Kapittel 2: simpleksmetoden, forts.

Størrelse: px
Begynne med side:

Download "Kapittel 2: simpleksmetoden, forts."

Transkript

1 LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14

2 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable pivotering se eksempel fra Leksjon 1 LP. Leksjon 2: #2 of 14

3 Initialisering LP problem: maksimer n j=1 c jx j forutsatt at n j=1 a i,j x j b i for i = 1,...,m x j 0 for j = 1,...,n. Innfører slakkvariable og får problemet på basislisteform: η w i = n j=1 c j x j = b i n j=1 a i,j x j for i = 1,...,m Såhvis b i 0 for alle i finner vi en initiell tillatt løsning ved åla w i =b i for alle i m og x j = 0 for alle j n. Problem: hva hvis noen b i er er negative? LP. Leksjon 2: #3 of 14

4 Initialisering Løsning: oppfatter det å finne en første tillatt løsning som et nytt problem dette problemet kan skrives som et LP problem! det nye LP problemet kalles Fase I problemet heldigvis: det er lett å finne en startløsning i Fase I problemet! Fase I problemet: maksimer x 0 forutsatt at n j=1 a i,jx j x 0 b i for i = 1,...,m x j 0 for j = 0, 1,...,n. Merk: dette er også et LP problem. Kaller det LP-I. LP. Leksjon 2: #4 of 14

5 Initialisering Om Fase I problemet: samme variable som før, men med en ekstra variabel x 0 den gamle objektivfunksjonen er fjernet og erstattet av x 0.Viskalmaksimere x 0. Dette er ekvivalent med å minimere x 0.Hvorfor? begrensningene er nesten som før og er nå n a i,j x j b i + x 0 j=1 Tolkning av Fase I problemet: Fase I problemet avklarer om det opprinnelige problemet har noen tillatt løsning (som ikke uten videre er opplagt). Og hvis svaret er ja finner vi også en tillatt løsning. Mer om dette: tenk på x 0 som et tillegg til alle høyresidene b i. Hvis vi klarer å finne en tillatt løsning av LP-I der dette tillegget er 0 (x 0 = 0), så har vi ogsåat n a i,j x j b i + x 0 = b i j=1 sådaer(x 1,...,x n )en tillatt løsning i det opprinnelige LP problemet! Fint! Hvis det ikke finnes noen tillatt løsning i LP-I med x 0 0,så kan heller ikke det opprinnelige problemet ha noen tillatt løsning! Hvorfor? LP. Leksjon 2: #5 of 14

6 Initialisering, eksempel LP problem (med minst en negative b i ): maksimer 2x 1 x 2 forutsatt at x 1 + x 2 1 x 1 2x 2 2 x 2 1 x 1,x 2 0. Dette gir Fase I problemet: maksimer x 0 forutsatt at x 1 + x 2 x 0 1 x 1 2x 2 x 0 2 x 2 x 0 1 x 0,x 1,x 2 0. LP. Leksjon 2: #6 of 14

7 Initialisering, eksempel Dette gir første basisliste. Som er ikke-tillatt!!? (Hvorfor?) ξ = x 0 w 1 = 1 + x 1 x 2 + x 0 w 2 = 2 + x 1 + 2x 2 + x 0 w 3 =1 x 2 + x 0 Kan konverteres til tillatt basisliste ved en pivotering! Vi lar x 0 gå inn i basis (tolkning: trenger et tillegg til høyresiden) og lar den variabelen som er mest negativ forlate basis, altså w 2 her. Resultat: ξ = 2 + x 1 + 2x 2 w 2 w 1 =1 3x 2 + w 2 x 0 =2 x 1 2x 2 + w 2 w 3 =3 x 1 3x 2 + w 2 Dette er en tillatt basisliste, og tilhørende basisløsningen er w 1 = 1,x 0 =2,w 3 =3 og de øvrige variable er null. LP. Leksjon 2: #7 of 14

8 Initialisering, eksempel Hva nå? Siden vi har en tillatt basisliste (dvs. basisliste med tillatt basisløsning) går vi videre med simpleksalgoritmen. Altså: pivoterer inntil vi har funnet optimal løsning. (Foretar avrunding for bedre lesbarhet). 1. iterasjon: x 2 inn i basis og w 1 ut, som gir: ξ = x w w 2 x 2 = w w 2 x 0 = 1.33 x w w 2 w 3 = 2 x 1 + w 1 2. iterasjon: x 1 inn i basis og x 0 ut, som gir: ξ = 0 x 0 x 2 = w w 2 x 1 = 1.33 x w w 2 w 3 = x w w 2 Ser at denne basislisten er optimal! Har dermed løst Fase I problemet. LP. Leksjon 2: #8 of 14

9 Initialisering, eksempel Siden optimal verdi er 0, finnes en tillatt løsning i opprinnelig LP problem. Nemlig: x 1 = 4/3,x 2 =1/3. Sjekk dette! Videre kan vi skrive opp en tillatt basisliste for det opprinnelige LP problemet ved åfjernex 0 fra optimal basisliste i Fase I, og gjeninnføre den opprinnelige objektivfunksjon: η = 3 w 1 w 2 x 2 = w w 2 x 1 = w w 2 w 3 = w w 2 Nå har vi en tillatt basisliste (og tillatt basisløsning) og løser dette LP problemet ved simpleksalgoritmen. Kaller dette Fase II problemet. Tilfeldigvis er denne basislisten optimal, så ingen pivotering var nødvendig. Normalt kreves flere pivoteringer i Fase II problemet. LP. Leksjon 2: #9 of 14

10 Initialisering Oppsummering: metoden i eksempelet kan brukes generelt Fase I: løser fase I problemet for å finne, om mulig, en initiell tillatt løsning. I så fall får vi også en tillatt startbasisliste for neste oppgave Fase II: løser fase I problemet med løsningen fra Fase I som startløsning. Finner ved simpleksalgoritmen en optimal løsning av det opprinnelige LP problemet. LP. Leksjon 2: #10 of 14

11 Ubegrenset løsning Neste tema: noen problemer har ubegrenset verdi! Ser nærmere på pivotering. Minner om: en indeks k flyttes fra N til B (x k er inngående variabel; ny basisvariabel fordi den øker η), en annen indeks l flyttes fra B til N (x l er utgående variabel;variabelgår ut av basis fordi den blir 0) og vi finner en ny tillatt basisliste fra den gamle vha. radoperasjoner Mulig problem: det kan tenkes at når inngående variabel x k økes, så vil ingen av basisvariablene bli null! Eksempel: η = 2 + 3x 4 x 5 x 1 = 1 + x 4 + x 5 x 2 = 2 + 5x 4 + x 5 x 3 = x 5 Vi ønsker åtax 4 inn i basis, og ser at ingen basisvariabel da blir null. LP. Leksjon 2: #11 of 14

12 Ubegrenset løsning Konklusjon: kan øke x 4 vilkårlig mye og får vilkårlig stor verdi på objektivfunksjonen η. Sier at problemet er ubegrenset (og optimal verdi er ). Videre ser vi at hvis vi går langs strålen (x 1,x 2,x 3,x 4,x 5 )=(1,2,0,0,0)+(1,5,0,1,0) x 4 der x 4 0,vilη. Hva kan vi si generelt? La x k være variabelen vi ønsker åtainnibasis.hvisvi har en basisliste der alle koeffisientene foran x k er ikkenegative, så skjer det samme som over. Altså: ubegrenset verdi, og finner en stråle der η går mot uendelig. LP. Leksjon 2: #12 of 14

13 Geometri Geometri for LP i to variable: c feasible set x c T x = const. c T x : max. value. tillatt mengde: polyeder P tillatt basisløsning: hjørne pivotering: gå langs kant mellom to nabohjørner {x:c T x=α}: linje normal på c, forskyves inntil den tangerer P tilsvarende for flere variable: se konveksitet senere LP. Leksjon 2: #13 of 14

14 Avsluttende kommentarer Når vi løser et LP problem har vi følgende muligheter: problemet har ingen tillatt løsning. Dette avklares i så fall i Fase I. problemet har tillatt løsning, men ingen optimal løsning fordi problemet er ubegrenset. problemet har tillatt og løsning, og vi ender opp med en optimal løsning Er dette alle muligheter? Riktig svar: JA! Men begrunnelsen er ikke triviell. Vi måviseat simpleksalgoritmen terminerer. Har nemlig hittil antatt at alle basisvariable er positive, men ikke diskutert hva som skjer hvis noen av dem blir null! Skal se på disse spørsmålene i Leksjon 3! LP. Leksjon 2: #14 of 14

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

Kapittel 3: degenerasjon.

Kapittel 3: degenerasjon. LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:

Detaljer

Kapittel 5: dualitetsteori

Kapittel 5: dualitetsteori LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er

Detaljer

LP. Leksjon 3. Kapittel 3: degenerasjon.

LP. Leksjon 3. Kapittel 3: degenerasjon. LP. Leksjon 3. Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP 1 / 23 Repetisjon simpleksalgoritmen: sekvens av pivoteringer

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden

LP. Leksjon 4. Kapittel 4: effektivitet av simpleksmetoden LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis 1 / 18 Status Hvor langt er vi kommet i

Detaljer

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MA-IN-ST 233 Konveksitet og optimering Eksamensdag: 31. mai 2000 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Kapittel 4: effektivitet av simpleksmetoden

Kapittel 4: effektivitet av simpleksmetoden LP. Leksjon 4 Kapittel 4: effektivitet av simpleksmetoden hvordan måle effektivitet? verste tilfelle analyse, Klee-Minty kuben gjennomsnittsanalyse og i praksis LP. Leksjon 4: #1 of 14 Status Hvor langt

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 3. juni 2008 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 1. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1

LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 a) La x 1, x 2 og x 3 være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir

Detaljer

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP

Innhold og forelesningsplan Eksempler på LP Begreper Løsning av enkelt eksempel Praktisk relevans Leksjon 2: Simpleksmetoden for løsning av LP Lekso 2 Mål for kurset teoretisk forståelse, gruleggede optimerig løsigsmetoder LP og utvidelser algoritmisk forståelse avedelser LP og utvidelser modellerig og løsig v.h.a. verktøy Ihold og forelesigspla

Detaljer

Moderne optimering mer enn å derivere!!

Moderne optimering mer enn å derivere!! Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen

Detaljer

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2 Leksjon 8 Ofte behov for å løse mange relaterte LP Regnetid kan spares ved å bruke informasjon fra tidligere løsninger Parametrisk analyse homotopi-metoden Den Parametriske Selv-duale Simpleksmetoden ingen

Detaljer

Spesialisering i økonomistyring og investeringsanalyse DST 9530

Spesialisering i økonomistyring og investeringsanalyse DST 9530 Spesialisering i økonomistyring og investeringsanalyse DST 950 Disposisjon Bruk av LP i økonomiske problemer Et LP-problem Begreper og noen grunnleggende sammenhenger Lineær programmering og bedriftsøkonomiske

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK

LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK LØSNINGSFORSLAG KONTINUASJONSEKSAMEN VÅR 2013 I TIØ4120 OPERASJONSANALYSE, GK Oppgave 1 a) Målfunksjonen (1) summerer profitten ved å produsere x 1 bord og x 2 stoler. Restriksjon (2) sier at antall enheter

Detaljer

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål Side av 3 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Bjørn Nygreen Tlf.: 958 55 997 / 93607) Svar til EKSAMEN

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

LP. Leksjon Spillteori

LP. Leksjon Spillteori LP. Leksjon Spillteori Kapittel 11: spillteori matrisespill optimale strategier von Neumann s minmax teorem forbindelse til LP nyttig LP modellering av (visse) minmax and maxmin problemer 1 / 11 Eksempel:

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer

Obligatorisk oppgave 1 i MAT1140, Høst Løsninger med kommentarer Obligatorisk oppgave 1 i MAT1140, Høst 2014. Oppgave 1 er med kommentarer En funksjon f : R R er en polynomfunksjon hvis f kan defineres som f(x) = a 0 + a 1 x + + a n x n hvor n 0 og a 0,..., a n er reelle

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål Side 1 av 10 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Lars Magnus Hvattum Oppgave settet laget av: Navn:

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

b) Forventet verdi er: Stor: = 26 Middels: = 17 Liten: = 12 Man velger alternativet stor.

b) Forventet verdi er: Stor: = 26 Middels: = 17 Liten: = 12 Man velger alternativet stor. Oppgave 1 (20 %) a) Maximax gir stor utbygging (70) mens maximin gir ingen utbygging (0). Laplace innebærer at begge utfallene er like sannsynlige. Det gir for stor (70 40)/2 = 15, middels (45 25)/2 =

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK. Torsdag 2. desember 2010 Tid: kl

EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK. Torsdag 2. desember 2010 Tid: kl Side 1 av 5 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Bjørn Nygreen Tlf.: 958 55 997 / (93607) EKSAMEN I

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2 Maskinlæring og statistiske metoder for prediksjon og klassifikasjon Eksamensdag: Torsdag 4. juni 28. Tid for eksamen: 4.3

Detaljer

LØSNING FOR EKSAMEN I FAG 75316, NUMERISK LØSNING AV DIFFERENSIALLIGNINGER, VÅR u t = u xx, < x <, t > 0 < x <

LØSNING FOR EKSAMEN I FAG 75316, NUMERISK LØSNING AV DIFFERENSIALLIGNINGER, VÅR u t = u xx, < x <, t > 0 < x < LØSNING FO EKSAMEN I FAG 756, NUMEISK LØSNING AV DIFFEENSIALLIGNINGE, VÅ 994. Oppgave Vi skal løse startverdiprobleet u t = u xx, < x 0 ux, 0) = fx), < x < og vi ønsker en eksplisitt forel ed diskretiseringsfeil

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Torsdag 12. oktober 26. Tid for eksamen: 9: 11:. Oppgavesettet er på 8 sider.

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Obligatorisk oppgave 2 i MAT1140, Høst Løsninger og kommentarer

Obligatorisk oppgave 2 i MAT1140, Høst Løsninger og kommentarer Obligatorisk oppgave 2 i MAT1140, Høst 2014. Løsninger og kommentarer Dette vil ikke være et løsningsforslag i vanlig forstand, men en diskusjon av oppgavene, av hvordan studentene løste dem og av diverse

Detaljer

!"!#$ INF-MAT Geir Hasle - Leksjon 2 2

!!#$ INF-MAT Geir Hasle - Leksjon 2 2 Leksjon 2 !"!#$ Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk program COP Definisjon DOP Anvendelser Kompleksitetsteori Eksakte metoder, approksimasjonsmetoder

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017

Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Finne løsninger på ligninger numerisk: Newton-Raphson metoden og Fikspunktiterasjon MAT111, høsten 2017 Andreas Leopold Knutsen 4. oktober 2017 Problem og hovedidé Problem: Finn løsning(er) r på en ligning

Detaljer

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)

EKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205) Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember

Detaljer

Lineær optimering. Plan for kurset

Lineær optimering. Plan for kurset Lineær optimering 27. mars 2007 Endre Bjørndal Plan for kurset 1000-1100 1100-1115 1115-1200 1200-1245 1245-1400 1400-1415 1415-1500 Introduksjon Produktmiksproblemet (eksempel 1) Grafisk løsning og følsomhetsanalyse

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5

ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 ECON3610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Forelesning 5 Diderik Lund Økonomisk institutt Universitetet i Oslo 23. september 2011 Vil først se nærmere på de siste sidene fra forelesning

Detaljer

Hvor effektive er de ulike undervisnings- og arbeidsformene?

Hvor effektive er de ulike undervisnings- og arbeidsformene? 21. SEPTEMBER 2017 Hvor effektive er de ulike undervisnings- og arbeidsformene? Bjørn Ervik Seniorrådgiver Avdeling for studier, utdanningskvalitet og internasjonalisering To spørsmål: Hvordan bruke Studiebarometeret

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 202 Statistiske slutninger for den eksponentielle fordelingsklasse. Eksamensdag: Fredag 15. desember 1995. Tid for eksamen:

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Produktvalg ITD20106: Statestikk og Økonomi

Produktvalg ITD20106: Statestikk og Økonomi Produktvalg ITD20106: Statestikk og Økonomi 1 Bedrifter må ofte forholde seg til ulike begrensninger som gir flaskehalser i produksjonen. Eksempler: Begrenset kapasitet på en maskin i produksjonsavdelingen

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Innleveringsfrist: torsdag 25. september 2014, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, Ekspedisjonskontoret, 7. etasje i N.H. Abels hus.

Detaljer

Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl

Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Stat111 - Statistiske metoder 28. mai 2014, kl. 09-13 BOKMAL Tillatt hjelpemiddel: Kalkulator med tomt minne i samsvar

Detaljer

Obligatorisk oppgave 2 - inf

Obligatorisk oppgave 2 - inf Obligatorisk oppgave 2 - inf2220 2007 Frist: fredag 9. november Det er mulig å jobbe sammen to og to på denne oppgaven, helst bør dere da ha samme gruppelærer. Vi anbefaler dere å løse oppgaven selvstendig.

Detaljer

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0.

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0. Interpolasjon Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. 1/9 Ax = b, f(x) = 0. Ved interpolasjon, er problemet det motsatte:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Kompleksitetsteori reduksjoner

Kompleksitetsteori reduksjoner Kompleksitetsteori reduksjoner En slags liten oversikt, eller huskeliste, for kompleksitetsteorien i INF 4130. Ikke ment å være verken fullstendig eller detaljert, men kanskje egnet til å gi noen knagger

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 2 Leksjon 1: Oppsummering Kursinformasjon Motivasjon Operasjonsanalyse Kunstig intelligens Optimeringsproblemer (diskrete) Matematisk

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

MAT1030 Plenumsregning 1

MAT1030 Plenumsregning 1 MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte

Detaljer

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio)

Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Datamatrisen: observasjoner, variabler og verdier. Variablers målenivå: Nominal Ordinal Intervall Forholdstall (ratio) Beskrive fordelinger (sentraltendens, variasjon og form): Observasjon y i Sentraltendens

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

Eksamensoppgave i MA1201 Lineær algebra og geometri

Eksamensoppgave i MA1201 Lineær algebra og geometri Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45

Detaljer

TMA4215 Numerisk matematikk

TMA4215 Numerisk matematikk TMA45 Numerisk matematikk Høst 0 Løsningsforslag øving 7 Oppgave a Vi har Eksakt løsning: yt n+ = yt n + hφ t n, yt n ; h + d n+, Numerisk løsning: y n+ = y n + hφt n, y n ; h. Ta differensen mellom disse,

Detaljer

MAT1140: Kort sammendrag av grafteorien

MAT1140: Kort sammendrag av grafteorien MAT1140, H-15 MAT1140: Kort sammendrag av grafteorien Dette notatet gir en kort oppsummering av grafteorien i MAT1140. Vekten er på den logiske oppbygningen, og jeg har utelatt all motivasjon og (nesten)

Detaljer

praktiske eksempler DOM Document Object Model DOM og Høst 2013 Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS

praktiske eksempler DOM Document Object Model DOM og Høst 2013 Informasjonsteknologi 2 Læreplansmål Gløer Olav Langslet Sandvika VGS DOM og praktiske eksempler Gløer Olav Langslet Sandvika VGS Høst 2013 Informasjonsteknologi 2 DOM Document Object Model Læreplansmål Eleven skal kunne programmere med enkle og indekserte variabler eller

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030 MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk

Detaljer

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no).

MAT1120. Obligatorisk oppgave 1 av 2. Torsdag 20. september 2018, klokken 14:30 i Devilry (devilry.ifi.uio.no). Innleveringsfrist MAT20 Obligatorisk oppgave av 2 Torsdag 20. september 208, klokken 4:30 i Devilry (devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og scanner besvarelsen

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk

Detaljer

PXT: Det regnar mat! Introduksjon. Steg 1: Grunnlag. Sjekkliste. Skrevet av: Helene Isnes. Oversatt av: Stein Olav Romslo

PXT: Det regnar mat! Introduksjon. Steg 1: Grunnlag. Sjekkliste. Skrevet av: Helene Isnes. Oversatt av: Stein Olav Romslo PXT: Det regnar mat! Skrevet av: Helene Isnes Oversatt av: Stein Olav Romslo Kurs: Microbit Tema: Elektronikk, Blokkbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse,

Detaljer

PXT: Det regner mat! Introduksjon. Steg 1: Grunnlag. Sjekkliste. Skrevet av: Helene Isnes

PXT: Det regner mat! Introduksjon. Steg 1: Grunnlag. Sjekkliste. Skrevet av: Helene Isnes PXT: Det regner mat! Skrevet av: Helene Isnes Kurs: Microbit Tema: Elektronikk, Blokkbasert, Spill Fag: Matematikk, Programmering Klassetrinn: 5.-7. klasse, 8.-10. klasse, Videregående skole Introduksjon

Detaljer

Obligatorisk oppgave 1 MAT1120 H15

Obligatorisk oppgave 1 MAT1120 H15 Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM HØST 2017 FORELESNINGSNOTAT 3 Etterspørselselastisitet og marginalinntekt* Dette notatet beskriver etterspørselselastisitet. Det vil si relative endring

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

INF-MAT-5380

INF-MAT-5380 INF-MAT-5380 http://www.uio.no/studier/emner/matnat/ifi/inf-mat5380/ Leksjon 5 Leksjon 4 - Oversikt Tabusøk INF-MAT 5380 - Geir Hasle - Leksjon 5 2 Tabusøk - Sammendrag Inspirert fra matematisk optimering

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag

Matematikk Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 7 Løsningsforslag Oppgave 1 Halveringsmetoden igjen a) I skriptet vårt fra leksjon 6 skal altså linje 16 erstattes med while abs(b-a)>1e-3. Når vi gjør

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM HØST 2017 FORELESNINGSNOTAT 4 Konsumteori* Dette notatet introduserer grunnleggende konsumteori. Det er den økonomiske teorien om individets adferd. Framstillingen

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998

BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 BEDRIFTSØKONOMISK ANALYSE MAN 8898 / 8998 Lineær programmering og bedriftøkonomike problemer Tor Tangene BI - Sandvika V-00 Dipoijon Bruk av LP i økonomike problemer Et LP-problem Begreper og noen grunnleggende

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. mai 2009 (Sist oppdatert: 2009-05-17 22:38) Forelesning 29: Kompleksitetsteori

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer