Kapittel 5: dualitetsteori

Størrelse: px
Begynne med side:

Download "Kapittel 5: dualitetsteori"

Transkript

1 LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17

2 Motivasjon Til ethvert LP problem (P) er det knyttet et annet speilvendt LP problem (D) Her kalles (D) det duale problemet til (P), og (P) kalles det primale problemet Det viser seg at det duale problemet til (D) er (P)! (To ganger speilvending!) LP problemer opptrer altså i par: et primalt og et dualt problem Dualitetsteori er nyttig fordi: det duale problemet kan brukes til å raskt gi skranker på optimal verdi i et LP problem istedet for å løse et LP problem (P) kan man løse det duale (D) Man får da en løsning av (P) på kjøpet! Dette kan være mer effektivt LP Leksjon 5: #2 of 17

3 Det duale problemet Betrakt LP problemet (P), det primale problemet, gitt ved n (P) maksimer j=1 c j x j forutsatt at n j=1 a i,jx j b i for i = 1,,m x j 0 for j = 1,,n Vi definerer det duale problemet (D) slik: (D) minimer m i=1 b i y i forutsatt at m i=1 y i a i,j c j for j = 1,,n y i 0 for i = 1,,m Huskeregel: x 1 x n y 1 a 1,1 a 1,n b 1 y m a m,1 a m,n b m c 1 c n La nå A = [a i,j ] være koeffisientmatrisen LP Leksjon 5: #3 of 17

4 Det duale problemet Observer: (D): variablene er knyttet til radene i A, mens begrensningene er knyttet til kolonnene i A (P): omvendt! Altså: variablene er knyttet til kolonnene i A, mens begrensningene er knyttet til radene i A b i -ene utgjør høyresiden i (P), men inngår i objektivfunksjonen i (D) c j -ene inngår i objektivfunksjonen i (P), men utgjør høyresiden i (D) begrensningene i (D) er (D) er også et LP problem Vi skal snart skrive det om på den vanlige formen Vi gir først et viktig resultat som nettopp er motivasjonen for dualitet: enhver tillatte løsning i et LP problem gir opphav til en skranke på den optimale verdien i det duale LP Leksjon 5: #4 of 17

5 Svak dualitet TEOREM 51: (Svak dualitet) Hvis (x 1,,x n ) er tillatt i (P) og (y 1,,y m ) er tillatt i (D) har vi n m c j x j b i y i j=1 i=1 Bevis: Fra begrensningene i (P) og (D) får vi n n m m n c j x j ( y i a i,j )x j = a i,j x j y i j=1 j=1 i=1 i=1 j=1 m y i b i i=1 (P) maksimer 5x 1 + 6x 2 + 8x 3 forutsatt at x 1 + 2x 2 + 3x 3 5 4x 1 + 5x 2 + 6x 3 11 x 1,x 2,x 3 0 (D) minimer 5y y 2 forutsatt at y 1 + 4y 2 5 2y 1 + 5y 2 6 3y 1 + 6y 2 8 y 1,y 2 0 LP Leksjon 5: #5 of 17

6 Svak dualitet Ser nå atfeks(y 1,y 2 )=(1,1) er en tillatt løsning i (D), og tilhørende verdi på objektivfunksjonen i (D) er = 16 Altså kan optimal verdi i (P) høyst være 16 På den annen side er (x 1,x 2,x 3 )=(0,0,5/3) tillatt i (P) med tilhørende verdi η = 40/ Så, optimal verdi η i(p) må ligge mellom 1333 og 16 Hva med x = (x 1,x 2,x 3 )=(1/2,0,3/2) og y = (y 1,y 2 )=(1/3,7/6)? Har at 3 j=1 c jx j = 29/2 og 2 i=1 b i yi = 29/2 Men da følger det av svak dualitet at x er optimal i (P) og at y er optimal i (D)! Svak dualitet gir et prinsipp for å vise optimalitet, eller evt nesten-optimalitet Tolkning av (D): enhver tillatt x i (P) oppfyller n j=1 a i,j x j b i og derfor også en ikkenegativ lineærkombinasjon av disse: m ( ) i=1 y i( n j=1 a i,jx j ) m i=1 y ib i Her er y i en ikkenegativ multiplikator for ulikhet nr i Hvis vi dessuten velger y i -ene slik at m i=1 y i a i,j c j vil venstre side i ( ) være n j=1 c jx j Sådaharvi fått en øvre skranke den optimale verdien η is (P), nemlig m i=1 y i b i Vi vil gjerne ha en best mulig skranke, dvs lavest mulig, som gir problemet min{ m i=1 y ib i : m i=1 y ia i,j c j for alle j, y i 0 for alle i} LP Leksjon 5: #6 of 17

7 Sterk dualitet Naturlig spørsmål: Svak dualitet medfører at optimal verdi i (P) optimal verdi i (D) Kanviher ha ekte ulikhet? Svaret er bla viktig for optimalitetstesting Svaret er: NEI, unntatt i svært spesielle situasjoner Vi har nemlig TEOREM 52: (Sterk dualitet) Hvis (P) har en optimal løsning x = (x 1,,x n),såhar(d)en optimal løsning y = (y1,,ym) slik at n m c j x j = b i yi j=1 i=1 Konsekvens: (P) og (D) har samme optimale verdi når (P) har optimal løsning Skal senere drøfte situasjonen der (P) evt (D) er ubegrenset, eller hvis hverken (P) eller (D) er tillatt (dette kan skje, men ikke for interessante problemer ) Sterk dualitet kan bevises kort via simpleksalgoritmen, spesielt i matrisenotasjon Men for å øke forståelsen skal vi holde oss til komponentnotasjon og studere nærmere hva som skjer i (P) og (D) under en simpleks pivotering LP Leksjon 5: #7 of 17

8 Pivotering, primal og dual Eksempel: m = 2, n = 3 Innfører slakkvariable z j i (D) og skriver også (D) som maksimeringsproblem På basislisteform: η = 0 + 4x 1 + x 2 + 3x 3 (P) w 1 = 1 x 1 4x 2 w 2 = 3 3x 1 + x 2 x 3 ξ = 0 y 1 3y 2 (D) z 1 = 4 + y 1 + 3y 2 z 2 = 1 + 4y 1 y 2 z 3 = 3 + y 2 Legg merke til negativ-transponert egenskapen på høyre side: LP Leksjon 5: #8 of 17

9 Pivotering, primal og dual Pivoterer nå i (P): x 3 inn i basis og w 2 ut av basis Gjør tilsvarende pivotering i (D): x 3 svarer til z 3 og w 2 svarer til y 2 Så, i (D) går y 2 inn i basis og z 3 ut av basis Merk: pivoteringen gjennomføres på vanlig måte (bytte rolle + radoperasjoner) selv om vi tilfeldigvis ikke har en tillatt basisløsning i (D) Resultat: η = 9 5x 1 + 4x 2 3w 2 (P) w 1 = 1 x 1 4x 2 x 3 = 3 3x 1 + x 2 w 2 ξ = 9 y 1 3z 3 (D) z 1 = 5 + y 1 + 3z 3 z 2 = 4 + 4y 1 z 3 y 2 = 3 + z 3 Ser igjen at negativ-transponert egenskapen holder Spesielt ser vi at verdien til den primale løsningen er lik verdien til den duale løsningen Men den duale løsningen er ikke tillatt Ny pivotering: i (P): x 1 inn og w 1 ut Tilsvarende pivoterig i (D): y 1 inn og z 2 ut Resultat: LP Leksjon 5: #9 of 17

10 Pivotering, primal og dual η = 10 6x 1 w 1 3w 2 (P) x 2 = x 1 025w 1 x 3 = x 1 025w 1 w 2 ξ = z 2 325z 3 (D) z 1 = z z 3 y 1 = z z 3 y 2 = 3 + z 3 Ser nå at: negativ transponert egenskap holder stadig optimal løsning i (P), og derfor for første gang er den duale basisløsningen tillatt LEMMA PIV: (Pivotering i (P) og (D)) Anta at hver pivotering utføres i både (P) og (D) slik at hvis x j erstatter w i iprimalbasis,så vil y i erstatte z j i dual basis Da vil negativ-transponert egenskapen holde i hver iterasjon Oppgave: vis Lemma PIV ved å sjekke følgende: LP Leksjon 5: #10 of 17

11 Sterk dualitet: bevis (P) b a pivot b/a 1/a d c d bc/a c/a b d b/a d+bc/a (D) a c pivot 1/a c/a Bevis for sterk dualitet: Fra Lemma PIV følger at i hver iterasjon k har vi en primal basisløsning x k og en dual basisløsning y k med samme verdi på de resp objektivfunksjoner, dvs n j=1 c j x k j = m i=1 b i yi k Den primale simpleksalgoritmen terminerer med en tillatt basisvariabel x og dette skjer når alle koeffisientene foran ikkebasisvariablene i (P) er ikkepositive Men ved Lemma PIV betyr dette at den tilhørende duale basisløsning y er tillatt (basisvariablene er ikkenegative) Som ønsket er da n j=1 c jx j = m i=1 b iyi LP Leksjon 5: #11 of 17

12 Komplementær slakk Skal studere optimalitetsegenskapen i LP; den kalles komplementær slakk Anta at x=(x 1,,x n ) er en tillatt løsning i (P) og at y = (y 1,,y m ) er en tillatt løsning i (D) (Om de er basisløsninger spiller ingen rolle nå) Spørsmål: hva må til for at x skal være optimal i(p) og y optimal i(d)? Analyse: Siden (P) og (D) har samme optimale verdi (konsekvens av sterk dualitet) ser vi at: x og y er begge optimale (i hhv (P) og (D)) hvis og bare hvis n m ( ) c j x j = b i y i j=1 Men, fra begrensningene får vi (som i beviset for svak dualitet) n n m m n m c j x j ( y i a i,j )x j = a i,j x j y i b i j=1 j=1 i=1 Så ( ) holder hvis og bare hvis i=1 y i i=1 j=1 m i=1 y i a i,j = c j hvis x j > 0, og n j=1 a i,j x j = b i hvis y i > 0 Disse to kravene kalles komplementær slakk i=1 LP Leksjon 5: #12 of 17

13 Komplementær slakk Vi har derfor vist følgende resultat TEOREM 53: (Komplementær slakk) Anta at x = (x 1,,x n ) er en tillatt løsning i (P) og at y = (y 1,,y m ) er en tillatt løsning i (D) La (w 1,,w m ) være tilhørende primale slakkvariable, og (z 1,,w n ) tilhørende duale slakkvariable Da er x optimal i (P) og y optimal i (D) hvis og bare hvis x j z j = 0 for j = 1,,n, w i y i =0 for i = 1,,m Komplementær slakk sier derfor: hvis det er slakk i en ulikhet (slakkvariabelen er positiv) i et av problemene, så må den tilhørende duale variabelen være null LP Leksjon 5: #13 of 17

14 Skjema for LP algoritmer Om algoritmer for LP Fra TEOREM 53 ser vi at å løse et LP problem består i å oppfylle tre egenskaper samtidig 1 primal tillathet, 2 dual tillathet, og 3 komplementær slakk Man får ulike algoritmer ved å sørge for at to av disse egenskapene holder i hver iterasjon, mens man tilstreber at den tredje også holder; daer problemet løst Algoritmen vi har studert oppfyller 1 og 3 og tilstreber 2; den kalles gjerne den primale simpleksalgoritmen En annen mulighet er å oppfylle 1 og 2 og tilstrebe 2; dette gir såkalte primal-duale algoritmer (Både simpleks og ikke-simpleks algoritmer) LP Leksjon 5: #14 of 17

15 Den duale simpleksalgoritmen Den duale simpleksalgoritmen: oppfyller 2 og 3, og tilstreber 1 brukes gjerne hvis det er lett å finne en dualt tillatt startløsning, for da slipper man Fase I problemet (i primal simpleks) brukes også ofte hvis et problem har flere begrensninger enn variable; dette reduserer antall pivoteringer og går raskere svarer til å bruke primal simpleksalgoritme på det duale problemet kan utføres direkte på den primale basislisten, og bygger på at startløsningen er dualt tillatt (dvs koeffisienter foran ikkebasisvariable er ikkepositive) Brukes ved reoptimering : har løst et problem og vil løse et nytt problem der vi har føyd til feks en ny begrensning se seksjon 66 og 67 for eksempel og nærmere detaljer LP Leksjon 5: #15 of 17

16 Dualitet, andre former Vår standard form på (P) og (D) er: (P) maksimer n j=1 c jx j forutsatt at n j=1 a i,j x j b i for i = 1,,m x j 0 for j = 1,,n (D) minimer m i=1 b i y i forutsatt at m i=1 y ia i,j c j for j = 1,,m y i 0 for i = 1,,m Ofte møter man LP problemer på en annen form Men: ethvert LP problemer kan skrives om til formen (P) Til dette trengs noen teknikker: hver likning skrives som to ulikheter min f = max( f) en fri variabel x erstattes av x + x der x +,x 0 Man kan så (hvis ønskelig) finne det duale problemet (siden det primale nå har riktig form) og skrive dette på enklest mulig form LP Leksjon 5: #16 of 17

17 Dualitet, andre former Eksempel: hvis problemet (P ) er som (P) bortsett fra at vi har likninger n j=1 a i,jx j = b i for i m, så kan man vise vha teknikk 1 og noe forenkling at det duale problemet (D ) blir som (D) bortsett fra at alle de duale variablene blir frie Regler om sammenheng mellom det primale og det duale problemet: en likning i det ene problemet svarer til en fri variabel i det andre problemet, en ulikhet i det ene problemet svarer til en ikkenegativ variabel i det andre problemet Det er viktig å øve seg i teknikkene for å skrive ethvert LP problem på formen (P), og finne det duale til ethvert LP problem LP Leksjon 5: #17 of 17

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable

Detaljer

Kapittel 2: simpleksmetoden, forts.

Kapittel 2: simpleksmetoden, forts. LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

LP. Leksjon 3. Kapittel 3: degenerasjon.

LP. Leksjon 3. Kapittel 3: degenerasjon. LP. Leksjon 3. Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP 1 / 23 Repetisjon simpleksalgoritmen: sekvens av pivoteringer

Detaljer

Kapittel 3: degenerasjon.

Kapittel 3: degenerasjon. LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MA-IN-ST 233 Konveksitet og optimering Eksamensdag: 31. mai 2000 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis 1 / 18 Status Hvor langt er vi kommet i

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

Kapittel 4: effektivitet av simpleksmetoden

Kapittel 4: effektivitet av simpleksmetoden LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis LP. Leksjon 4: #1 of 14 Status Hvor langt

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 3. juni 2008 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 1. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

LP. Leksjon Spillteori

LP. Leksjon Spillteori LP. Leksjon Spillteori Kapittel 11: spillteori matrisespill optimale strategier von Neumann s minmax teorem forbindelse til LP nyttig LP modellering av (visse) minmax and maxmin problemer 1 / 11 Eksempel:

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 a) La x 1, x 2 og x 3 være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir

Detaljer

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2 Leksjon 8 Ofte behov for å løse mange relaterte LP Regnetid kan spares ved å bruke informasjon fra tidligere løsninger Parametrisk analyse homotopi-metoden Den Parametriske Selv-duale Simpleksmetoden ingen

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Moderne optimering mer enn å derivere!!

Moderne optimering mer enn å derivere!! Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen

Detaljer

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK Oppgave 1 a) Målfunksjonen (1) summerer profitten ved å produsere x 1 bord og x 2 stoler. Restriksjon (2) sier at antall enheter

Detaljer

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål Side av 3 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Bjørn Nygreen Tlf.: 958 55 997 / 93607) Svar til EKSAMEN

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål Side 1 av 10 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Lars Magnus Hvattum Oppgave settet laget av: Navn:

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla

Detaljer

Spesialisering i økonomistyring og investeringsanalyse DST 9530

Spesialisering i økonomistyring og investeringsanalyse DST 9530 Spesialisering i økonomistyring og investeringsanalyse DST 950 Disposisjon Bruk av LP i økonomiske problemer Et LP-problem Begreper og noen grunnleggende sammenhenger Lineær programmering og bedriftsøkonomiske

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Partielle ordninger, Zorns lemma og utvalgsaksiomet

Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140, H-15 Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Tillegg til kapittel 11: Mer om relasjoner

Tillegg til kapittel 11: Mer om relasjoner MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker

Detaljer

Hvorfor er lineær algebra viktig? Linear

Hvorfor er lineær algebra viktig? Linear Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

b) Forventet verdi er: Stor: = 26 Middels: = 17 Liten: = 12 Man velger alternativet stor.

b) Forventet verdi er: Stor: = 26 Middels: = 17 Liten: = 12 Man velger alternativet stor. Oppgave 1 (20 %) a) Maximax gir stor utbygging (70) mens maximin gir ingen utbygging (0). Laplace innebærer at begge utfallene er like sannsynlige. Det gir for stor (70 40)/2 = 15, middels (45 25)/2 =

Detaljer

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet

MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet MAT1140: Partielle ordninger, Zorns lemma og utvalgsaksiomet I dette notatet skal vi se på Zorns lemma, som er et kraftig redskap for å bevise eksistensen av matematiske objekter. Beviset for Zorns lemma

Detaljer

TMA4215 Numerisk matematikk

TMA4215 Numerisk matematikk TMA45 Numerisk matematikk Høst 0 Løsningsforslag øving 7 Oppgave a Vi har Eksakt løsning: yt n+ = yt n + hφ t n, yt n ; h + d n+, Numerisk løsning: y n+ = y n + hφt n, y n ; h. Ta differensen mellom disse,

Detaljer

Lineær optimering. Plan for kurset

Lineær optimering. Plan for kurset Lineær optimering 27. mars 2007 Endre Bjørndal Plan for kurset 1000-1100 1100-1115 1115-1200 1200-1245 1245-1400 1400-1415 1415-1500 Introduksjon Produktmiksproblemet (eksempel 1) Grafisk løsning og følsomhetsanalyse

Detaljer

6.4 (og 6.7) Gram-Schmidt prosessen

6.4 (og 6.7) Gram-Schmidt prosessen 6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en

Detaljer

Løsningsforslag øving 7

Løsningsforslag øving 7 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Løsningsforslag til noen oppgaver om Zorns lemma

Løsningsforslag til noen oppgaver om Zorns lemma Løsningsforslag til noen oppgaver om Zorns lemma Fredrik Meyer Her er et løsningsforslag på Oppgave 3 og Oppgave 5 i notatet om Zorns lemma. De to første oppgavene ble gjort på plenum. Oppgave 1. Vi skal

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 6 Diderik Lund Økonomisk institutt Universitetet i Oslo 30. september 2011 Vil først gå gjennom de fire siste sidene fra forelesning

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

Notat om Peanos aksiomer for MAT1140

Notat om Peanos aksiomer for MAT1140 Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Diofantiske likninger Peer Andersen

Diofantiske likninger Peer Andersen Diofantiske likninger av Peer Andersen Peer Andersen 2013 Innhold Når en diofantisk likning har løsning... 3 Generell løsning av den diofantiske likningen... 4 Løsningsmetode når vi kjenner en spesiell

Detaljer

Grafteori og optimering en kort innføring. Geir Dahl

Grafteori og optimering en kort innføring. Geir Dahl Grafteori og optimering en kort innføring Geir Dahl 24. oktober 2001 Innhold 1 Introduksjon til grafteori 1 1.1 Hva er en graf? 1 1.2 Noen grunnleggende begreper 3 1.3 Trær 9 1.4 Oppgaver 12 2 Königsberg,

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer