NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI
|
|
- Beate Lauritzen
- 8 år siden
- Visninger:
Transkript
1 NORGES EKNISK- NAURIENSKAPELIGE UNIERSIE INSIU FOR KJEMI KJ4160 FYSIKALSK KJEMI GK, ÅREN 2008 Onsdag 28. mai 2008 id: Faglig kontakt under eksamen: Førsteaman. Morten Bjørgen, tlf / Hjelpemidler: ypegodkjent lommekalkulator med tomt minne (B1, Aylward & Findlay SI Chemical Data, Rottmann, vedlagt formelsamling Alle 10 deloppgavene teller likt i bedømmelsen Oppgave 1 a Hvilke betingelser må oppfylles for at en gass skal være ideell? 2.0 mol av en enatomig ideell gass ved 1 = 250 K komprimeres reversibelt og adiabatisk til temperaturen blir 2 = 300 K. Bestem q, w, ΔU, ΔH og ΔS for prosessen. b I en lukket beholder har vi 2.0 mol av komponent A og 2.0 mol av komponent B. Anta at A og B danner en ideell blanding. ed 300 K er damptrykkene for de rene komponentene oppgitt: P A = 15 bar P B = 40 bar Hvilke betingelser må oppfylles for at væskeblandingen med komponentene A og B skal være ideell? Uttrykkene som beskriver totaltrykket som funksjon av sammensetning i væskefase og gassfase for systemet med A og B er henholdsvis: 120 P = ( 40 25xA bar og P = bar 3 + 5y A Utled de to uttrykkene og angi hva som er duggpunktslinja og boblepunktslinja. c Hva blir sammensetningen av væskefasen og gassfasen for det oppgitte systemet ved 25 bar og 300 K? n xatot, y l A d Utled vektstangregelen = og bestem antall mol væske og antall mol gass for ng xa xa, tot systemet ved gitte betingelser. Oppgave 2 For cellen: Zn (s ZnCl 2 (0.005 mol kg -1 Hg 2 Cl 2 (s Hg (l ble emf målt til 1.23 ( K. a Sett opp halvreaksjonene og cellereaksjonen og bestem standard emf (Ikke ta hensyn til anmerkningen som står ved E -verdien for den ene halvreaksjonen i SI Chemical data. Regn ut Δ r G, Δ r G og K for cellereaksjonen. b Beregn den midlere ioneaktiviteskoeffisienten for ZnCl 2 uten å benytte emf verdier. c Med utgangspunkt i sammenhengen mellom Gibbs energi og emf for elektrokjemiske celler vis at E = E R ln Q zf Skriv opp uttrykket for Nernsts ligning for cellen over og bestem den midlere ioneaktiviteskoeffisienten for ZnCl 2 fra målt emf.
2 ÇÔÔ Ú µ ÞÓ Ò Ò Ö Ø ÖÚ ØÓ Ó Ò Ð ØÖÓÒ Ø ÓÒ Ò Ø Ð Ò Ö Ø ¹ Ø ÖØ Ø Ð Ø Ò Ò Ö ÐÓ Ð ÖØ Ø Ð ÞÓ¹ Ò Ò Ò Ò Ó Ö Ò π π ÓÚ Ö Ò µº ÖÙ ÑÓ ÐÐ Ò ÓÖ Ò Ô ÖØ Ð Ò Ñ Ò ÓÒ Ð Ó E n = n2 h 2, n = 1, 2, 3,... 8ma2 Ñ Ò Ò Ð Ò Ò a = ÒÑ ÓÖ Ö Ò Ò Ð Ð Ò Ò ÓÑ Ö Ú ÓÖ Ø Ö Ð ØÖÓÒ Øº Å Ø Ò Ô Ø ÞÓ Ò Ò Ö Ø ÖÚ ØÓ Ö ØØ Ø Ö Ñ Ð Ö ÙÐØ Ø Ã Ò Ø ÓÖÚ ÒØ Ø À Ñ ÐØÓÒ¹ÓÔ Ö ØÓÖ Ò ÓÖ Ò Ô ÖØ Ð Ò Ò Ñ Ò ÓÒ Ð Ó Ö Ò Ö Ñ Ð ÑÓ ÐÐ ÓÖ Ò Ñ Ò Ò Ð ÙÒ ÓÒ Ò ÓÖ Ò Ô ÖØ Ð Ò Ñ Ò ÓÒ Ð Ó Ö ØØ ÓÑ 2 ( nπ ψ n (x = a sin a x, 0 < x < a, n = 1, 2, 3,... ÀÚ Ö Ò Ö Ò Ó Ð ÙÒ ÓÒ Ò ÓÖ Ò Ô ÖØ Ð Ò ØÖ Ñ Ò ÓÒ Ð Ó Ø ÑÔ Ð Ô ÒÖ Ú Ö Ò Ö ÓÒ ÓÖ Ò Ô ÖØ Ð Ò ØÖ Ñ Ò ÓÒ Ð Ó µ ÓÐØÞÑ ÒÒ ÓÖ Ð Ò ÐÓÚ Ò Ö Ú ÓÑ n i N = e βei q ÀÚ Ö n i N β E i Ó q Î Ø Ò Ö Ð Ø Ú ÒÒ ÝÒÐ Ø ÓÖ Ð Ò Ò Ñ ÐÐÓÑ ØÓ Ø Ð Ø Ò Ö ni n j Ò Ö Ò Ö Ø ÑÔ Ö ØÙÖ Ò Ó Ò Ö ÓÖ ÐÐ Ò Ñ ÐÐÓÑ ØÓ Ø Ð Ø Ò Ò E = E i E j º ÀÚ Ö Ñ n i n j Ú Ú Ð Ý Ø ÑÔ Ö ØÙÖ Ö Ó Ú Ö Ú Ø ÑÔ Ö ØÙÖ Ò ¼ à µ È ÖØ ÓÒ ÙÒ ÓÒ Ò Q ÓÖ Ø Ý Ø Ñ Ú N ÒØ ÑÓÐ ÝÐ Ö ÓÑ Ò ÐÒ Ö Ú Ö Ò Ö ÓÑ Q = qn mol N! Ö q mol Ö Ò ÑÓÐ ÝÐÖ Ô ÖØ ÓÒ ÙÒ ÓÒ Òº ÀÚ Ð Ö Ö Ò ÑÓРݹ ÐÖ Ô ÖØ ÓÒ ÙÒ ÓÒ Ò À ÐÑ ÓÐØÞ Ö Ò Ö A ÓÑ A = k B ln Q Ö Ò Ö Ø Ö ØÖ Ò Ð ÓÒ Ø Ð ÓÖ ÐÐ Ò À ÐÑ ÓÐÞ Ò Ö A = A 2 A 1 Ñ ÐÐÓÑ ½ ÑÓÐ Ý ÖÓ Ò ÐÓÖ À е Ó Ò ½ ÑÓÐ ÙØ Ö ÙÑ ÐÓÖ Ð ÐÐ Ö 2 À еº È ÖØ ÓÒ ÙÒ ÓÒ Ò ÓÖ ØÖ Ò Ð ÓÒ q t Ö ØØ ÓÑ q t = (2πmk B 3 2 h 3 Ó Ø ÑÔ Ö ØÙÖ Ò Ö ¼¼ ú ÙØ Ö ÙÑ Ñ Ö ¾º¼½ Ùº
3 Formelsamling i fysikalsk kjemi ermodynamikkens første lov ermodynamikkens første lov: U = q + w der U er endring i indre energi; q er varme gitt til systemet; w arbeid utført på systemet. P -arbeid på en gass: 2 w = P ytre d 1 der 1 er startvolum; 2 er sluttvolum. Når P = P ytre er arbeidet reversibelt. Definisjon av entalpi H H U + P armekapasiteter ed konstant volum: C = dq d ed konstant trykk: C P = dq P d For en ideell, monoatomisk gass: = ( U = ( H P = nr og U U(0 = 3 2 R P Isoterm reversibel kompresjon av 1 mol av en ideell gass w rev = q rev = R ln 1 2 ermodynamikkens andre og tredje lov. Maxwell-relasjonene Definisjon av entropiendring S A B B A dq rev For enhver reversibel syklus: dqrev ds = 0 1
4 Dersom en del av syklusen er reversibel: dqirr < 0 (Clausius ulikhet Blandingsentropi for ideelle gasser, pr. mol blanding: S mix = R(x 1 ln x 1 + x 2 ln x 2 der x 1 og x 2 er molfraksjoner Definisjon på Helholtz-energi A: A U S Definisjon på Gibbs-energi G: G H S Likevektskriterier: Konstant og : da = 0 Konstant P og : dg = 0 dg = dw non P, w non P : arbeid som ikke er P -arbeid. iktige sammenhenger: ( U = P S ( H P = S ( A = P ( G P = ( U S = ( H S = P ( A = S ( G = S P Maxwell-relasjonene ( = ( P S S ( P = ( S ( P = ( S S P ( = ( S P P Gibbs-Helmholtz-ligningen: [ ( ] G = H 2 Kjemisk likevekt P For en reaksjon aa + bb + yy + zz (... [Y] y [Z] z K c = [A] a [B] b... der K c er likevektskonstanten Definisjon av kjemisk potensial for specie A: ( G µ A = n A,P,n B,n Y,... 2
5 Sammenheng mellom standard Gibbs energiendring og likevektskonstant: G = R ln K u (... [Y] G = G y [Z] z + R ln [A] a [B] b... u emperaturavhengighet for likevektskonstanter: d ln KP u d(1/ = H R d ln Kc u d(1/ = U R Faser, blandinger og kolligative egenskaper Clapeyrons ligning: dp d = H m m Clausius-Clapeyrons ligning d ln P d = vaph m R 2 routons regel vap H m b = vap S m 88 J K 1 mol 1 Raoults lov Henrys lov P 1 = x 1 P 1 P 2 = x 2 P 2 P 2 = k x 2, eller P 2 = k c 2 Definisjon på partiell molar kvantitet: ( G X i n i,p,n j Frysepunksnedsettelse: fus M 1Rf 2 m 2 = K f m 2 fus H m 3
6 der K f er den kryoskopiske konstanten Kokepunkstforhøyelse vap M 1Rb 2 m 2 = K b m 2 vap H m der K b er den ebullioskopiske konstanten Osmotisk trykk: π = n 2R n 1 1 cr Faselikevekter Faseregelen: f = c p + 2 der f er antall frihetsgrader; c antall komponenter; p er antall faser. Antall komponenter: c = s l, der l er antall kjente sammenhenger (ligninger Elektrolyttløsninger Definisjon av molar konduktivitet Λ Λ κ c der κ er elektrolytisk konduktivitet; c er konsentrasjon Ostwalds fortynningslov K = c(λ/λ (Λ/Λ 0 der Λ 0 er molar ledningsevne ved uedelig fortynning; Λ/Λ 0 er dissosiasjonsgrad, K er likevektskonstant Loven om uavhengig vandring for ioner Λ = λ + + λ Definisjon av transporttall: t + = u + u + + u t = der u + og u er ionemobilitetene. Definisjon av ionestyrke I I 1 c i zi 2 2 i u u + + u 4
7 der c i er konsentrasjon av ion i; z i er ladningstallet Debye-Hückels grenselov log 10 γ ± = z + z A I A = for vann ved 25 C Elektrokjemi ermodynamikk for en elektrokjemisk celle G = zef der z er ladningstall for cellereaksjonen; E er EMF; F er Faradays konstant. Nernst-ligningen E = E R (... [Y] y zf ln [Z] z [A] a [B] b... for en reaksjon aa + bb + yy + zz Kvantemekanikk Schrödinger-ligningen idsavhengig: idsuavhengig: eller Ĥψ = Eψ ] 8π 2 m 2 + E p (x, y, z, t Ψ = h Ψ 2πi t ] [ h2 8π 2 m 2 + E p (x, y, z ψ = Eψ [ h2 Normaliseringsbetingelse: ψψ dτ = 1 Bølgefunksjon for partikkel i endimensjonal boks: 2 ( nπ ψ(x = a sin a x 0 < x < a og n = 1, 2,... Energi for partikkel i tredimensjonal boks med sider a, b og c: ( E = h2 n 2 1 8m a 2 + n2 2 b 2 + n2 3 c 2 Statistisk termodynamik Definisjon av en molekylær partisjonsfunksjon q = e βεi eller q = g i e βεi i nivaer 5
8 der β = 1/k o-nivå system, energier 0, ε: q = 1 + e βε System med likt fordelte energinivåer, 0, ε, 2ε,...: q = (1 e βε 1 Boltzmann-fordeling: p i = e βεi, p i = n i q N Kanonisk partisjonsfunksjon: Q = i e βεi Noen termodynamiske størrelser På formen til kanonisk partisjonsfunksjon: ( ln Q U U(0 = β S = U U(0 + k ln Q A A(0 = k ln Q ( ln Q P = k ( ( ln Q ln Q H H(0 = + k β ( ln Q G G(0 = k ln Q + k For uavhengige partikler som ikke kan skjelnes, Q = q N /N! ( (qe/n N. ( ln q U U(0 = N β S = U U(0 + nr(ln q ln N + 1 ( qm G G(0 = nr ln N A der q m er den molare partisjonsfunksjonen. For uavhengige partikler som kan skjelnes, Q = q N ( ln q U U(0 = N β S = U U(0 + nr ln q G G(0 = nr ln q 6
De viktigste formlene i KJ1042
De viktigste formlene i KJ1042 Kollisjonstall Midlere fri veilengde Z AB = πr2 AB u A 2 u 2 B 1/2 N A N B 2πd 2 V 2 Z A = A u A N A V λ A = u A z A = V 2πd 2 A N A Ideell gasslov. Antar at gassmolekylene
DetaljerÃ Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ
Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ ¹ ÁÒ Ò ØØ Ò Ø Ø Ò ÓÒ Ö ÓÚ Ö Ø Ö Ò Ò Ö Ò Ñ Ã ÐÐ Ö Ð Å ÐÐ Ö Ó ÅÓ Ð Ò Á Åž Ã Ô Ø Ð Ó ØÒ Ò Ø Ó Ð Ð ÐÙØÒ Ò Ö ÓÑ Ô Ø Ð ØÖÙ ØÙÖ À Ú Ø Ò Ò Ñ ÓÒ Ó ÙØÚ ÒÒ Ò ÅÅ ÄÓÚ Ò ÓÑ Ò ÔÖ Ó Ú Ö Ò
DetaljerÃ Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ
Ã Ô ½ Ë Ð Ô Ø Ô Ø Ð ØÖÙ ØÙÖ Ò Ø Ø Ê ÒØ ØØ ÓÖ Ð Ò Î Ö Ò Ú Ö ÒØ ØØ ÓÖ Ð Ò Ê Ô Ø Ð Ö Ò ÓÖ Ò ÓÔÔ ÊË È Ö ÓÒ ØØ Ö ÌÓÐ ØÒ Ò ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ Ñ ØØ Ö Ê ÒØ ØØ ÓÖ Ð Ò Ø ÐØ Ö ÒØ Ö Ö Ö ÒØ Ö Ö Á ÓÐ ÖØ Ö ØØ Ø Ò
DetaljerÃ Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð
Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ó ØÓÖÑÓ ÐÐ Ö Ã Ô ØØ Ð Ò Ø Ø ÃÎÅ ÖÙÒÒ Ó ÓÖÙØ ØÒ Ò Ö Ë ÖÔ ¹ ÓÖ ÓÐ Ø Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø Ò Ò Ö ÃÎÅ Ó Ð ØÓÖÑÓ ÐÐ Ö Ã Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò ÃÎŵ À Ò Ø Ò Ö ÓÑÑ Ö Ñ Ø Ð Ô Ø ÐÚ Ö ÑÓ ÐÐ Ò Ø ÒÒ Ò
DetaljerÒ Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø
Ã Ô ½ Ú Ò Ò Ø Ø Ì Ð Ô Ó ÙØ ÝØØ ÍØ ÝØØ ÐÐ Ö Ø Ð Ô Ë ØØ ÙÐ ÑÔ Ö Ñ ÙØ ÝØØ Ú Ò Ò Ø Ó ØØ Ð ÒØ ÐÐ Ö Ð ÙØ ÐÐ Ö ÓÐ Ë Ò Ð Ö Ò Ñ ÙØ Ð Ò ÔÓÐ Ø Ð ÙØ ÐÐ Ö ÓÐ Ö ÓÒØ ÒØ ØÖ Ñ ÓÐ Ð ÙØ ÁÒÚ Ø Ö ÒÝ ÔÖÓ Ø Ö ÃÓÒØ Òع ÓÐ Ò Ò
DetaljerKANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET FULLSTENDIG
Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21015 Fysikalsk kjemi 10 studiepoeng Fagansvarlige: Ole Kr. Forrisdahl, Loan Che, Grupper: K2 Dato: 10.12.2015 Tid: 0900-1300 Antall
Detaljer(a δ,a+δ), (a δ,a+δ) = {x R x a < δ}. (a δ,a+δ)\{a} = (a δ,a) (a,a+δ) = {x R 0 < x a < δ}, f(x) = 2x 1.
ÆÇÌ Ì ÇÅ Ê ÆË Ê Î Ä ÌÁÄ ÊÍà Á ÃÍÊË Ì Å Ì½½½ Î ÍÆÁÎ ÊËÁÌ Ì Ì Á Ê Æ ØØ ÒÓØ Ø Ø ÒÒ ÓÐ Ö ÒÓ ÒÝØØ Ô Ò ÙÑ ÙÖ Ø Å Ì½½½ ÓÖ ÓÐ Ø Ð ÐÖ Ó Ò Ó Ö ÙÒ Ñ ÒØ ÓÑ Ø ÙØ ÝÐÐ Ò ÒÓØ Ø Ø Ð Ã Ô ØØ Ð ½ Ñ Ð ÒØ ÒÒ Ø ÒÓ Ò Ö ÑÔÐ Ö
DetaljerÃ Ô ½ Ò Ò ÐÐ ØÖ
Ã Ô ½ Ò Ò ÐÐ ØÖ Ò Ø Ø Å Ð ÓÐ Ó ÓÒ ÙÖ Ø Ô Ö Ø Ñ Ö ËØÖ Ó ØÒ Ö Ó Ð Ô Ú Ö ÇÔØ Ñ Ð Ô Ø Ð ØÖÙ ØÙÖ ÚÚ Ò Ò Ø ÓÖ Ò ÒØ Ó ØÒ Ö Ñ Ð ÍØÒÝØØ Ò Ú ÐÒ Ú Ö ÅÓØ Ú Ö Ð Ö ÓÖ Ð Ö Ñ Ð ÝÑÑ ØÖ Ò ÓÖÑ ÓÒ Ó Ô Ø Ð ØÖÙ ØÙÖ Ã Ô Ø Ð
DetaljerÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ
à Ժ ½ ÈÖ Ò Ú ÓÔ ÓÒ Ö ÇÚ Ö Ø ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ ÒÓÑ ÔÖ Ò Ö ØÖ Ö ÔÖ Ò Ú ÓÔ ÓÒ Ê ÓÒ ÝØÖ Ð ÔÖ Ò Ð ¹Ë ÓÐ ¹Å ÖØÓÒ Ëŵ ØÓÖ Ö ÓÑ ÔÚ Ö Ö ÓÔ ÓÒ Ò ÔÖ Ò ÔÖ S T + ÍØ Ú Ð ÙÖ X Ì Ø Ð ÓÖ ÐÐ T + ÎÓÐ Ø Ð Ø Ø ÐÐ
DetaljerÎ Ö ØØ Ò Ú Ö
Î Ö ØØ Ò Ú Ö Ò Ø Ø Ò ÓÒ Ö ÆÆÎ Ñ ØÓ Ò Ú Ò ÑÓ ÐÐ Ò Î Ø Ú Ò Ò ÙÖ Ó Ò ÓÖÑ ÓÒ Ø Ô Ö Ò ÓÒ Ö Ò Ô Ø Ð = ÙÖ ÒØ ÐÐ Öµ ¼ = Ë ¼ ÒØ ÐÐ Öµ ½µ Ö Ø Ö ÙÐØ Ø ÔÖº ÈË ÖÒ Ò Ô Ö Ö µ ÈË Ø = Ö Ø Ö ÙÐØ Ø Ø ÒØ ÐÐ Ö Ø ¾µ ÈÖ ¹ ÖÒ
Detaljerdq = c v dt + pdα = 0 dq = c p dt αdp = 0 µ pdα = αdp c p dα = c v dp = c v = D θ = T
ÙÖ ½ ÇÔÔ Ø Ò Ò Ò ÓÔÔ Ú º¾½ºÌº ¾¾¼¼ ØÑÓ Ö Ý ¾¼½ Ä Ò Ò ÓÖ Ð Ø Ð ÑÐ Ñ ØØ ÖÑÓÔÔ Ú Ö º¾½ºÌ Î ÒØ Ö Ø ÖÖ ÐÙ Ø Ó Ö Ø Ð Ô Ö Ø Ò Γ ÓÖ ÓÑ Ú Ð Ò µ ÐÐØ Ö Ñ Ò Ö ÒÒ Ø ÖÖ Ø Ò ÙÖ ½µº ÖÑ Ú Ð ÐÙ Ø ÓÑ Ú Ø Ð Ö Γ d µ ÐÐØ Ð
Detaljerr t = S t r t ; s = ½ T T
Å Ö ÔÓÖØ Ð Ò Ó ÃÎÅ Ò Ø Ø Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ÈÓÖØ Ð Ú Æ Ó ÇÖ Ð Ö Ò Ò Ú Ã¹ Ó ØÒ Ò Ò ÒÚ Ø Ö Ò ÐÐÙ ØÖ ÓÒ ËÐÙØØÚÙÖ Ö Ò Ú ÃÎÅ Î Ð ÒÒÓÑ Ð Ò Ø ½º Ö Ò Ú ØÒ Ò Ó ÚÓÐ Ø Ð Ø Ø ØÖ Ö Æ ÇÖ Ð Ó Å Ö Ò À ÖÚ Ø Ó ÓÚ Ò Ò
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger
Side 1 av 10 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2012 Løsninger Oppgave 1 a) Et forsøk kan gjennomføres som vist i figur 1. Røret er isolert, dvs. at det ikke tilføres varme
DetaljerË Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾
Ë Ð Ô Ø Ä Ð Ö ÑÑ Ö ÑÐ ØØ Ò Ó ÓÖ Ò ÓÒ Ã Ô ØØ Ð ½ Ó ¾ Ò Ø Ø Ý Ö Ô ËØÖ Ñ ¾¼½ Ô ØØ Ð ½ Ó ¾µº ÀÚ Ö Ø ÓÖ Ø Ö Ô Ó ÓÒØÖÓÐÐ ÀÚ Ö Ø ÓÖ Ø Ì ÙØ Ò ÔÙÒ Ø ÚÓÖ Ò Ð Ô Ø Ò Ö Ó Ô ÖØÒ Ö Ôº Ë Ð Ô Ø Ó Ö Ú Ú Ò Ô Ö ÓÒ ÐÐ Ö Ú
DetaljerKJ1042 Øving 12: Elektrolyttløsninger
KJ1042 Øving 12: Elektrolyttløsninger Ove Øyås Sist endret: 14. mai 2011 Repetisjonsspørsmål 1. Hva sier Gibbs faseregel? Gibbs faseregel kan skrives som f = c p + 2 der f er antall frihetsgrader, c antall
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger
Side 1 av 11 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2011 Løsninger Oppgave 1 a) Gibbs energi for et system er definert som og entalpien er definert som Det gir En liten endring
DetaljerÃ Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ
Ã Ô ØØ Ð ½ ÖÙÒÒÐ Ò ÖÙ Ú Ø ÖÑ Ò Ð ÀÚ Ö ÒØÐ Ø ÖÑ Ò Ð Ò ÓÖ Ø ÒÝ ÖÙ Ö Ö ØØ Ø Ñ Ø ÑÝ ¹ Ø ÒÖ ÓÖ Ö Ø Ò Ñ Ø Ö Ô Ò Ð ÒÙÜÑ Ò ÚÓÖ Ò Ú Ö Ö Ò ÀÚÓÖ Ò ÖÙ Ö ØØ Á Ö ÖØ ØØ Ö ÓÑ Ø ÖÑ Ò Ð Ò ÓÖ Ð Ö Ö ÒÓ ÒÖ Ù Ø ÖØ Ö Ò Ù ØÖ
DetaljerR, t. reference model. observed model 1 P
ÌÖ Ò Û Ø ÆÓÚ Ð ÈÓ Ø Ñ Ø ÓÒ Ð ÓÖ Ø Ñ Ó Ó ÊÓ Ò Ò ÆÓÖ ÖØ ÃÖĐÙ Ö ÌÓÖ Ê Ö Ð ËÓÑÑ Ö ÁÒ Ø ØÙØ ĐÙÖ ÁÒ ÓÖÑ Ø ÙÒ ÈÖ Ø Å Ø Ñ Ø Ö Ø Ò¹ Ð Ö Ø ¹ÍÒ Ú Ö ØĐ Ø ÞÙ Ã Ð ÈÖ Ù Ö ØÖ ½¹ ¾ ½¼ à РÖÑ ÒÝ ÖÓ Ò Ö ØÖ º Ò ÓÖÑ Ø ºÙÒ
DetaljerË Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È
Ë Ò Ö Ä Ò ÇÖ Ø Ò È Õµ ʺ º Ö º ĺ ÖØ Ý ØÖ Ø ÓÑÔÐ Ø Ö Ø Ö Þ Ø ÓÒ Ó Ö ÙÐ Ø Ø Ö ÓÒØ Ò Ò Ë Ò Ö Ð Ò ÓÖ Ø Ú Òº Ì Ö Ø Ö Þ Ø ÓÒ Ð Ø ÓÖ Ø Ò ¹ Ô Ò ÙÔÓÒ ÑÓ Ð Ò È Õµ Ý Ø Ò Ø Ð Õ µ Ú Û ¹ Ñ Ò ÓÒ Ð Ú ØÓÖ Ô ÓÚ Ö Õµº ÔÔÐ
DetaljerËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø
ËØÓ Ø ÑÓ Ð ÓÖ ÝÑÑ ØÖ Û Ú Ù Ú Ö Ù Ä Ö Ò ÖÓÒع ÝÑÑ ØÖÝ ØÓ Ø Ä Ö Ò ÑÓ Ð ÓÖ ÝÑÑ ØÖ Ó Ò Û Ú Û Ø Ö Ø ÓÒ Ð ÔÖ Ò ÓÖ Ä Ò Ö Ò ½ ËÓ Ö ½ ÒÒ Ä Ò Ö Ò ¾ ½ ÒØÖ ÓÖ Å Ø Ñ Ø Ð Ë Ò ÄÙÒ ÍÒ Ú Ö ØÝ ¾ Å Ø Ñ Ø Ð Ë Ò ÆÓÖÛ Ò ÍÒ
DetaljerKJ1042 Øving 5: Entalpi og entropi
KJ1042 Øving 5: Entalpi og entropi Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hva er varmekapasitet og hva er forskjellen på C P og C? armekapasiteten til et stoff er en målbar fysisk størrelse
DetaljerÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð
ÒÒÓÙÒ Ö Ñ Û Ø Ö Ù Ò ÝÐ ØØ Ò ÝÒ ÖÓÒ Þ ÌÖ Ò Ø ÓÒ ØÓÛ Ö Ø ÙÒ Ð Ø Ö Ð Ô Ö ÒØ Ö Þ Ö ÒØ º Ö Þ Ò ºÞ ÒØ Ö ÓÖ ÓÒÓÑ Ê Ö Ò Ö Ù Ø Ù Ø ÓÒ Ó ÖÐ ÍÒ Ú Ö ØÝ Þ Æ Ø ÓÒ Ð Ò ½ Ù Ù Ø ¾ ¾¼¼ ½ Ì Ú Û ÜÔÖ Ö Ö ÑÝ ÓÛÒ Ò Ó ÒÓØ Ò Ö
DetaljerKJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger
Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk
DetaljerEKSAMENSOPPGAVE. Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2
EKSAMENSOPPGAVE Eksamen i:kje-1005 Termodynamikk og kinetikk Dato: Torsdag 05. juni 2014 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 2 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er
DetaljerUNIVERSITETET I OSLO
NIVERSIEE I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys60 Eksamensdag: Fredag 6. desember 03 id for eksamen: 430 830 Oppgavesettet er på: 4 sider Vedlegg: ingen ilatte hjelpemidler Godkjente
DetaljerÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø
ÌÓØ Ò Ú Ò ½ ÅÓ ÐÐ Ö Ò Ó Ó Ò»ÓÒÐ Ò ÑÓ ÐÐÚ Ö Ö Ò Ú ØÓØ Ò ÒÐ Ø ÁÆÆÀÇÄ ÁÒÒ ÓÐ ½ À Ò Ø Ñ ÓÔÔ Ú Ò ½ ¾ ÇÑ ÔÖÓ ÒÐ Ø ¾ ¾º½ ÈÖÓ Ö Ú Ð º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ¾º¾ ÈÖÓ Ò ÁÒ
DetaljerOppgave 1 V 1 V 4 V 2 V 3
Oppgave 1 Carnot-syklusen er den mest effektive sykliske prosessen som omdanner termisk energi til arbeid. I en maskin som anvender Carnot-syklusen vil arbeidssubstansen være i kontakt med et varmt reservoar
DetaljerForbedret påskekorrigering for detaljomsetning
Notater Documents 1/2013 Dinh Quang Pham Forbedret påskekorrigering for detaljomsetning Notater 1/2013 Dinh Quang Pham Forbedret påskekorrigering for detaljomsetning Statistisk sentralbyrå Statistics
DetaljerÓÖÓÖ Ì Ø Ð ½ºÚ Ð Ö ËØ Ò Ö Î Ø ÔÖÓ ÓÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ Ú Í µ ÓÖ Ò Ñ ÒØ Ð Ö Ø Ú Ø Ø Ó Ò ÓÖÑ Ø Ú Ú Ð Ò Ò Ö ÒÒÓÑ Ð Ö ÔÖÓ Òº Ì Ø Ð ¾ºÚ Ð Ö Ö Ð Ú Ö Ø Ñ ÒÙ
ÈÖ Ö Ó ÓÒØÖ Ø Ö Ö ÙÐ Ö ØÐ Ú Ö Ò Ö Ö Ì ÓÖ Ø Ó ÑÔ Ö Ò ÐÝ Å Ø ÖÓÔÔ Ú Ñ ÙÒÒ ÓÒÓÑ Ã Ö Å Ö Ö Ø Ð ØÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ ÍÒ Ú Ö Ø Ø Ø Ö Ò À Ø ¾¼¼ ÓÖÓÖ Ì Ø Ð ½ºÚ Ð Ö ËØ Ò Ö Î Ø ÔÖÓ ÓÖ ÁÒ Ø ØÙØØ ÓÖ ÓÒÓÑ Ú Í µ ÓÖ
DetaljerTsunami Læringsmodeller i matematikk Andreas Christiansen
ÄÖ Ò ÑÓ ÐÐ Ö Ñ Ø Ñ Ø ÍØÚ Ð Ò ÓÔÔ Ú Ò Ö Ö Ø Ò Ò ÈÖ Ø Ô Ó ÙØ ÒÒ Ò À ÙÐ Ò ÎÓÐ Å ¾¼¼ Ì Ñ Ø Ñ Ø Ò³ Ô ØØ ÖÒ Ð Ø Ô ÒØ Ö³ ÓÖ Ø ÔÓ Ø³ ÑÙ Ø ÙØ ÙÐ Ø Ð Ø ÓÐÓÙÖ ÓÖ Ø ÛÓÖ ÑÙ Ø Ø ØÓ Ø Ö Ò ÖÑÓÒ ÓÙ Û Ýº ÙØÝ Ø Ö Ø Ø Ø Ø
DetaljerKANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
Høgskolen i Østfold Avdeling for ingeniørfag EKSAMENSOPPGAVE Fag: IRK21014 Fysikalsk kjemi 10 studiepoeng Emneansvarlig: Ole Kr. Førrisdahl, mobil 974 873 78 Grupper: K2 Dato: 11.12.2014 Tid: 0900-1300
DetaljerNORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR KJEMI Kontaktperson under eksamen: Professor Jon Brunvoll Tlf. 94175
Side av NORGES EKNISK NAURIENSKAELIGE UNIERSIE INSIU FOR KJEMI Kontaktperson under eksamen: rofessor Jon Brunvoll lf. 9475 SIK5 05 FYSIKALSK KJEMI GRUNNKURS 6.mai 999, kl.9.00-4.00 illatte hjelpemidler:
DetaljerEKSAMENSOPPGAVE I FYS-2001
Side 1 of 7 EKSAMENSOPPGAVE I FYS-001 Eksamen i : Fys-001 Statistisk fysikk og termodynamikk Eksamensdato : Onsdag 5. desember 01 Tid : kl. 09.00 13.00 Sted : Adm.bygget, B154 Tillatte hjelpemidler: K.
DetaljerÅÓ ÐÐ Ö Ò Ú Ø ÔÖ Ø ÐÝ ÐØ Ø Ö Ò Ö ÙÐ Ñ ÒÒ ÐÐ Ò ÐÝ ÐØ Ö Ò Ù Ø ÝÐ Ò Ö ÖÖ Ý Å Ø ÖÓÔÔ Ú Ù Ø Ú Ë Ò Ö ÆÓÖ ÐÙÒ Î ØÒ ÓÐ ÁÒ Ø ØÙØØ ÓÖ Ý Ó Ø ÒÓÐÓ ÂÙÒ ¾¼½¾
ÅÓ ÐÐ Ö Ò Ú Ø ÔÖ Ø ÐÝ ÐØ Ø Ö Ò Ö ÙÐ Ñ ÒÒ ÐÐ Ò ÐÝ ÐØ Ö Ò Ù Ø ÝÐ Ò Ö ÖÖ Ý Å Ø ÖÓÔÔ Ú Ù Ø Ú Ë Ò Ö ÆÓÖ ÐÙÒ Î ØÒ ÓÐ ÁÒ Ø ØÙØØ ÓÖ Ý Ó Ø ÒÓÐÓ ÂÙÒ ¾¼½¾ ÓÖÓÖ ÒÒÓÑ ÓÔÔÚ Ø Ò Ø Ð Ö Ø Ò Ø Ò Ð ÓÑÑ Ö Ò Ô Ñ Ð Ò ÝØØ º
DetaljerKJ1042 Øving 3: Varme, arbeid og termodynamikkens første lov
KJ1042 Øving 3: arme, arbeid og termodynamikkens første lov Ove Øyås Sist endret: 17. mai 2011 Repetisjonsspørsmål 1. Hvordan ser Ideell gasslov ut? Ideell gasslov kan skrives P nrt der P er trykket, volumet,
DetaljerKJ1042 Grunnleggende termodynamikk Oppsummering
KJ1042 Grunnleggende termodynamikk Oppsummering Ove Øyås Sist endret: 18. mai 2011 Sammendrag Dette oppsummeringsheftet bygger på pensum i emnet KJ1042 Grunnleggende termodynamikk med laboratorium ved
DetaljerÓÖÓÖ ÒÒ ÓÔÔ Ú Ò Ö Ö Ú Ø ÓÖ Ò Ð Ñ Ñ ØØ Ñ Ø Ö ØÙ ÙÑ ÁÒ ÓÖ¹ Ñ Ø Ú À ÓÐ Ò Ø ÓÐ º Â Ú Ð Ø Ñ Ò Ú Ð Ö ÔÖÓ ÓÖ ÖÖ ÄÙ Ú Ò ÓÑ ÓÖ Ø ÑÙÐ ÓÖ Ñ Ó Ñ ÒÒ ÓÔÔ Ú Òº À Ò Ú
Ø Ð ÓÖÑ Ð Ò Ú ØÒÓÑÙ ÓÐÓ ÖÙÞ Ð Ú ÙÒ Ø Ó Ä ÒÓÒ ÙÐØÙÖ Ð Î Ð Å Ø Ö Ö ÓÔÔ Ú Ò Ú Ø Ð ÓÑ Ú Ð Ö À ÓÐ Ò Ø ÓÐ Ú Ð Ò ÓÖ Ò ÓÖÑ ÓÒ Ø ÒÓÐÓ ½¼º ÒÙ Ö ¾¼½¼ ÓÖÓÖ ÒÒ ÓÔÔ Ú Ò Ö Ö Ú Ø ÓÖ Ò Ð Ñ Ñ ØØ Ñ Ø Ö ØÙ ÙÑ ÁÒ ÓÖ¹ Ñ Ø Ú
DetaljerÆÓ Ò ÑÑ Ò Ò Ö Ñ ÐÐÓÑ Ö Ö Ñ ØÖÓ Ö Ð Ò Ö Ó Ö Ó ØÖ ÐÐ Ö Ò Ö ÃÚ Ð Å Ø ÖÓÔÔ Ú Ð Ö Å Ø Ñ Ø ÁÒ Ø ØÙØØ ÍÒ Ú Ö Ø Ø Ø Ö Ò ÆÓÖ ½½º ÔÖ Ð ¾¼¼ Ö Ñ ÓÖ ÐØ Ñ Ö ØØ Ò ØÓÖ Ø Ø Ð Ñ Ò Ú Ð Ö ÌÖÝ Ú ÂÓ Ò Ò ÓÖ Ò Ð Ó Ô Ö ÓÒÐ ÑÓØ
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS60 ermodynamikk og statistisk fysikk Dato: irsdag 9 desember 003 id for eksamen: 0900-00 Oppgavesettet: 3 sider illatte hjelpemidler:
DetaljerT L) = ---------------------- H λ A T H., λ = varmeledningsevnen og A er stavens tverrsnitt-areal. eks. λ Al = 205 W/m K
Side av 6 ΔL Termisk lengdeutvidelseskoeffisient α: α ΔT ------, eks. α Al 24 0-6 K - L Varmekapasitet C: Q mcδt eks. C vann 486 J/(kg K), (varmekapasitet kan oppgis pr. kg, eller pr. mol (ett mol er N
DetaljerNotater. Kalendereffekter. Dinh Quang Pham. Modell og estimering. Documents 45/2012
Notater Documents 45/2012 Dinh Quang Pham Kalendereffekter Modell og estimering Notater 45/2012 Dihn Quang Pham Kalendereffekter Modell og estimering Statistisk sentralbyrå Statistics Norway Oslo Kongsvinger
DetaljerEksamen TFY4165 Termisk fysikk kl august 2018 Nynorsk
TFY4165 9. august 2018 Side 1 av 7 Eksamen TFY4165 Termisk fysikk kl 09.00-13.00 9. august 2018 Nynorsk Oppgåve 1. Partiklar med tre diskrete energi-nivå. (Poeng: 6+6+8=20) Eit system består av N uavhengige
DetaljerEKSAMENSOPPGAVE. Vil det bli gått oppklaringsrunde i eksamenslokalet? Svar: JA Hvis JA: ca. kl. 10:00 og kl. 12:30
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1005 Grunnleggende Fysikalsk Kjemi Dato: Fredag 01. juni 2018 Klokkeslett: 09:00-14:00 Sted: KRAFT I og II Hall del 3 Kraft sportssenter
DetaljerÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº Â ÔÖ Ú
ÀÚÓÖ ÓÖ Ñ ØØ Ë ÙÖ Ï ÒÒ Ö ½½º Ó ØÓ Ö ¾¼¼ ½ ÓÖÓÖ Î Ð Ñ ØØ Ø Ð Ò Ð Ø Ò ÖÙÒ ØÙÖ ÒÒÓÑ Ú Ö Ò Ò Ú Ñ Ø Ñ Ø ÓØ ÔÓÖº Á ÒÒ Ó Ð ÓÖØ ÐÐ ÓÑ ÚÓÖ Ò Ñ Ø Ñ Ø ÖÙ Ø ÒÓÐÓ ÙÒ Ø Ó ÙÒ Ö ÓÐ Ò Ø Ò ¹ Ô Ö Ñ ÒØ Öº  ÔÖ Ú Ö Ó Ò ÚÒ
DetaljerÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö
ÓÑÔ Ð Ö ÓÖ À Ö ØÓÔ À ÖÖÑ ÒÒ Ö Ø Ò Ä Ò Ù Ö ÊÓ ÖØ ĐÙÒÞ Â Ò Ä Ø Ò Ö Ö Ò Ö Ø Ò Ë ÐÐ Ö ÙÐØĐ Ø ĐÙÖ Å Ø Ñ Ø ÙÒ ÁÒ ÓÖÑ Ø ÍÒ Ú Ö ØĐ Ø È Ù ÖÑ ÒÝ ÖÖÑ ÒÒ Ð Ò Ù Ö Ñ ºÙÒ ¹Ô Ùº ØØÔ»»ÛÛÛº Ñ ºÙÒ ¹Ô Ùº» Ð Ò Ù Ö» Å Ý ½ ØÖ
DetaljerEksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: Tirsdag 26. februar 2013 Tid: Kl 09:00 13:00
EKSAMENSOPPGAVE Eksamen i: Fys-2001 Statistisk fysikk og termodynamikk Dato: irsdag 26. februar 2013 id: Kl 09:00 13:00 Sted: B154 illatte jelpemidler: K. Rottmann: Matematisk Formelsamling, O. Øgrim:
DetaljerÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ
ÁÆËÌÁÌÍÌ Æ ÌÁÇÆ Ä ÈÇÄ Ì ÀÆÁÉÍ Ê ÆÇ Ä Æ ØØÖ Ù Ô Ö Ð Ð ÓØ ÕÙ ÌÀ Ë ÔÓÙÖ Ó Ø Ò Ö Ð Ö Ç Ì ÍÊ Ð³ÁÆÈ ËÔ Ð Ø ÁÒ ÓÖÑ Ø ÕÙ ËÝ Ø Ñ Ø ÓÑÑÙÒ Ø ÓÒ ÔÖ Ô Ö Ù Ð ÓÖ ØÓ Ö ÄËʹÁÅ ÔÖÓ Ø Ë Ê Ë Ò Ð Ö Ð³ ÓÐ ÓØÓÖ Ð Å Ø Ñ Ø ÕÙ
DetaljerEKSAMENSOPPGAVE. Oppgavesettet er på 8 sider inklusive forside. Kontaktperson under eksamen: Prof. Richard Engh Telefon:
EKSAMENSOPPGAVE Eksamen i: KJE-1005 Dato: Fredag 05. juni 2015 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Oppgavesettet er på 8 sider inklusive forside
DetaljerÌ ÊÁË ÈÖÓ Ö Ñ ÜÔÐÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓÐ Ò Ë Ö Ò Ö ÏÓÐ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ ÓÐ ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã ÔÐ Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ
Ì ÊÁË ÈÖÓ Ö Ñ ÜÔÓÖ Ö Ë ÓÒ ËØ ØÙ Ê ÔÓÖØ ÏÓ Ò Ë Ö Ò Ö ÏÓ Ò ºË Ö Ò ÖÖ º Ùº Ø Ê Ö ÁÒ Ø ØÙØ ÓÖ ËÝÑ Ó ÓÑÔÙØ Ø ÓÒ ÊÁË µ ÂÓ ÒÒ Ã Ô Ö ÍÒ Ú Ö ØÝ Ä ÒÞ Ù ØÖ ØØÔ»»ÛÛÛºÖ º Ùº Ø ÏÓ Ò Ë Ö Ò Ö ØØÔ»»ÛÛÛºÖ º Ùº Ø ½»½ Ó Ò
DetaljerÊ Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À
Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ ÄÙ Ê Ø ÃÙÖØ Ö Ò Ê ÔÓÖØ Ï ½½ Å Ý ¾¼¼½ Ò Ã Ø ÓÐ ÍÒ Ú Ö Ø Ø Ä ÙÚ Ò Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò Ð Ø Ò ÒÐ Ò ¾¼¼ ß ¹ ¼¼½ À Ú ÖÐ Ð Ùѵ Ê Ð Ø ÓÒ Ð Ê Ò ÓÖ Ñ ÒØ Ä ÖÒ Ò Ë Ó Þ ÖÓ
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys216 Eksamensdag: Tirsdag 8. desember 215 Tid for eksamen: 143 183 Oppgavesettet er på: 4 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerEksamen TFY4165 Termisk fysikk kl torsdag 15. desember 2016 Bokmål
FY4165 15. desember 2016 Side 1 av 7 Eksamen FY4165 ermisk fysikk kl 09.00-13.00 torsdag 15. desember 2016 Bokmål Ogave 1. (armeledning. Poeng: 10+10+10=30) Kontinuitetsligningen for energitetthet u og
DetaljerÁÒ ÐÓÚ Ò Ñ ÑÓÖÝ Ó Ä Ø È ÙÐ ½
ÝÒ Ñ Ð Ø Ô Ò ÓÒ ÓÖ Ø Ú Â ÑÑÝ È ÙÐ Å Ø ÖÓÔÔ Ú ØÙ ÔÖÓ Ö ÑÑ Ø ÅÓ ÐÐ Ö Ò Ó Ø ÒÐÝ Ñ ØÙ Ö ØÒ Ò Ò Ò ÓÖ Ö Ò Ó Ê Ó ¾¼¼ Î Ð Ö Ö ÐÚ Ò Ñ Ö ¾¼¼ Ø Ñ Ø Ñ Ø ¹Ò ØÙÖÚ Ø Ò Ô Ð ÙÐØ Ø ÍÒ Ú Ö Ø Ø Ø Ç ÐÓ ÁÒ ÐÓÚ Ò Ñ ÑÓÖÝ Ó Ä
Detaljeru = u a cos θ; v = u a sin θ θ = (π/4) sin ωt (ǫ x + ǫ y ), u a (z) = min U, 0.4 ln z )
ÁÒÒ ÓÐ ½ ÁÒÒÐ Ò Ò ¾ ¾ ÈÖÓ Ð Ñ Ø ÐÐ Ò ¾ ÄÓ Ð Ø ¹ Ñ Ð Ö Ò ÁÒÚ Ö ÔÖÓ Ð Ñ Ø ÐÐ Ò º½ ÁÒÚ Ö Ð Ò Ò ÖØ Ô Ó ÖÚ ÓÒ Ø º º º º º º º º º º º º º º º º º º º º¾ ÁÒÚ Ö Ð Ò Ò ÖØ Ô ÓÖ Ò Ð Ø ¹Î Ö º º º º º º º º º º º
DetaljerÒ Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö
Ò Ò ÐÝ Ó ÑÔ Ö Ð Ì Ø Ò ÓÖ ÅÓ Ð ÓÒ ÈÖÓ ÙÖ Á Æ ÀÇÊÊÇ ÃË Ô ÖØÑ ÒØ Ó ÓÑÔÙØ Ö Ë Ò ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Íú ¹Ñ Ð ÓÖÖÓ ºÑ Òº ºÙ È Ì Ê º È Ì Ä¹Ë ÀÆ Á Ê ÐÐ Ä Ê Ö ÅÙÖÖ Ý À ÐÐ Æ ͺ˺ º ¹Ñ Ð Ô Ô Ö Ö º ÐйРºÓÑ ÊÇ ÊÌÇ
DetaljerOppsummering - Kap. 5 Termodynamikkens 2. Lov
EP 410 ermodynamikk 1 Spontane Prosesser Varmeoverføring ( > omg ), Ekspansjon (P > P omg ), og Frigjort Masse i Gravitasjonsfelt er Eksempler Energibalanser kan ikke prediktere Retning Hva kan ermodynamikkens.
DetaljerÓÒ ÓÖÑ Ð Ð Ì ÓÖÝ Ö ÔØ ÓÒ Ó À ÐÝ ÓÖÖ Ð Ø ËØ Ø Ò Ê Ô ÐÝ ÊÓØ Ø Ò Ó ÖÚ Ë Ù Ò Ì ËÙ Ñ ØØ ÓÖ Ø Å Ø Ö³ Ö Ô ÖØÑ ÒØ Ó È Ý ÍÒ Ú Ö ØÝ Ó Ç ÐÓ ÂÙÒ ¾¼¼
ÓÒ ÓÖÑ Ð Ð Ì ÓÖÝ Ö ÔØ ÓÒ Ó À ÐÝ ÓÖÖ Ð Ø ËØ Ø Ò Ê Ô ÐÝ ÊÓØ Ø Ò Ó ÖÚ Ë Ù Ò Ì ËÙ Ñ ØØ ÓÖ Ø Å Ø Ö³ Ö Ô ÖØÑ ÒØ Ó È Ý ÍÒ Ú Ö ØÝ Ó Ç ÐÓ ÂÙÒ ¾¼¼ Ì Ö Ø Ó Ö Ñ Ø Ú Ð Ø Ñ Ò Ú Ð Ö ËÙ ÒÒ Î Ö ÓÑ ÓÖ ÐÓ ÓÔÔ Ú Ò Ñ Ò Ó
DetaljerDET TEKNISK-NATURVITENSKAPELIGE FAKULTET
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET EKSAMEN I BIT 130 Termodynamikk VARIGHET: 9.00 13.00 (4 timer). DATO: 1/12 2005 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV: 2 oppgaver på 5
DetaljerLøsningsforslag til øving 6
Ogave 1 FY1005/FY4165 ermisk fysikk Institutt for fysikk NNU åren 2015 Entroiendring for kloss 1: Entroiendring for kloss 2: 1 2 Løsningsforslag til øving 6 0 1 dq 0 2 dq 0 Cd 1 0 Cd 2 C ln 0 1 C ln 0
DetaljerGrunnleggende Termodynamikk
Grunnleggende Termodynamikk Notater i faget KJ1042 H.T.L. Sist endret: 19.05.15 Sammendrag Dette dokumentet inneholder notater fra 2. utgave av boka Fysikalsk kjemi skrevet av Morten Helbak og Signe Kjelstrup,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys2160 Eksamensdag: Mandag 5. desember 2016 Tid for eksamen: 1430 1830 Oppgavesettet er på: 5 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerÐ Ø Ø Ô Ö Ñ Ö Ö ÙÐÐ ÖÝÐÐ ÙÔ Ø Ú ÖØ ½ º
ÌÌ ÊË Æ Ú À ÒÖ Ù Ò Ñ Ø ÐÐ Ú Ç ÒÝ Ù Ò Ð Ø Ø Ô Ö Ñ Ö Ö ÙÐÐ ÖÝÐÐ ÙÔ Ø Ú ÖØ ½ º Ì Ð Ð Ø Ó Ú Ò Ö ØØ Ö ÓÔÔÑÓ Ò Ö ÓÖÒ Ú Ò ØÐ Ó ÂÓ Ø Ò Ö Ö Ú ØØ Ö Ø Ø ÓÑ ÐÐ Ö ØØ Ö ÝÒº Ø Ö Ö Ñ Ö Ú ØÓ Ð Öº Ò ÝÖ Ø Ð Ò ÓÑ Ò Ð Ö Ð
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Fredag 30. mai 2008 Tid: a 0 = 4πǫ 0 h 2 /(e 2 m e ) = 5, m
Side av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 5 7 Sensurfrist: Fredag 0 juni 008 Eksamen
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i
DetaljerÔÔÖÓ Ò Ø ÓÖÑ Ð Ò Ò Ú ÐÓÔÑ ÒØ Ó ÓÑÔÐ Ü ËÝ Ø Ñ Ì Ê ØÖ Ò Ñ ÒØ ÈÓ Ø ÓÒ Ê Ö Ò Þ Ð Û Â Ë ÑÓÒ Ö Ö Ê Ö ÖÓ Å Ð ÈÓÔÔÐ ØÓÒ ËÙ Ò ËØ ÔÒ Ý Ò ËØ Ú Ò Ã Ò ÓÑÔÙØ Ö Ë Ò
ÔÔÖÓ Ò Ø ÓÖÑ Ð Ò Ò Ú ÐÓÔÑ ÒØ Ó ÓÑÔÐ Ü ËÝ Ø Ñ Ì Ê ØÖ Ò Ñ ÒØ ÈÓ Ø ÓÒ Ê Ö Ò Þ Ð Û Â Ë ÑÓÒ Ö Ö Ê Ö ÖÓ Å Ð ÈÓÔÔÐ ØÓÒ ËÙ Ò ËØ ÔÒ Ý Ò ËØ Ú Ò Ã Ò ÓÑÔÙØ Ö Ë Ò Ôغ ÍÒ Ú Ö ØÝ Ó Å Ò Ø Ö Å Ò Ø Ö Å½ ÈÄ ÍÃ Ò Ö Ö ÖÖÓ
DetaljerKONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
DetaljerÓ Ö Ò ¹½ Ð ØØ Ö Ð Ö Ú Ñ Ò ÓÒ Å Ø ÖÓÔÔ Ú ÒÚ Ò Ø Ó Ê Ò ÓÖ ÒØ ÖØ Ñ Ø Ñ Ø Î Ö ÌÓÔÔ ÓÐ Å Ø Ñ Ø Ò Ø ØÙØØ ÍÒ Ú Ö Ø Ø Ø Ö Ò ½º ÙÒ ¾¼½½ Ö ÓÖ ÒÒ Ñ Ø ÖÓÔÔ Ú Ú ÖØ ÒÒÓÑ ÖØ Ó Ö Ú Ò Ú Ñ Ø Ñ Ø Ò Ø ØÙØØ Ú Ð Ò ÓÖ ÒÚ Ò
DetaljerForoppgave i usikkerhetsanalyse Viskositet i glyserol
Oppgave 1 Lab i TFY4120 Foroppgave i usikkerhetsanalyse Viskositet i glyserol Institutt for fysikk, NTNU 2 1. Innledning Hensikten med denne oppgaven er først og fremst å få øvelse i analyse av feilkilder
DetaljerFORELESNING I TERMODYNAMIKK ONSDAG Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser.
FORELESNING I TERMODYNMIKK ONSDG.03.00 Tema for forelesningen var studiet av noen viktige reversible prosesser som involverer ideelle gasser. Følgende prosesser som involverte ideelle gasser ble gjennomgått:.
DetaljerËØ Ø Ø È Ý Ò Ð ØØ ÜØ Å ÖØ Ò ÀÓÐØ Ù ½ ÖÐ ÚÓÒ Ç ØÞ Ý ÍÒ Ú Ö ØØ ÇÐ Ò ÙÖ ÃÓÖÖ ÖØ ÙÒ ÚÓÑ ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ½ ÓÐØ Ù Ø ÓÖ ºÔ Ý ºÙÒ ¹ÓÐ Ò ÙÖ º
ËØ Ø Ø È Ý Ò Ð ØØ ÜØ Å ÖØ Ò ÀÓÐØ Ù ½ ÖÐ ÚÓÒ Ç ØÞ Ý ÍÒ Ú Ö ØØ ÇÐ Ò ÙÖ ÃÓÖÖ ÖØ ÙÒ ÚÓÑ ËÓÑÑ Ö Ñ Ø Ö ¾¼¼ ½ ÓÐØ Ù Ø ÓÖ ºÔ Ý ºÙÒ ¹ÓÐ Ò ÙÖ º ÁÖÖØÙÑ Ú ÖÐ Ø ÙÒ Ò Ó Þ Ø Ò Ö Ö Ò ÁÑÑ Ö Ò ØÖ Ò Ò Ø Ð ÞÙÖ Ï Ö Ø Ò Òº
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Fys26 Eksamensdag: Fredag 5. desember 24 Tid for eksamen: 43 83 Oppgavesettet er på: 3 sider Vedlegg: ingen Tilatte hjelpemidler
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton
KJ1042 Termodynamikk laboratoriekurs Oppgave 3. Fordampningsentalpi av ren væske Aceton Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 21. februar
Detaljert=0 t=0 U(c, l) = β u(c t, l in t )
Ó ÓÓÔ Ö Ø Ú Ò Ø Ø ÔÓÓÖ Ú Ò ÖÓÑ Ø ÓÔ Å Ö ÊÓ Ö Ó Ô ÖØÑ ÒØ Ó Ö ÙÐØÙÖ Ð Ò ÔÔÐ ÓÒÓÑ ÍÒ Ú Ö ØÝ Ó Ï ÓÒ Ò Å ÓÒ ÖÓ Ö ÓÛ º Ù Ë Ð Ø Ô Ô Ö ÓÖ ÔÖ ÒØ Ø ÓÒ Ø Ø Ö ÙÐØÙÖ Ð Ò ÔÔÐ ÓÒÓÑ Ó Ø ÓÒ³ ¾¼½¾ ÒÒÙ Ð Å Ø Ò Ë ØØÐ Ï Ò
DetaljerLØSNINGSFORSLAG TIL ØVING NR. 7, HØST 2009
NNU Nrges teknisk-naturvitenskapelige universitet Fakultet fr naturvitenskap g teknlgi Institutt fr materialteknlgi M4112 KJEMI LØSNINGSFORSLAG IL ØVING NR. 7, HØS 2009 OPPGAVE 1 a) Energi kan ikke frsvinne
DetaljerEksamen FY1005/TFY4165 Termisk fysikk kl torsdag 6. juni 2013
TFY4165/FY1005 6. juni 2013 Side 1 av 8 Eksamen FY1005/TFY4165 Termisk fysikk kl 15.00-19.00 torsdag 6. juni 2013 Ogave 1. Ti flervalgsogaver. (Poeng: 2 r ogave) a. T arme tilføres et rent stoff i en lukket
Detaljerk=1 L = lim k=1 ˆ j dx sgn GL = i
Ë Ò Ô ÐÐÓÚ Ö Ø Ù Ð Ò ÓÒ ØÓÖ Ð ÓÑÔÓ Ø ÓÒ Å Ö ÙÒ Ý ÂÓ Ò À ÖÚ Ý È ÖÖ Ë ÐÓ + ÎÐ Ñ Ö ÎÓÐ ÓÚ Ì Ñ Ò Ò Ë ÓÓÐ Ó Ù Ò Ò ÓÒÓÑ ÍÒ Ú Ö ØÝ Ó Ì Ñ Ò +Ï Ð Ö Ä ÙÖ Ö ÍÒ Ú Ö ØÝ ÂÙÐÝ ¾¼½ ØÖ Ø Ì Ô ÐÐÓÚ Ö Ø Ó ÒØ ÖÓÒÒ Ø Ò ØÛ Ò
DetaljerSammendrag, forelesning onsdag 17/ Likevektsbetingelser og massevirkningsloven
Sammendrag, forelesning onsdag 17/10 01 Kjemisk likevekt og minimumspunkt for G Reaksjonsligningen for en kjemisk reaksjon kan generelt skrives: ν 1 X 1 + ν X +... ν 3 X 3 + ν 4 X 4 +... 1) Utgangsstoffer
DetaljerÁÒ ÓÖÑ Ø ÓÒ ÐÓÛ ÁÒ Ö Ò ÓÖ ÅÄ Ê Æ ÇÁË ÈÇÌÌÁ Ê Ò ÎÁÆ ÆÌ ËÁÅÇÆ Ì ÁÆÊÁ Ì Ô Ô Ö ÔÖ ÒØ ØÝÔ ¹ Ò ÓÖÑ Ø ÓÒ ÓÛ Ò ÐÝ ÓÖ Ðй Ý¹Ú ÐÙ ¹ ÐÙÐÙ ÕÙ Ô¹ Ô Û Ø Ö Ö Ò Ü ÔØ
ÁÒ ÓÖÑ Ø ÓÒ ÐÓÛ ÁÒ Ö Ò ÓÖ ÅÄ Ê Æ ÇÁË ÈÇÌÌÁ Ê Ò ÎÁÆ ÆÌ ËÁÅÇÆ Ì ÁÆÊÁ Ì Ô Ô Ö ÔÖ ÒØ ØÝÔ ¹ Ò ÓÖÑ Ø ÓÒ ÓÛ Ò ÐÝ ÓÖ Ðй Ý¹Ú ÐÙ ¹ ÐÙÐÙ ÕÙ Ô¹ Ô Û Ø Ö Ö Ò Ü ÔØ ÓÒ Ò Ð Ø¹ÔÓÐÝÑÓÖÔ Ñ Û Û Ö Ö ØÓ ÓÖ Åĺ Ì ØÝÔ Ý Ø Ñ ÓÒ
DetaljerHØGSKOLEN I STAVANGER
EKSAMEN I TE 335 Termodynamikk VARIGHET: 9.00 14.00 (5 timer). DATO: 24/2 2001 TILLATTE HJELPEMIDLER: Lommekalkulator OPPGAVESETTET BESTÅR AV 2 oppgaver på 5 sider (inklusive tabeller) HØGSKOLEN I STAVANGER
DetaljerÔÐÓÑÓÔÔ Ú Ý Å ÖÓ Ð Ö ÓÑ ØÖ ÒÚ Ò Ø Ø Ð Ø ÓÒ Ú Ø ÑÔ Ö ØÙÖ Ö ÒØ Ö ÖÝ ØÚ Ú ÒØÓÑ Ý Ø Ò ÃÐ Ñ Ø Ò ÂÙÒ ¾¼¼ Ø Ñ Ø Ñ Ø ¹Ò ØÙÖÚ Ø Ò ÔÐ ÙÐØ Ø ÁÒ Ø ØÙØØ ÓÖ Ý ÆÓÖ ÐÝ Ó ÖÚ ØÓÖ Ø ÍÒ Ú Ö Ø Ø Ø ÌÖÓÑ ¼ ÌÖÓÑ Ø Ð ÓÒ ½ ¼ Ø
DetaljerEKSAMENSOPPGAVE. Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3
EKSAMENSOPPGAVE Eksamen i: Kje-1005 Termodynamikk og Kinetikk Dato: Torsdag 6.juni 2013 Tid: Kl 09:00 14:00 Sted: Teorifagbygget, hus 1, plan 3 Tillatte hjelpemidler: Enkel lommeregner Millimeterpapir
DetaljerStudie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner
Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring
DetaljerEksamen TFY4165 Termisk fysikk kl mandag 7. august 2017 Bokmål
FY4165 7. august 2017 Side 1 av 7 Eksamen FY4165 ermisk fsikk kl 09.00-13.00 mandag 7. august 2017 Bokmål Ogave 1. (armeledning. Poeng: 5+10+5=20) Kontinuitetsligningen for energitetthet u og energistrømtetthet
DetaljerTEMA: Damp/Væske-likevekter og Flash-Separasjon. Løsningsforslag:
Norges Teknisk-Naturvitenskapelige Universitet Fag: Energi og Prosess Institutt for Energi og Prosessteknikk Nr.: TEP 4230 Trondheim, 06.10.04, T. Gundersen Del: Separasjonsprosesser Øving: 10 År: 2004
DetaljerEKSAMENSOPPGAVE. FYS-2001 Statistisk fysikk og termodynamikk Dato:
Fakultet for naturvitenskap og teknologi EKSAMESOGAVE Eksamen i: FYS-00 Statistisk fysikk og termodynamikk Dato: 4..07 Klokkeslett: 09.00 -.00 Sted: Åsgårdvn. 9 Tillatte jelpemidler: Type innføringsark
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt
KJ1042 Termodynamikk laboratoriekurs Oppgave 4. Tokomponent - faselikevekt Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 16. mars 2012 Innhold 1
DetaljerLøsningsforslag til øving 10
FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien
DetaljerUndervisningssituasjonen hos avd. B i forbindelse med reduksjon til 7 fast ansatte. Konsekvens av å endre fordelingen av fast ansatte fra 2/5 til 3/4 mellom forskningsgruppene faststoffmekanikk og fluidmekanikk.
DetaljerEksamen i TFY4170 Fysikk 2 Mandag 12. desember :00 18:00
NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Arne Brataas Telefon: 73593647 Eksamen i TFY417 Fysikk Mandag 1. desember 5 15: 18: Tillatte hjelpemidler: Alternativ C Godkjent
DetaljerFlervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
DetaljerEKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
DetaljerË ÑÑ Ò Ö Ú ÓÚ ÔÖÓ Ø Ì ØØ Ð ÅÌ ÆÖ ½¼ ÓÑÔÐ Ü ÅÓ Ð Ì ÒÝ Ð ØÓ ½ º¼ º¼ ÐØ Ö µ Î Ð Ö µ Ä Ö À ÐÚÓÖ ÒÙÒ ÂÓÒ Ö Ò Ì ÓÑ Ù Ø ÝÚ Ò ÃÓÐ ÇÔÔ Ö Ú Ö ËÙÒ Ø Ñ Ë Ö Ú Ë ÙÖ
½ Ë ÑÑ Ò Ö Ú ÓÚ ÔÖÓ Ø Ì ØØ Ð ÅÌ ÆÖ ½¼ ÓÑÔÐ Ü ÅÓ Ð Ì ÒÝ Ð ØÓ ½ º¼ º¼ ÐØ Ö µ Î Ð Ö µ Ä Ö À ÐÚÓÖ ÒÙÒ ÂÓÒ Ö Ò Ì ÓÑ Ù Ø ÝÚ Ò ÃÓÐ ÇÔÔ Ö Ú Ö ËÙÒ Ø Ñ Ë Ö Ú Ë ÙÖ Å Ø Ò ÙÖ ÙÒ Ø ÑºÓÑ ÃÓÒØ ØÔ Ö ÓÒ Ì ÓÑ Ù Ø ËØ ÓÖ µ
DetaljerEKSAMENSOPPGAVE. Adm. bygget B154. Enkel lommeregner. Rute. Dr. Maarten Beerepoot
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1005 Grunnleggende Fysikalsk Kjemi Dato: Tirsdag 27.09.2016 Klokkeslett: 09:00 14:00 Sted: Tillatte Adm. bygget B154 hjelpemidler:
DetaljerEksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:
Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i KJM600 Fysikalisk kjemi II kvantekjemi og spektroskopi Eksamensdag: Onsdag 7. juni, 017 Tid for eksamen: 14:30 18:30 Oppgavesettet
DetaljerFigur 1: Isoterm ekspansjon. For en gitt temperatur T endrer trykket seg langs den viste kurven.
Fysikk / ermodynamikk åren 00 6. Gassers termodynamikk 6.. Ekspansjon av ideelle gasser vslutningsvis skal vi se på noen viktige prosesser som involverer ideelle gasser. isse prosessene danner i sin tur
DetaljerKJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial
KJ1042 Termodynamikk laboratoriekurs Oppgave 5. Standard reduksjonspotensial Kjetil F. Veium kjetilve@stud.ntnu.no Audun F. Buene audunfor@stud.ntnu.no Gruppe 21 Lab C2-107 Utført 27. mar012 Innhold 1
DetaljerNORSK BOKMÅL KJ1042 våren 2015 Oppgave 1. Reversibel ekspansjon av ideell gass (25%)
NORSK BOKMÅL KJ1042 våren 2015 Oppgave 1. Reversibel ekspansjon av ideell gass (25%) 20 liter av en en-atomig ideell gass ved 500K og 10 atm. trykk ekspanderes til et sluttrykk på 2 atm. Den molare varmekapasiteten
Detaljergass Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd A.Blekkan, tlf.:
NORGES TEKNISKE NTUR- VITENSKPELIGE UNIVERSITETET INSTITUTT FOR KJEMISK PROSESSTEKNOLOGI Side 1 av 5 Faglig kontakt under eksamen/fagleg kontakt under eksamen: Professor Edd.Blekkan, tlf.: 73594157 EKSMEN
DetaljerË ÑÑ Ò Ö Á ÒÒ ÓÔÔ Ú Ò Ö Ø Ö Ø Ñ Ø ÒÝØØ Ð Ø ÚØ Ô Ö ÓÒ Ý Ø Ñ ÓÖ ÖÙØ Ö ÓÖ ÙÑ ÖÙÒÒ ØÓ ÒÙÑÑ Ö ½¼ µ Ú ÖÙ Ú Ú ¹Ú ØÖ ÓÒº ËÝ Ø Ñ Ø Ö ÙØÚ Ð Ø ËÁË Ã¹ Ý Ø Ñ Ø ÓÑ Ö Ø Ò ØÖÙÑ ÒØ ÓÖ ÙÖØ ÓÒÐ Ò Ú ¹Ú ØÖ ÓÒº Á ÓÑ Ò ÓÒ Ñ
Detaljer