra reaksjoner og deres energier... ss lov 1

13 Entropiforandringer i kjemiske reaksjoner Generelt: rs = S produkter S reaktanter Ved 98 K: rs98 = S98 S produkter 98 reaktanter Standard dannelse entropier, reaksjonsentropier etc defineres som for entalpier Na(s) + ½ Cl (g) NaCl(s) f S o = S o (NaCl) - S o (Na) ½ S o (Cl ) f S o = ½. 3 = - 9 J/K mol Entalpien til rene grunnstoff i stabil form ved 1 bar benyttes som nullpunkt. Settes til null. Dette gjelder ikke entropien. 13

14 4 tommelfingerregler for entropien i stoffer Entropien øker fra kondenserte faser til gass (ca. 1 J/molK) Entropien øker med økende masse når andre parametre er like Entropien avtar med økende hardhet og bindingsenergi. Entropien øker med økende kjemisk kompleksitet Alle disse reflekterer at entropien er et mål for uorden Eks. 3-6: Vann fordamper fra huden din. Er entropiendringen positiv eller negativ? Løsning: Positiv: I reaksjonen H O(l) = H O(g) går vann fra kondensert form til gass. Øv. 3-6: Hva er fortegnet på r S i reaksjonene i Eks. 3-3 og Øv. 3-3? 14

15 Hva skjer? Vi har sett at to ting påvirker hvorvidt en prosess (eller reaksjon) skjer: Senkning i entalpien Eksotermiske reaksjoner synes å dominere Men også endotermiske reaksjoner skjer Disse betraktningene begrenser seg til vårt nærsystem; i Universet er energien uansett konstant Økning i entropien I et isolert system kan bare prosesser (og reaksjoner) der entropien øker skje. Men vi er ikke fornøyd: Entalpien i nærsystemet gir ikke noe entydig svar. Isolerte systemer, især Universet, er upraktiske å forholde seg til. Vi vil vite hva som skjer i en beholder eller et reagensrør; et lukket system! Et lukket system og dets omgivelser Det totale systemet (= Universet) er det lukkede systemet + dets omgivelser H H S S S H total lukket system total omgivelser total = H = S = S lukket system lukket system = H lukket system H = lukket system S omgivelser + H omgivelser + S H lukket system omgivelser omgivelser H = lukket system < > = lukket system > (fra 1. lov) (. lov) S omgivelser = H omgivelser / = - H lukket system / H omgivelser H lukket system Prosess; H lukket system og S lukket system Balansen Balansenmellom mellomog og S S lukket system og lukket system og- H lukket system / lukket system / bestemmer bestemmerhvorvidt hvorvidten en prosess prosessskjer skjereller ellerikke. 15

16 Gibbs energi Vi introduserer for dette formål Gibbs energi, G G = H S idligere: Gibbs fri energi Etter Josiah Willard Gibbs G er, som H og S, en tilstandsfunksjon For en spontan reaksjon: G = H - S < Reaksjonen vil skje helt til G er i minimum; G = (likevekt). o uttalelser om det foregående: More important for chemists than the laws of thermodynamics that it is based on? "Although we may by now have an idea of what entropy is, an understanding of the relations of free energy and entropy discussed on the last two slides often represent a life-long challenge to chemists, even if they use the expressions daily." Gibbs energi Grunnlaget for anvendelser av termodynamikk G o = H o - S o Spontan dersom G o < 16

17 Effekt av temperaturen G = H - S H og S er ofte relativt uavhengige av temperaturen. G er derfor i første tilnærmelse, en enkel funksjon av temperaturen; G = H - S Ved tilstrekkelig høy temperatur vil S (uorden) få overtaket Ved tilstrekkelig høye temperaturer er derfor stoffer brutt ned til mindre fragmenter, ioner eller atomer. Ved lav temperatur er det H som bestemmer G o = H o - S o H o S o G o resultat negativ positiv alltid negativ spontan positiv negativ alltid positiv ikke spontan positiv positiv negativ ved høye spontan negativ negativ negativ ved lave spontan 17

18 Gibbs energi endringer for spontane reaksjoner Både entalpi og entropi bidrar til reaksjonen Eksempel: NI 3 (s) = N (g) + 3I (s) Start H < Energi - S < ( S > ) G = H - S < Slutt Gibbs energi endringer for spontane reaksjoner Entalpien overvinner entropien (særlig ved lav temperatur) Eksempel: Mg(s) + 1/ O (g) = MgO(s) Start Energi H < Slutt G = H - S < - S > ( S < ) 18

19 Gibbs energi endringer for spontane reaksjoner Entropien overvinner entalpien (særlig ved høy temperatur) Eksempel: H O(l) = H O(g) H > Energi Start Slutt - S < ( S > ) G = H - S < Standard Gibbs energi-forandring Som for H kan vi ikke bestemme absoluttverdier for G, bare endringer, G. G varierer med trykk og temperatur: Standardverdier gis for P = 1 bar og, vanligvis = 98 K: G 98 19

20 Gibbs energi og arbeid G = H - S Alternativt: H = G + S otalenergi-endring H = fri energi tilgjengelig for arbeid ( G) + energi som er utilgjengelig ( S) Eks. 3-7: Regn ut standard entropiendring i reaksjonen i Eks. 3-3 når det er oppgitt S CO(g) = 198 J/molK, S CO(g) = 13 J/molK og S C(s) = 5,7 J/molK. Hva er standard Gibbs energiendring for reaksjonen? Er reaksjonen spontan? Løsning: Standardbetingelser er 5 C = 98 K. r S = 5, = - 177,3 J/molK = -,1773 kj/molk. r G (kj/mol) = -17,5 (98 -,1773) = -119,7; spontan. Øv. 3-7: a) Regn ut standard entropiendring i reaksjonen i Øv. 3-3 når det er oppgitt S CO(g) = 198 J/molK, S CO(g) = 13 J/molK og S O(g) = 5 J/molK. b) Hva er standard Gibbs energiendring for reaksjonen? c) Er reaksjonen spontan?

21 Eks. 3-8: Regn ut r G for reaksjonen i Eks. 3-7 når temperaturen er 9 C. Løsning: r G (kj/mol)= -17,5-((9+73) (-,1773))=+35,4 (ikke spontan; går bakover). Øv. 3-8: Regn ut r G for reaksjonen i Øv. 3-3 ved 9 C. Er den spontan? Ved hvilken temperatur har vi r G =? Hva vil du si om situasjonen i dette tilfellet? Standard dannelses Gibbs energi For dannelse av en forbindelse fra grunnstoffene i deres mest stabile form ved 1 bar og, bruker vi G eller G f, f Standard dannelses Gibbs energi for et grunnstoff i dets mest stabile form er definert (ved definisjonen selv) =. 1

22 Standard Gibbs energi-forandring for en kjemisk reaksjon Gibbs energi-forandring ved kjemiske reaksjoner: G = r Produkter G G Reaktanter eller G = r f Produkter G f Reaktanter G Ved å bruke dannelses Gibbs energier bruker vi konvensjonen om tilstander for grunnstoffene som felles referanse, selv om det ikke nødvendigvis er grunnstoffer i reaksjonsligningen. Eks.: Gibbs energi-forandring for spalting av MgCO 3 MgCO 3 (s) = MgO(s) + CO (g, 1 bar) Gibbs energi-forandring for reaksjonen kan beregnes fra tabulerte Gibbs energier for reaktanter og produkter ved temperatur, G = G (MgO, s) + G (CO,g) G (MgCO3,s) r, f, f, f, eller fra dannelses entalpier og entropier og : G = H - S r, r, r, Hvis Gibbs energier eller entalpi+entropi-sett ikke er tilgjengelige for, kan man få et estimat ved å bruke entalpier og entropier fra andre temperaturer og anta dem konstante.

23 Gibbs energi for dannelse av vanndamp H (g, 1 bar) + 1/ O (g, 1 bar) = H O(g, 1 bar) G = H - S f, f, f, G f, - [ S = H (H O,g) - S (H O,g) - H (H,g) -1/S (O (H,g) 1/ H,g)] Ved konvensjon: Entalpien av elementene ved 1 bar og 98 K er definert = : (O,g) G f,98 - [ S 98 = H (H (H O,g) - S f,98 98 O,g) (H,g) -1/S 98 (O,g)] ermokjemiske tabeller Standard dannelses Gibbs energi for et grunnstoff i dets mest stabile form er definert (ved definisjonen selv) =. Fra tidligere: Standard entalpi for grunnstoffer i deres mest stabile form er (ved konvensjon) =. (Standard dannelses entalpi for et grunnstoff i dets mest stabile form er også nødvendigvis ). Entropien for grunnstoffer i standard-tilstander er ikke. ermokjemiske tabeller for forbindelser og grunnstoffer: standard dannelses entalpi (lik for stabil form av grunnstoffene), standard entropi (ikke lik for grunnstoffer) (dannelses entropi er ikke listet må beregnes!) standard dannelses Gibbs energi kan være listet (lik for stabil form av grunnstoffene). 3

24 ermokjemisk tabell (utdrag) Fra Kubaschewski, Alcock, Spencer: Materials hermochemistry ermokjemisk tabell (utdrag) Fra CRC Handbook of Chemistry and Physics 4

25 NIS Chemistry WebBook NIS Standard Reference Database Number 69, June 5 Release G o = H o - S o Spontan dersom G o < Na(s) + ½ Cl (g) NaCl(s) f H o = kj mol -1 f S o = - 9 J/K mol f G o = (/K). 9 5

26 ermodynamikk versus kinetikk 4NH 3 (g) + 5O (g) 4NO(g) + 6H O(g) 4NH 3 (g) + 3O (g) N (g) + 6H O(g) Hva med oppløsningprosesser for ioniske forbindelser? 6

27 Løslighet: ikke ja/nei! NaF.99 mol. L -1 NaCl.6 mol. L -1 NaBr.9 mol. L -1 NaI 1.3 mol. L -1 ermodynamiske prosesser og likevekt A B sponan A B sponan Likevekt 7

28 Gibbs energi og aktivitet Gibbs energi for en stoffmengde øker med økende aktivitet av stoffet: Eksempel: G, = G + f P f R ln a For ideelle gasser er aktiviteten gitt som P a = P G P f, P = G f + R ln P Normalt er p = 1 bar, og man kan for enkelhetsskyld fristes til å la a = P. Men alltid i forståelse med at a egentlig er P/P, og at a derfor ikke har noen enhet. Effekt av trykket på endringer av G i kjemiske reaksjoner H (g, P H ) + 1/ O (g, P O ) = H O(g, P HO ) G = G r f = G f + R ln P P og hvis P = 1 (bar): PH O P H P ln [, ln 1 O + R G R ( G, R ln )] f H + + f O P P r G = G f, HO + P G = G + r f Produkter G 1 f, HO G f, H G f, O R ln P HO rg = G f, H ln O + R 1/ P P f Reaktanter G H O HO 1/ H P O P P 8

29 Reaksjonskvotient For den generelle reaksjonen aa + bb = cc + dd ved enhver konstant temperatur, har vi G = G r r c aca + R ln a a a d D b A B = G r + R lnq Q kalles reaksjonskvotienten Eksempel H (g, P H ) + 1/ O (g, P O ) = H O(g, P HO ) Hvis alle gassene er tilstede ved 1 bars partialtrykk: r G = f GH O = 87J / mol Reaksjonen går mot høyre! Hvis alle gassene er tilstede ved.1 bars partialtrykk: G = r f G HO PH O + R ln = -87 1/ P P H O 87 + R ln1 = 3J / mol. 1 + R ln =. 1*. 1 Gibbs energi-forandring er i siste tilfelle mindre negativ og tendensen for reaksjonen til å skje er derfor blitt mindre. 9

30 Gasser vs. kondenserte faser (væsker og faste stoffer) For gasser: P =1 bar; P = 1 bar gir aktivitet a = 1. G er avhengig av P. For væske og faste stoffer: Det rene stoffet ved 1 bar er referanse-tilstanden og har derfor en aktivitet a = 1. G kan tilnærmet regnes som uavhengig av P Standardtilstander for løsninger En binær løsning består av et løsningsmiddel (solvent, medium) og en oppløst substans (solute, dissolved). For løsningsmiddelet er den rene substansen standardtilstanden som gir a = 1. For den oppløste substansen er det oftest upraktisk eller umulig å definere en tilsvarende standardtilstand. Istedet har man valgt 1 m (molal = mol/kg løsningsmiddel) som referansetilstand. For tynne vandige løsninger er molarity (M = mol/l) lik molalitet og 1 M er derfor brukt som referansetilstand i praksis. Ideelle løsninger: a = c / c = c/1 M = c I faste løsninger brukes oftest atomfraksjoner eller plassfraksjoner som mål for aktivitet standardtilstanden er da 1% substitusjon eller okkupans av det løste speciet en tilstand som kan være vanskelig å realisere. (Mer om dette senere.) 3

31 Eks. 3-9: Vi har en gassblanding av CO ved 1 bar med et innhold av,1 % CO. Blandingen er i kontakt med et stykke grafitt (C), slik at aktiviteten av karbon a C(s) = 1. emperaturen er 9 C. Hva er r G? Løsning: Vi bruker r G fra Eks. 3-8 og setter inn i ligning (3.4) med partialtrykk for aktiviteter: a a 1 1 rg = rg + R ln = , ln,1 = J/mol = -99,3 kj/mol. C ( s) CO ( g ) aco( g ) Øv. 3-9: Anta at vi i reaksjonen i Øv. 3-3 har 1 bar av hver av CO og CO, mens p O er bar. Hva er r G ved 9 C? Generell relasjon mellom Gibbs energi-forandring og reaksjons-kvotient Q: c d acad rg = rg + R ln a b a a Ved likevekt: r G= : A B = G + R lnq r G = G r r c aca + R ln a a a d D b A B = G r a a = R ln a c d C D a b AaB likevekt c aca a aaa d D b B likevekt rg = K = exp( ) R eller rg lnk = R eller G r = - RlnK Ved likevekt: Q = K, likevektskonstanten (massevirkningskoeffisienten) 31

32 Eks. 3-1: Hva er likevektskonstanten til reaksjonen i Eks. 3-3 ved 9 C? Hva blir likevektsaktiviteten av karbon i 1 bar CO med,1 % CO? Løsning: Fra (3.4) har vi lnk = - r G /R = -354/(8, ) = -3,63. K = e =,65 = a C(s) a CO(g) /a CO(g). a C(s) =K a CO(g) /a CO(g) =,65,1 / 1 =,65*1-8. Øv. 3-1: Hva er likevektskonstanten til reaksjonen i Øv. 3-3 ved 9 C? Hva blir likevektspartialtrykket av oksygen i 1 bar CO med,1 % CO? emperaturavhengighet for kjemiske likevekter - RlnK = G = H Et plott av G vs (Ellingham-plott) gir - S som vinkelkoeffisient og H som skjæringspunkt ved = ; Entalpien dominerer ved lav temperatur! H S ln K = + R R S H 1 ln K = R R S Et plott av lnk vs 1/ (van t Hoff plott) gir - H/R som vinkelkoeffisient og S/R som skjæringspunkt ved 1/ = ; Entropien dominerer ved høy temperatur! 3

33 Kjemisk potensial Den partielle molare Gibbs energi for stoffet i, G i, er den Gibbs energi som tilføres et system når det tilsettes ett mol av stoffet (i) mens alle andre parametre, inklusive antall mol av alle andre stoffer (n 1.), holdes konstant. Kalles ofte også for kjemisk potensial, µ i µ = G i i Gi = ni, P, n1... Krever tilsetning av stoff; åpent system Kjemisk ekvivalent til fysiske potensial (gravitasjon, elektrisk, magnetisk): Et species i føler en kraft når det er i et felt (gradient) av kjemisk potensial µ i. emperaturgradienter En gass i en beholder Lav temperatur Høy Lav uorden Høy Likt trykk Likt Likt kjemisk potensial Likt Høy konsentrasjon Lav 33

34 ermoelektrisitet; Seebeck-effekten Negative ladningsbærere i et fast materiale Elektrongass -modell Seebeck-koeffisienten (termoelektrisk kraft) Q = de/d ermoelement: o ledere med forskjellig Seebeck-koeffisient i en temperatur-gradient Lav temperatur Høy Lav uorden Høy Likt trykk Likt Likt kjemisk potensial Likt Høy konsentrasjon Lav - elektrisk potensial + n- og p-leder Negative ladningsbærere i et materiale med én plass per bærer Lav temperatur Høy Lav uorden Høy Høy konsentrasjon Lav - elektrisk potensial + n-leder Okkupasjonstall av negative bærere < ½ p-leder Okkupasjonstall av negative bærere > ½ Lav temperatur Høy Lav uorden Høy Lav konsentrasjon Høy + elektrisk potensial - 34

35 Oppsummering, Kapittel 3 otal energi = indre energi + mekanisk energi (kinetisk og potensiell) Entalpi (varme, ekso-/endoterm) volumarbeid Systemer Sannsynlighet uorden entropi 1. og. lov: Energiens konstans og entropiens økning Reelle og ideelle prosesser Varmekapasitet temperatur Hva skjer? G er et mål for hva som skjer. G = betyr veis ende; likevekt G og K er mål for likevektspunktets forskyvning mot reaktanter eller produkter Hva som skjer og likevektens forskyvning ( G og G ) er balanse mellom energikostnad (varme) og sannsynlighet (uorden). Effekter av P og emperaturgradienter - termoelektrisitet 35

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi, varme, arbeid - Systemer

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi, varme, arbeid - Systemer MENA 11; Materialer, energi og nanoteknologi - Kap. 3 Termodynamikk - Energi, varme, arbeid - Systemer Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet i

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi og systemer - Varme, arbeid

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi og systemer - Varme, arbeid MENA 11; Materialer, energi og nanoteknologi - Kap. 3 Termodynamikk - Energi og systemer - Varme, arbeid Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet

Detaljer

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi og systemer - Varme, arbeid

Termodynamikk. MENA 1001; Materialer, energi og nanoteknologi - Kap Energi og systemer - Varme, arbeid MENA 11; Materialer, energi og nanoteknologi - Kap. 3 Termodynamikk - Energi og systemer - Varme, arbeid Truls Norby Kjemisk institutt/ Senter for Materialvitenskap og nanoteknologi (SMN) Universitetet

Detaljer

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt.

Kjemisk likevekt. La oss bruke denne reaksjonen som et eksempel når vi belyser likevekt. Kjemisk likevekt Dersom vi lar mol H-atomer reager med 1 mol O-atomer så vil vi få 1 mol H O molekyler (som vi har diskutert tidligere). H + 1 O 1 H O Denne reaksjonen er irreversibel, dvs reaksjonen er

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring

Detaljer

KJ1042 Øving 5: Entalpi og entropi

KJ1042 Øving 5: Entalpi og entropi KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse

Detaljer

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov

KJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,

Detaljer

Vi skal se på reaksjonen mellom hydrogengass og oksygengass til vanndamp:

Vi skal se på reaksjonen mellom hydrogengass og oksygengass til vanndamp: 3. Termodynamikk I mange mekaniske og fysiske rosesser (som de vi behandlet i forrige kaittel) og i kjemiske reaksjoner har vi utveksling av energi, og ofte ovarming eller avkjøling. Vi kan gjerne si at

Detaljer

De viktigste formlene i KJ1042

De viktigste formlene i KJ1042 De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene

Detaljer

3. Massevirkningsloven eller likevektsuttrykk for en likevekt

3. Massevirkningsloven eller likevektsuttrykk for en likevekt apittel 8 jemisk likevekt 1. Reversible reaksjoner. Hva er likevekt? 3. Massevirkningsloven eller likevektsuttrykk for en likevekt 4. Likevektskonstanten (i) Hva sier verdien oss? (ii) Sammenhengen mellom

Detaljer

Innhold. Forord... 11

Innhold. Forord... 11 Innhold Forord... 11 Kapittel 1 Atomet og periodesystemet... 13 1.1 Kjemi og atomet... 13 Atomet består av protoner, nøytroner og elektroner... 14 Grunnstoffer... 14 Atomnummer og massenummer... 15 Isotoper...

Detaljer

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven

Sammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer

Detaljer

Norsk finale Fasit

Norsk finale Fasit Kjemi L Norsk finale 2019 Fasit ppgave 1 (20 poeng) 1) B 2) A 3) A 4) D 5) B 6) C 7) A 8) D 9) D 10) C ppgave 2 (12 poeng) a) Forbindelse A er fluorbenzen. Strukturen er gitt i figuren over. b) Forbindelse

Detaljer

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter)

1 J = cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 1 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) 2 Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme

Detaljer

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS

4 Viktige termodynamiske definisjoner ΔG = ΔH - T ΔS 1 2 1 J = 0.239 cal = energi som trengs for å løfte 1 kg 1m mot en 1N kraft, eller 100 g 1meter mot tyngdekraften (10N) (ett eple en meter) Energioverføringene i biokjemiske reaksjoner følger de samme

Detaljer

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer?

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer? Side 1 av 6 Del 1 (50 p). Flervalgsoppgaver. Hvert riktig svar med riktig forklaring gir 2.5 poeng. Riktig svar uten forklaring eller med feil forklaring gir 1.5 poeng. Feil svar (med eller uten forklaring)

Detaljer

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.:

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.: Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi KJ1000 Generell kjemi Bokmål Student nr.: Studieprogram: Eksamen lørdag 2. juni 2007, 0900-1300 Tillatte hjelpemidler: kalkulator

Detaljer

2. Kjemisk likevekt Vi har kjemisk likevekt når reaksjonen mot høgre og venstre går like fort i en reversibel reaksjon.

2. Kjemisk likevekt Vi har kjemisk likevekt når reaksjonen mot høgre og venstre går like fort i en reversibel reaksjon. Repetisjon (.09.0) apittel 5 jemisk likevekt. Reversible reaksjoner En reaksjon som kan gå begge veier: H (g) + I (g) HI (g). jemisk likevekt i har kjemisk likevekt når reaksjonen mot høgre og venstre

Detaljer

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri 1 Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri Vandige løsninger; sterke og svake elektrolytter Sammensetning av løsninger Typer av kjemiske reaksjoner Fellingsreaksjoner (krystallisasjon)

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultetet Eksamen i: KJM 1100 Generell kjemi Eksamensdag: 18. desember 2012 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 5 sider Vedlegg: Periodesystemet

Detaljer

MENA1001 Deleksamen 2017 Forside

MENA1001 Deleksamen 2017 Forside MENA1001 Deleksamen 2017 Forside MENA1001 Tidspunkt: Onsdag 11. oktober 2017, kl. 9.00-10.00 Alle 20 oppgaver skal besvares. Hver oppgave teller likt. Det er 1 poeng for korrekt svar, 0 poeng for feil

Detaljer

Fasit til norsk finale

Fasit til norsk finale Kjemi OL Fasit til norsk finale Kvalifisering til den 47. Internasjonale Kjemiolympiaden 2015 i Baku, Aserbajdsjan Oppgave 1 1) D 2) A 3) C 4) B 5) B 6) B 7) C 8) D 9) A 10) C 11) C 12) A 13) C 14) A 15)

Detaljer

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.:

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.: Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi KJ1000 Generell kjemi Bokmål Student nr.: Studieprogram: Eksamen fredag 3. desember 2004, 0900-1300 Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 7, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 7, HØST 2009 NNU Nrges teknisk-naturvitenskapelige universitet Fakultet fr naturvitenskap g teknlgi Institutt fr materialteknlgi M4112 KJEMI LØSNINGSFORSLAG IL ØVING NR. 7, HØS 2009 OPPGAVE 1 a) Energi kan ikke frsvinne

Detaljer

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3

EKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER

Detaljer

1. Oppgaver til atomteori.

1. Oppgaver til atomteori. 1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen

Detaljer

Termodynamikk ΔU = Q - W. 1. Hovedsetning = Energibevarelse: (endring indre energi) = (varme inn) (arbeid utført)

Termodynamikk ΔU = Q - W. 1. Hovedsetning = Energibevarelse: (endring indre energi) = (varme inn) (arbeid utført) Termodynamikk 1. Hovedsetning = Energibevarelse: ΔU = Q - W (endring indre energi) = (varme inn) (arbeid utført) 2. Hovedsetning = Mulige prosesser: Varme kan ikke strømme fra kaldt til varmt legeme Prosesser

Detaljer

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:

gass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.: NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN

Detaljer

Oppsummering - Kap. 5 Termodynamikkens 2. Lov

Oppsummering - Kap. 5 Termodynamikkens 2. Lov EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.

Detaljer

1. UTTAKSPRØVE. til den 44. Internasjonale Kjemiolympiaden 2012. i Washington DC, USA. Oppgaveheftet skal leveres inn sammen med svararket

1. UTTAKSPRØVE. til den 44. Internasjonale Kjemiolympiaden 2012. i Washington DC, USA. Oppgaveheftet skal leveres inn sammen med svararket Kjemi OL 1 UTTAKSPRØVE til den 44 Internasjonale Kjemiolympiaden 2012 i Washington DC, USA Dag: En dag i ukene 40-42 Varighet: 90 minutter Hjelpemidler: Lommeregner og Tabeller og formler i kjemi Maksimal

Detaljer

1. UTTAKSPRØVE. til den. 42. Internasjonale Kjemiolympiaden 2010 i Tokyo, Japan

1. UTTAKSPRØVE. til den. 42. Internasjonale Kjemiolympiaden 2010 i Tokyo, Japan Kjemi OL 1. UTTAKSPRØVE til den 42. Internasjonale Kjemiolympiaden 2010 i Tokyo, Japan Dag: En dag i ukene 42-44. Varighet: 90 minutter. Hjelpemidler: Lommeregner og Tabeller og formler i kjemi. Maksimal

Detaljer

Retningen til Spontane Prosesser. Prosessers Retning

Retningen til Spontane Prosesser. Prosessers Retning Retningen til Spontane Prosesser T. Gundersen 5-1 Prosessers Retning Spontane Prosesser har en definert Retning Inverse Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr og Energi i en eller annen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K

T L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

Retningen til Spontane Prosesser

Retningen til Spontane Prosesser Retningen til Spontane Prosesser Termodynamikkens 2. Lov 5-1 Prosessers Retning Spontane Prosesser har en definert Retning u Inverse motsatte Prosesser kan ikke skje uten ekstra hjelp i form av Utstyr

Detaljer

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi

EKSAMENSOPPGAVE. KJE-1001 Introduksjon til kjemi og kjemisk biologi Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00-15:00 Sted: Tillatte hjelpemidler:

Detaljer

KJ1042 Øving 12: Elektrolyttløsninger

KJ1042 Øving 12: Elektrolyttløsninger KJ1042 Øving 12: Elektrolyttløsninger Ove Øyås Sist endret: 14. mai 2011 Repetisjonsspørsmål 1. Hva sier Gibbs faseregel? Gibbs faseregel kan skrives som f = c p + 2 der f er antall frihetsgrader, c antall

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

Løsningsforslag til øving 10

Løsningsforslag til øving 10 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

Fasit til norsk finale for uttak til den. 41. internasjonale kjemiolympiaden i Cambridge, England, juli 2009

Fasit til norsk finale for uttak til den. 41. internasjonale kjemiolympiaden i Cambridge, England, juli 2009 Kjemi L Fasit til norsk finale for uttak til den 41. internasjonale kjemiolympiaden i Cambridge, England, 18.-27. juli 2009 1 ppgave 1 (14 poeng) 1) B 2) C 3) C 4) D 5) C 6) C 7) D ppgave 2 (12 poeng)

Detaljer

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00 SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr

Detaljer

EKSAMENSOPPGAVE I FYS-2001

EKSAMENSOPPGAVE I FYS-2001 Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5

Detaljer

EKSAMENSOPPGAVE. Oppgavesettet er på 8 sider inklusive forside. Kontaktperson under eksamen: Prof. Richard Engh Telefon:

EKSAMENSOPPGAVE. Oppgavesettet er på 8 sider inklusive forside. Kontaktperson under eksamen: Prof. Richard Engh Telefon: EKSAMENSOPPGAVE Eksamen i: KJE-1005 Dato: Fredag 05. juni 2015 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er på 8 sider inklusive forside

Detaljer

Fuktig luft. Faseovergang under trippelpunktet < > 1/71

Fuktig luft. Faseovergang under trippelpunktet < > 1/71 Fuktig luft 1/71 Faseovergang under trippelpunktet Fuktig luft som blanding at to gasser 2/71 Luft betraktes som en ren komponent Vanndamp og luft oppfører seg som en blanding av nær ideelle gasser 3/71

Detaljer

A 252 kg B 287 kg C 322 kg D 357 kg E 392 kg. Velg ett alternativ

A 252 kg B 287 kg C 322 kg D 357 kg E 392 kg. Velg ett alternativ 1 n sugekopp har tre sirkulære "skiver", hver med diameter 115 mm. Hva er sugekoppens maksimale (teoretiske) løfteevne ved normale betingelser (dvs lufttrykk 1 atm)? 252 kg 287 kg 322 kg 357 kg 392 kg

Detaljer

Arbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi:

Arbeid = kraft vei hvor kraft = masse akselerasjon. Hvis kraften F er konstant og virker i samme retning som forflytningen (θ = 0) får vi: Klassisk mekanikk 1.1. rbeid rbeid som utføres kan observeres i mange former: Mekanisk arbeid, kjemisk arbeid, elektrisk arbeid o.l. rbeid (w) kan likevel alltid beskrives som: rbeid = kraft vei hvor kraft

Detaljer

Introduction to thermal physics - Short course in thermodynamics

Introduction to thermal physics - Short course in thermodynamics Introduction to thermal physics - Short course in thermodynamics Anders Malthe-Sørenssen 19. august 2013 1 1 Introduction Vi ønsker å forstå makroskopiske objekter basert på de mikroskopiske vekselvirkningene.

Detaljer

Oppgave 1 V 1 V 4 V 2 V 3

Oppgave 1 V 1 V 4 V 2 V 3 Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar

Detaljer

EKSAMENSOPPGAVE I KJE-1001

EKSAMENSOPPGAVE I KJE-1001 Side 1 av 6 sider EKSAMENSOPPGAVE I KJE-1001 Eksamen i : KJE-1001 Eksamensdato : Mandag 25.februar 2013 Tid : 09:00-15:00 Sted : Aud. Max. Tillatte hjelpemidler : Kalkulator "Huskelapp" = ett A4-ark med

Detaljer

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30

EKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30 Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1005 Grunnleggende Fysikalsk Kjemi Dato: Fredag 01. juni 2018 Klokkeslett: 09:00-14:00 Sted: KRAFT I og II Hall del 3 Kraft sportssenter

Detaljer

Oppgave 1. Bestemmelse av partielle molare volum

Oppgave 1. Bestemmelse av partielle molare volum Oppgave 1 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 22.02.2012 i Sammendrag Hensikten med dette forsøket var å bestemme de partielle molare volum

Detaljer

Løsningsforslag til ukeoppgave 7

Løsningsforslag til ukeoppgave 7 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 7 Oppgave 11.35 Virkningsgraden er 63,1 % Oppgave 11.37 W = 16, 6 kj Q L = 9, 70 kj Q H = W + Q L = 16, 6 kj + 9, 70 kj = 26, 3 kj η = W Q H =

Detaljer

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten

Kapittel 12. Brannkjemi. 12.1 Brannfirkanten Kapittel 12 Brannkjemi I forbrenningssonen til en brann må det være tilstede en riktig blanding av brensel, oksygen og energi. Videre har forskning vist at dersom det skal kunne skje en forbrenning, må

Detaljer

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid

2. Termodynamikkens lover Termodynamikkens 1. lov Energiutveksling i form av varme og arbeid Trykk-volum arbeid Fysikk / Termodynamikk åren 2001 2. Termodynamikkens lover 2.1. Termodynamikkens 1. lov Termodynamikkens første lov kan formuleres å mange måter. En vanlig formulering er: Energien til et isolert system

Detaljer

EKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2

EKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys26 Eksamensdag: Fredag 5. desember 24 Tid for eksamen: 43 83 Oppgavesettet er på: 3 sider Vedlegg: ingen Tilatte hjelpemidler

Detaljer

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI

gass Side 1 av 5 NORGES TEKNISK NATUR- VITENSKAPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side av 5 NORGES TEKNISK NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd. Blekkan, tlf.7359457 EKSMEN I

Detaljer

EKSAMENSOPPGAVE. Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9

EKSAMENSOPPGAVE. Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 EKSAMENSOPPGAVE Eksamen i: KJE-6001 Generell kjemi for lærere Dato: Mandag 14. desember 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på

Detaljer

Universitetet i Oslo

Universitetet i Oslo Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1001 Innføring i kjemi Eksamensdag: tirsdag 15. desember 2009 Tid for eksamen: 14.30 til 17.30 Oppgavesettet er på 6 sider

Detaljer

Oppgave 3. Fordampningsentalpi av ren væske

Oppgave 3. Fordampningsentalpi av ren væske Oppgave 3 Fordampningsentalpi av ren væske KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 29.02.2012 i Sammendrag I forsøket ble damptrykket

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 9. desember 2008 Tid: kl. 09:00-13:00 Side 1 av 6 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK LØSNINGSFORSLAG EKSAMEN TEP 410 TERMODYNAMIKK 1 Tirsdag 9. desember 008 Tid: kl. 09:00-13:00

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21015 Fysikalsk kjemi 10 studiepoeng Fagansvarlige: Ole Kr. Forrisdahl, Loan Che, Grupper: K2 Dato: 10.12.2015 Tid: 0900-1300 Antall

Detaljer

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2015 Tid:

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK mai 2015 Tid: Side 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 20. mai

Detaljer

EKSAMEN TMT4112 KJEMI

EKSAMEN TMT4112 KJEMI Eksamen TMT4112, 18. desember-2012 Side 1 av 8 NTNU NORGES TEKNISK- VITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Faglig kontakt under eksamen: Kjell Wiik; Tel.: 73594082/Mob. tel.: 922 65

Detaljer

EKSAMENSOPPGAVE. Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9

EKSAMENSOPPGAVE. Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9 EKSAMENSOPPGAVE Eksamen i: KJE-1005 Termodynamikk og kinetikk Dato: Torsdag 24. mai 2012 Tid: Kl 09:00 14:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir utleveres Oppgavesettet

Detaljer

1. UTTAKSPRØVE. Oppgavene besvares på svararket på side 2 og hele oppgaveheftet skal leveres inn.

1. UTTAKSPRØVE. Oppgavene besvares på svararket på side 2 og hele oppgaveheftet skal leveres inn. Kjemi OL 1. UTTAKSPRØVE til den 43. Internasjonale Kjemiolympiaden 2011 i Ankara, Tyrkia Dag: En dag i ukene 40-42. Varighet: 90 minutter. Hjelpemidler: Lommeregner og Tabeller og formler i kjemi. Maksimal

Detaljer

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: Tirsdag 15. desember 2015 Tid: Kl 09:00 15:00 Sted: Teorifagbygget, Hus 1, plan 2 og plan 3 Tillatte hjelpemidler: Kalkulator

Detaljer

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær)

Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk Tlf.: (direkte) / (mobil) / (sekretær) Side 1 av 9 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET (NTNU) - TRONDHEIM INSTITUTT FOR ENERGI OG PROSESSTEKNIKK Faglig kontakt under eksamen: Språkform: Bokmål Navn: Truls Gundersen, Energi og Prosessteknikk

Detaljer

FLERVALGSOPPGAVER REAKSJONSFART, LIKEVEKT OG LØSELIGHET

FLERVALGSOPPGAVER REAKSJONSFART, LIKEVEKT OG LØSELIGHET FLERVALGSOPPGAVER REAKSJONSFART, LIKEVEKT OG LØSELIGHET Hjelpemidler: Periodesystem og kalkulator Hvert spørsmål har ett riktig svaralternativ. Når ikke noe annet er oppgitt kan du anta STP (standard trykk

Detaljer

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00

Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00 EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

4 KONSENTRASJON 4.1 INNLEDNING

4 KONSENTRASJON 4.1 INNLEDNING 4 KONSENTRASJON 4.1 INNLEDNING 1 Terminologi En løsning er tidligere definert som en homogen blanding av rene stoffer (kap. 1). Vi tenker vanligvis på en løsning som flytende, dvs. at et eller annet stoff

Detaljer

4.2. Prosesser ved konstant volum Helmholtz energi

4.2. Prosesser ved konstant volum Helmholtz energi Fysikk / ermdynamikk Våren 00 4. Likevekt i kjemiske temer 4.. Likevektsbetingelser I kapittel 3 ble det fastslått at alle spntane prsesser fører til en økning i den ttale entrpien i universet. Ved likevekt

Detaljer

EKSAMEN I TMT4105 KJEMI

EKSAMEN I TMT4105 KJEMI Fag TMT4105 KJEMI Side 1 av 14 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Studienr Studieprogram :.. Faglig kontakt under eksamen : Navn : Håvard Karoliussen Tlf. :

Detaljer

Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8

Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8 Program for Elektro og Datateknikk/ AFT Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8 Oppgave 1 a) Det skal settes navn på følgende forbindelser : i) Hg2(NO3)2 : Kvikksølv(I)nitrat (Kvikksølv kan

Detaljer

Løsningsforslag til ukeoppgave 6

Løsningsforslag til ukeoppgave 6 Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 6 Oppgave 11.07 a) pv T = konstant, og siden T er konstant blir da pv også konstant. p/kpa 45 35 25 60 80 130 V/dm 3 1,8 2,2 3,0 1,4 1,0 0,6 pv/kpa*dm

Detaljer

EKSAMEN TMT4112 KJEMI

EKSAMEN TMT4112 KJEMI Eksamen TMT4112, 18. desember-2012 Side 1 av 8 NTNU NORGES TEKNISK- VITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI Faglig kontakt under eksamen: Kjell Wiik; Tel.: 73594082/Mob. tel.: 922 65

Detaljer

Løsningsforslag til øving 6

Løsningsforslag til øving 6 Ogave 1 FY1005/FY4165 ermisk fysikk Institutt for fysikk NNU åren 2015 Entroiendring for kloss 1: Entroiendring for kloss 2: 1 2 Løsningsforslag til øving 6 0 1 dq 0 2 dq 0 Cd 1 0 Cd 2 C ln 0 1 C ln 0

Detaljer

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C.

Den spesifike (molare) smeltevarmen for is er den energi som trengs for å omdanne 1 kg (ett mol) is med temperatur 0 C til vann med temperatur 0 C. Øvelse 1 Faseoverganger Denne øvelsen går ut på å bestemme smeltevarmen for is og fordampningsvarmen for vann ved 100 C. Trykket skal i begge tilfeller være lik atmosfæretrykket. 1.1 Smeltevarmen Den spesifike

Detaljer

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl )

Regneøving 9. (Veiledning: Fredag 18. mars kl og mandag 21. mars kl ) Institutt for fysikk, NTNU TFY4165 og FY1005 Termisk fysikk, våren 011. Regneøving 9. (Veiledning: Fredag 18. mars kl. 1.15-14.00 og mandag 1. mars kl. 17.15-19.00.) Oppgave 1 Damptrykket for vann ved

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

NORSK BOKMÅL KJ1042 våren 2015 Oppgave 1. Reversibel ekspansjon av ideell gass (25%)

NORSK BOKMÅL KJ1042 våren 2015 Oppgave 1. Reversibel ekspansjon av ideell gass (25%) NORSK BOKMÅL KJ1042 våren 2015 Oppgave 1. Reversibel ekspansjon av ideell gass (25%) 20 liter av en en-atomig ideell gass ved 500K og 10 atm. trykk ekspanderes til et sluttrykk på 2 atm. Den molare varmekapasiteten

Detaljer

Oppgave 4. Tokomponent faselikevekt

Oppgave 4. Tokomponent faselikevekt Oppgave 4 Tokomponent faselikevekt KJ1042 Rom C2-107 Gruppe 45 Anders Leirpoll & Kasper Linnestad andersty@stud.ntnu.no kasperjo@stud.ntnu.no 15.02.2012 i Sammendrag Forsøkets hensikt var å beregne aktivitetskoeffisienten,,

Detaljer

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente

Detaljer

LØYSINGSFORSLAG, eksamen 20. mai 2015 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 2015/sist revidert 9.juni 2015.

LØYSINGSFORSLAG, eksamen 20. mai 2015 i fag TEP4125 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 2015/sist revidert 9.juni 2015. Termodyn. 2, 20.5.205, side LØYSINGSFORSLAG, eksamen 20. mai 205 i fag TEP425 TERMODYNAMIKK 2 v. Ivar S. Ertesvåg, mai 205/sist revidert 9.juni 205. Les av i h-x-diagrammet: x = 0,05 kg/kg, T dogg, = 20

Detaljer

1. UTTAKSPRØVE. til den 2. Nordiske kjemiolympiaden 2017 i Stockholm og den 49. Internasjonale kjemiolympiaden 2017 i Nakhon Pathom, Thailand

1. UTTAKSPRØVE. til den 2. Nordiske kjemiolympiaden 2017 i Stockholm og den 49. Internasjonale kjemiolympiaden 2017 i Nakhon Pathom, Thailand Kjemi OL 1. UTTAKSPRØVE til den 2. Nordiske kjemiolympiaden 2017 i Stockholm og den 49. Internasjonale kjemiolympiaden 2017 i Nakhon Pathom, Thailand Dag: En dag i uke 40-42. Varighet: 90 minutter. Hjelpemidler:

Detaljer

EKSAMENSOPPGAVE I KJE-1001

EKSAMENSOPPGAVE I KJE-1001 Side 1 av 6 sider EKSAMENSOPPGAVE I KJE-11 Eksamen i : KJE-11 Eksamensdato : Fredag 24.februar 212 Tid : 9:-15: Sted : Aud.max. Tillatte hjelpemidler : Kalkulator "Huskelapp" = ett A4-ark med skrift på

Detaljer

Laboratorieoppgave 1: Partielle molare volum

Laboratorieoppgave 1: Partielle molare volum Laboratorieoppgave 1: Partielle molare volum Åge Johansen Ole Håvik Bjørkedal 30. januar 2015 Sammendrag Rapporten omhandler hvordan partielle molare volum varierer med molfraksjonen Innhold 1 Innledning

Detaljer

Eksergi, Eksergianalyse (kap.7)

Eksergi, Eksergianalyse (kap.7) Eksergi, eksergianalyse (kap.7) Termodynamikk for (ideelle) blandingar av ideelle gassar utan kjemisk reaksjon (kap.12) 1 Eksergi, Eksergianalyse (kap.7) Energi, varme, arbeid, eksergi Energibalanse og

Detaljer