Analyse av Algoritmer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Analyse av Algoritmer"

Transkript

1 Analyse av Algoritmer Lars Vidar Magnusson Asymptotisk notasjon (kapittel 3) Kompleksitetsklasser Uløselige problem

2 Asymptotisk Notasjon Asymptotisk analyse innebærer å finne en algoritmes kjøretid for store nok inputstørrelser til å gjøre alt annet enn algoritmens order of growth neglisjerbart. Asymptotisk notasjon benyttes for å antyde en algoritmes kjøretid når inputstørrelsen blir stor nok. Navnet kommer fra det faktum at vi ser på grenser.

3 Θ-Notasjon Definisjon Gitt en funksjon g(n) så er Θ(g(n)) et sett av funksjoner Θ(g(n)) = {f (n) : det finnes positive konstanter c 1, c 2 og n 0 slik at 0 c 1 g(n) f (n) c 2 g(n) for alle n > n 0 } Siden Θ(g(n)) er et sett er det vanlig å skrive f (n) Θ(g(n)) hvis f (n) er i Θ(g(n)). Når man analyserer algoritmer er det også vanlig med f (n) = Θ(g(n)).

4 Θ-Notasjon Eksempel Figure : Et eksempel på en funkjson f (n) Θ(g(n))

5 Θ-Notasjon Vi kan se både i definisjonen av Θ-notasjon og eksempelet på forrige side at hvis f (n) Θ(g(n)) så er f (n) lik g(n) innenfor en konstant faktor. Vi sier at g(n) er en asymptotisk stram grense (asymptotically tight bound) for f (n).

6 Hvordan Finne Θ(f (n)) Forrige forelesning analyserte vi Insertion-Sort og kom fram til at i hverstefall er algoritmen kvadratisk. Jeg sa at vi kunne neglisjere de lavere-ordens leddene i utregningen av kjøretiden. La oss se på et eksempel som viser at 1 2 n2 3n = Θ(n 2 ). For å gjøre det må vi finne de tre positive konstantene c 1, c 2 og n 0. Dividering med n 2 gir c 1n n2 3n c 2n 2 n > n 0 c n c2 En løsning på denne ulikheten vil være å sette c 1 = 1/14, c 2 = 1/2 og n 0 = 7.

7 Hvordan Finne Θ(f (n)) Vi har polynomisk funksjon f (n) = an 2 + bn + c hvor a, b og c er konstanter og a > 0. Ved å neglisjere de lavere-ordens leddene ender vi opp med f (n) = Θ(n 2 ). Formelt kan vi vise at dette stemmer ved å sette c 1 = a/4, c 2 = 7a/4 og n 0 = 2max( b /a, c /a) og sjekke at det oppfyller ulikheten i definisjonen. Generelt kan vi si for alle polynomer p(n) = d i=0 a in i, hvor a i er konstanter og a d > 0, at p(n) = Θ(n d ). Alle konstanter er et 0-ordens polynom, så vi kan si at alle konstanter er Θ(n 0 ) = Θ(1).

8 Hvordan Finne Θ(f (n)) - Telle Løkker Å finne Θ(f (n)) når f (n) er en enkel algoritme som f.eks Insertion-Sort reduseres oppgaven til å telle løkker. En løkke gjennom hele inputstørrelsen n gir Θ(n) En løkke gjennom halve inputstørrelsen n gir Θ(n) En løkke gjennom hele inputstørrelsen n to ganger gir Θ(n) Forskjeller i konstanter kan neglisjeres! En løkke gjennom hele inputstørrelsen n med en indre løkke gjennom den samme størrelsen gir Θ(n 2 ) En løkke gjennom hele inputstørrelsen n med en indre løkke gjennom den samme størrelsen med en indre løkke gjennom den samme størrelsen gir Θ(n 3 )

9 Θ(Insertion-Sort) Som vi gikk gjennom forrige forelesning er Insertion-Sort i hverstefall Θ(n 2 ). Vi kan derimot ikke si at Insertion-Sort er Θ(n 2 ) for alle input siden vi vet at i bestefall er algoritmen Θ(n). Å telle løkker vil ofte bare lede til asymptotisk grense for hverstefall input.

10 O-Notasjon Definisjon Θ-notasjon avgrenser en funksjon både ovenfra og underfra. Når vi bare har en øvre grense benytter vi O-notasjon (big-oh). Vi sier da at vi har en asymptotisk øvre grense. O(g(n)) = {f (n) : det finnes positive konstanter c og n 0 slik at 0 f (n) cg(n) for alle n > n 0 } Hvis f (n) = Θ(g(n)) så er f (n) = O(g(n)) men ikke nødvendigvis omvendt En lineær funksjon f (n) = n er O(n 2 ) men ikke Θ(n 2 ) Θ(g(n)) O(g(n)) O-notasjon er velegnet for å telle løkker siden teknikken egner seg for å finne asymptotisk grense for hverstefall input, og siden O notasjon bare gir en øvre grense i.e. vi finner øvre grense for hverstefall input.

11 O-Notasjon Eksempel Figure : Et eksempel på en funkjson f (n) O(g(n))

12 Ω-Notasjon Definisjon Hvor O-notasjon benyttes når vi har en øvre grense, benyttes Ω-notasjon når vi har en nedre grense i.e en asymptotisk nedre grense. O(g(n)) = {f (n) : det finnes positive konstanter c og n 0 slik at 0 cg(n) f (n) for alle n > n 0 } Hvis f (n) = Θ(g(n)) så er f (n) = Ω(g(n)), men ikke nødvendigvis omvendt. En kvadratisk funksjon f (n) = n 2 er Ω(n) men ikke Θ(n) Ω-notasjon egner seg for å gi en nedre grense for kjøretid for alle input i.e. en nedre grense for bestefall input.

13 Ω-Notasjon Eksempel Figure : Et eksempel på en funkjson f (n) Ω(g(n))

14 Koblingen Mellom Θ-, O- og Ω-notasjon Vi har allerede sett på koblingen mellom Θ- og O-notasjon, og Θ- og Ω-notasjon. Her kommer et teorem som utfyller det vi allerede har etablert. Teorem For hvilke som helst to funksjoner f (n) og g(n) så har vi f (n) = Θ(n) hvis og bare hvis f (n) = O(g(n)) og f (n) = Ω(g(n)). Dette teoremet kan benyttes for å bevise asymptotisk stram grense.

15 o-notasjon O-notasjon gir en asymptotisk øvre grense som kan være tett (tight). o-notasjon gir en øvre grense som ikke er tett. o(g(n)) = {f (n) : for alle konstanter c > 0 det finnes en konstant n 0 > 0 slik at 0 f (n) < cg(n) for alle n > n 0 } Holder for alle konstanter c > 0 f (n) blir insignifikant i forhold til g(n) når n går mot uendelig f (n) lim n g(n) = 0

16 ω-notasjon Ω-notasjon gir en asymptotisk nedre grense som kan være tett (tight). ω-notasjon gir en nedre grense som ikke er tett. ω(g(n)) = {f (n) : for alle konstanter c > 0 det finnes en konstant n 0 > 0 slik at 0 cg(n) < f (n) for alle n > n 0 } Holder for alle konstanter c > 0 g(n) blir insignifikant i forhold til f (n) når n går mot uendelig f (n) lim n g(n) = f (n) ω(g(n)) hvis og bare hvis g(n) o(f (n))

17 Asymptotisk Notasjon Egenskaper Alle de asymptotiske notasjonene er transitive e.g. f (n) = Θ(g(n)) og g(n) = Θ(h(n)) impliserer f (n) = Θ(h(n)). De tre store er også refleksive e.g. f (n) = Θ(f (n)). Symmetri er mulig på to måter Normal symmetri e.g. f (f ) = Θ(g(n)) hvis og bare hvis g(n) = Θ(f (n)) Transponert symmetri e.g. f (n) = O(g(n)) hvis og bare hvis g(n) = Ω(f (n))

18 Asymptotisk Notasjon vs Sammenligning Det er vanlig å relatere asymptotisk notasjon til sammenligning mellom flyttall. f (n) = O(g(n)) er som a b f (n) = Ω(g(n)) er som a b f (n) = Θ(g(n)) er som a = b f (n) = o(g(n)) er som a < b f (n) = ω(g(n)) er som a > b

19 To Siste Lærdomer om Asymptotisk Notasjon For alle reelle tall a og b hvor a > 1 så har vi. n b = o(a n ) Alle polynomiske funksjoner er mindre enn selv den minste eksponensielle. For alle konstanter a > 0 så har vi lg b n = o(n a ) Alle polylogaritmiske funksjoner er mindre enn alle positive polynomiske funksjoner.

20 Kompleksitetsklasser Kompleksitetsklasser er relatert til asymptotisk notasjon, men her spiller også andre faktorer inn. Figure : Vanlige kompleksitetsklasser satt i et diagram

21 Kompleksitetsklasser Den uten tvil mest myteomspunnede kompleksitetsklassen er co-np, eller NP-komplette problem. Problem som per i dag ikke har en effektiv algoritme Hvis en effektiv algoritme oppdages vil det samtidig løse alle de andre NP-komplette problemene effektivt også [Cook(1971)]. Vi kommer i dette kurset stort sett bare til å se på problem i den indre oransje sirkelen i.e. problemer som kan løses effektivt. Disse refereres gjerne til som tractable, og de utenfor intractable.

22 Uløselige Problem Alan Turing er datamaskinenes far. Han definerte lenge før datamaskinene faktisk ble til hvordan en general purpose datamaskin kan fungere (se Turing machines) Ennå mer imponerende er at lenge før maskiner ble til, fant han ut hva datamaskiner aldri kan gjøre [Turing(1936-7)].

23 Uløselig Problem - Stoppe-problemet Det mest kjente av disse problemen er det såkalte Stoppe-problemet (Halting problem). Given a description of an arbitrary computer program, decide whether the program finishes running or continues to run forever Gitt en algoritme og en input. Vil algoritmen stoppe eller kjøre for alltid? Vanskeligheten ligger i de uendelige mulighetene

24 Bibliography Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM symposium on Theory of computing, STOC 71, pages , New York, NY, USA, ACM. Alan M. Turing. On computable number with an application to the Entscheidugsproblem. Proc. Amer. Math. Soc., 42(2): ,

LO118D Forelesning 2 (DM)

LO118D Forelesning 2 (DM) LO118D Forelesning 2 (DM) Kjøretidsanalyse, matematisk induksjon, rekursjon 22.08.2007 1 Kjøretidsanalyse 2 Matematisk induksjon 3 Rekursjon Kjøretidsanalyse Eksempel Finne antall kombinasjoner med minst

Detaljer

Kjøretidsanalyse. Hogne Jørgensen

Kjøretidsanalyse. Hogne Jørgensen Kjøretidsanalyse Hogne Jørgensen Program Presentasjon/tips til Øving 5 Kompleksitetsanalyse Kahoot Rekurrensligninger Kahoot 2 Øving 5 Veibygging i Ogligogo Finne dyreste kant i minimalt spenntre Prim

Detaljer

Divide-and-Conquer II

Divide-and-Conquer II Divide-and-Conquer II Lars Vidar Magnusson 1712014 Kapittel 4 Analyse av divide-and-conquer algoritmer ved hjelp av rekursjonstrær Analyse av divide-and-conquer algoritmer ved hjelp av masterteoremet Løse

Detaljer

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 2. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 2 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.02.14 Den andre obligatoriske oppgaven tar for seg forelesning 5, 6, og 7 som dreier seg om

Detaljer

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem? Hva er størrelsen (n) av et proble? Algorite-Analyse Algoriter og Datastrukturer Antall linjer i et nettverk Antall tegn i en tekst Antall tall so skal sorteres Antall poster det skal søkes blant Antall

Detaljer

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet

Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet Spenntrær, oppsummert: Kruskal: Traverserer ikke. Plukker kanter i hytt og vær Prim: Legger alltid til den noden som er nærmest treet 1 A B D C Prim: Kruskal: AB, BD, DC DC, AB, BD 2 0 + 1 + + n 1; antall

Detaljer

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort

Quicksort. Lars Vidar Magnusson Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Quicksort Lars Vidar Magnusson 29.1.2014 Kapittel 7 Quicksort Randomisert Quicksort Analyse av Quicksort Om Quicksort Quicksort er en svært populær sorteringsalgoritme. Algoritmen har i verstefall en kjøretid

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger.

Ninety-nine bottles. Femte forelesning. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. I dagens forelesning: Mest matematiske verktøy. Først: Asymptotisk notasjon. Så: Rekurrensligninger. Hva slags kjøretid har denne sangen? Hvordan kan du formulere det som en rekurrensligning? Ninety-nine

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Om Kurset og Analyse av Algoritmer

Om Kurset og Analyse av Algoritmer Om Kurset og Analyse av Algoritmer Lars Vidar Magnusson 8.1.2014 Praktisk informasjon om kurset Hva er en algoritme? (kapittel 1) Hvordan analysere en algoritme? (kapittel 2) Praktisk Informasjon Introduction

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

INF oktober Stein Krogdahl. Altså: Hva kan ikke gjøres raskt (med mindre P = NP)

INF oktober Stein Krogdahl. Altså: Hva kan ikke gjøres raskt (med mindre P = NP) INF 4130 22. oktober 2009 Stein Krogdahl Dagens tema: Mer om NP-kompletthet Altså: Hva kan ikke gjøres raskt (med mindre P = NP) Også her: Dette har blitt framstilt litt annerledes tidligere år Pensum

Detaljer

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl

Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl Student nr.: Side 1 av 5 Kontinuasjonseksamen i fag SIF8010 Algoritmer og Datastrukturer Torsdag 9. August 2001, kl 0900-1500 Faglig kontakt under eksamen: Arne Halaas, tlf. 73 593442. Hjelpemidler: Alle

Detaljer

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk

INF2220: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk INF0: Time 8 og 9 - Kompleksitet, beregnbarhet og kombinatorisk søk Mathias Lohne mathialo Rekursjonseksempel Eksempel Finn kjøretid for følgende program: (Ex11 b) 1 float foo(a) { n = Alength; 3 4 if

Detaljer

Grunnleggende Grafalgoritmer

Grunnleggende Grafalgoritmer Grunnleggende Grafalgoritmer Lars Vidar Magnusson 19.3.2014 Kapittel 22 Representere en graf Bredde-først søk Grafer i Informatikken Problem med grafer går ofte igjen i informatikkens verden, så det å

Detaljer

INF Algoritmer: Design og effektivitet

INF Algoritmer: Design og effektivitet INF 4130 Algoritmer: Design og effektivitet Velkommen Forelesere: Stein Krogdahl, steinkr at ifi.uio.no Petter Kristiansen pettkr at ifi.uio.no Lærebok: Algorithms: Sequential, Parallel, and Distributed,

Detaljer

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder

Kompleksitetsanalyse Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Helge Hafting 25.1.2005 Opphavsrett: Forfatter og Stiftelsen TISIP Lærestoffet er utviklet for faget LO117D Algoritmiske metoder Innhold 1 1 1.1 Hva er en algoritme?............................... 1 1.2

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 13. november 2014 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring

Detaljer

Forelesning 31. Dag Normann mai Informasjon. Kompleksitetsteori

Forelesning 31. Dag Normann mai Informasjon. Kompleksitetsteori Forelesning 31 Dag Normann - 19. mai 2008 Informasjon Jeg er blitt bedt om å opplyse om hvilke forelesninger det er som inneholder eksamensrelevant stoff som ikke står i læreboka. Det er Forelesning 17,

Detaljer

Kompleksitetsanalyse

Kompleksitetsanalyse :: Forside Kompleksitetsanalyse Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/ Først: studietips OpenCourseWare fra MIT Forelesninger tatt opp på video Algoritmekurset foreleses

Detaljer

INF Stein Krogdahl. NB: Det som under forelesningen ble kalt et vitne er nå omdøpt til et sertifikat.

INF Stein Krogdahl. NB: Det som under forelesningen ble kalt et vitne er nå omdøpt til et sertifikat. INF 4130 15. oktober 2009 Stein Krogdahl NB: Det som under forelesningen ble kalt et vitne er nå omdøpt til et sertifikat. Dagens tema: NP-kompletthet Eller: hvilke problemer er umulig å løse effektivt?

Detaljer

Forelesning 30: Kompleksitetsteori

Forelesning 30: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 30: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 30: Kompleksitetsteori 19. mai 2009 (Sist oppdatert: 2009-05-19

Detaljer

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner

Forelesning 14. Rekursjon og induksjon. Dag Normann februar Oppsummering. Oppsummering. Beregnbare funksjoner Forelesning 14 og induksjon Dag Normann - 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt om ekvivalensrelasjoner og partielle ordninger. Vi snakket videre om funksjoner.

Detaljer

Kompleksitetsteori reduksjoner

Kompleksitetsteori reduksjoner Kompleksitetsteori reduksjoner En slags liten oversikt, eller huskeliste, for kompleksitetsteorien i INF 4130. Ikke ment å være verken fullstendig eller detaljert, men kanskje egnet til å gi noen knagger

Detaljer

Turingmaskiner en kortfattet introduksjon. Christian F Heide

Turingmaskiner en kortfattet introduksjon. Christian F Heide 7. november 016 Turingmaskiner en kortfattet introduksjon Christian F Heide En turingmaskin er ikke en fysisk datamaskin, men et konsept eller en tankekonstruksjon laget for å kunne resonnere omkring blant

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 14: Rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 27. februar 2008 Oppsummering Mandag repeterte vi en del om relasjoner, da spesielt

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

LO118D Forelesning 12 (DM)

LO118D Forelesning 12 (DM) LO118D Forelesning 12 (DM) Trær 15.10.2007 1 Traversering av trær 2 Beslutningstrær 3 Isomorfisme i trær Preorden-traversering 1 Behandle den nåværende noden. 2 Rekursivt behandle venstre subtre. 3 Rekursivt

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 3

Løsningsforslag for utvalgte oppgaver fra kapittel 3 Løsningsforslag for utvalgte oppgaver fra kapittel 3 3.3 1 Demo innsettingssortering..................... 1 3.5 1 Demo velgesortering........................ 2 3.5 2 Velgesortering...........................

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Eksamen i tdt4120 Algoritmer og datastrukturer

Eksamen i tdt4120 Algoritmer og datastrukturer Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 5 Oppgavestillere: Magnus Lie Hetland Jon Marius Venstad Kvalitetskontroll: Magnar Nedland Faglig

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005

Studentnummer: Side 1 av 1. Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Studentnummer: Side 1 av 1 Løsningsforslag, Eksamen i TDT4120 Algoritmer og datastrukturer August 2005 Faglige kontakter under eksamen: Magnus Lie Hetland, Arne Halaas Tillatte hjelpemidler: Bestemt enkel

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 4: Grenseverdi (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 20. august, 2012 Formell definisjon av grenseverdi Formell definisjon av grenseverdi Uformell definisjon

Detaljer

Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer IT1105/TDT4120 2007 06 12 1/6 Avsluttende eksamen i IT1105/TDT4120 Algoritmer og datastrukturer Eksamensdato Torsdag 6. desember Eksamenstid 1500 1900 Sensurdato Torsdag 10. januar Språk/målform Bokmål

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl

Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl TDT4120 2003-12-09 Stud.-nr: Antall sider: 1/7 Løsningsforslag for eksamen i fag TDT4120 Algoritmer og datastrukturer Tirsdag 9. desember 2003, kl. 0900 1500 Faglig kontakt under eksamen: Arne Halaas,

Detaljer

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder

Grådige algoritmer. Lars Vidar Magnusson Kapittel 16. Aktivitetvelgingsproblemet Huffmankoder Grådige Algoritmer Lars Vidar Magnusson 12.3.2014 Kapittel 16 Grådige algoritmer Aktivitetvelgingsproblemet Huffmankoder Ideen bak Grådige Algoritmer Ideen bak grådige algoritmer er å løse optimaliseringsproblem

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering

Hashtabeller. Lars Vidar Magnusson Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Hashtabeller Lars Vidar Magnusson 12.2.2014 Kapittel 11 Direkte adressering Hashtabeller Chaining Åpen-adressering Dictionaries Mange applikasjoner trenger dynamiske sett som bare har dictionary oparsjonene

Detaljer

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014

PG4200 Algoritmer og datastrukturer forelesning 3. Lars Sydnes 29. oktober 2014 PG4200 Algoritmer og datastrukturer forelesning 3 Lars Sydnes 29. oktober 2014 Plan Måling av kjøretid (delvis repetisjon) Matematisk analyse av kjøretid Presentasjon av innlevering 1 I Innlevering 1 Innlevering

Detaljer

MAT1030 Forelesning 30

MAT1030 Forelesning 30 MAT1030 Forelesning 30 Kompleksitetsteori Roger Antonsen - 19. mai 2009 (Sist oppdatert: 2009-05-19 15:04) Forelesning 30: Kompleksitetsteori Oppsummering I dag er siste forelesning med nytt stoff! I morgen

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

NP-komplett, hva nå?

NP-komplett, hva nå? NP-komplett, hva nå? Anta vi har klart å vise at problemet vårt er NP-komplett eller NP-hardt. Hva betyr det? Såfremt P NP (de fleste tror det) har ikke problemet noen polynomisk algoritme. Hva skal vi

Detaljer

Lars Vidar Magnusson

Lars Vidar Magnusson Binære Søketrær Lars Vidar Magnusson 14.2.2014 Kapittel 12 Binære Søketrær Søking Insetting Sletting Søketrær Søketrær er datastrukturer som støtter mange dynamiske sett operasjoner. Kan bli brukt både

Detaljer

Propabilistisk Analyse og Randomiserte Algoritmer

Propabilistisk Analyse og Randomiserte Algoritmer Propabilistisk Analyse og Randomiserte Algoritmer Lars Vidar Magnusson 22.1.2014 Kapittel 5 Propabilistisk analyse Randomiserte algoritmer Hiring Problemet For å forklare propabilistisk analyse kan det

Detaljer

Tillegg til kapittel 11: Mer om relasjoner

Tillegg til kapittel 11: Mer om relasjoner MAT1140, H-16 Tillegg til kapittel 11: Mer om relasjoner I læreboken blir ekvivalensrelasjoner trukket frem som en viktig relasjonstype. I dette tillegget skal vi se på en annen type relasjoner som dukker

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf.!! 91851949 Eksamensdato! 15. august 2013 Eksamenstid (fra til)! 0900 1300 Hjelpemiddelkode D.

Detaljer

Løsningsforslag for utvalgte oppgaver fra kapittel 9

Løsningsforslag for utvalgte oppgaver fra kapittel 9 Løsningsforslag for utvalgte oppgaver fra kapittel 9 9.2 1 Grafer og minne.......................... 1 9.2 4 Omvendt graf, G T......................... 2 9.2 5 Kompleksitet............................

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen

Repetisjon. MAT1030 Diskret Matematikk. Oppsummering. Oppsummering. Forelesning 15: Rekursjon og induksjon. Roger Antonsen MAT1030 Diskret Matematikk Forelesning 15: og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo Repetisjon 11. mars 2009 (Sist oppdatert: 2009-03-10 20:38) MAT1030 Diskret Matematikk

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller:

Dictionary er et objekt som lagrer en samling av data. Minner litt om lister men har klare forskjeller: 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Terje Rydland - IDI/NTNU 2 Datastruktur: Dictionaries Kap 9.1 Dictionary er et objekt som lagrer en samling

Detaljer

Grunnleggende Matematiske Operasjoner

Grunnleggende Matematiske Operasjoner Grunnleggende Matematiske Operasjoner Lars Vidar Magnusson January 16, 2017 Delkapittel 2.6 Array vs Matrise Operasjoner Det er vanlig med både array- og matrise-operasjoner på bilder. Array-multiplikasjon

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006

Løsningsforslag for Obligatorisk Oppgave 3. Algoritmer og Datastrukturer ITF20006 Løsningsforslag for Obligatorisk Oppgave 3 Algoritmer og Datastrukturer ITF20006 Lars Vidar Magnusson Frist 28.03.14 Den tredje obligatoriske oppgaven tar for seg forelesning 9 til 13, som dreier seg om

Detaljer

Avgjørbarhet / Uavgjørbarhet

Avgjørbarhet / Uavgjørbarhet Avgjørbarhet / Uavgjørbarhet For å kunne snakke om avgjørbarhet/uavgjørbarhet trenger vi Turingmaskiner og for å snakke om Turingmaskiner trenger vi formelle språk, og strenger og alfabeter. Pluss litt

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs

TDT4105 Informasjonsteknologi, grunnkurs 1 TDT4105 Informasjonsteknologi, grunnkurs Matlab: Sortering og søking Anders Christensen (anders@idi.ntnu.no) Rune Sætre (satre@idi.ntnu.no) TDT4105 IT Grunnkurs 2 Pensum Matlab-boka: 12.3 og 12.5 Stoffet

Detaljer

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Grafteori. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo Grafteori 20. april 200 (Sist oppdatert: 200-04-20 4:8) MAT030 Diskret Matematikk 20. april 200

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori.

Forelesning 23. MAT1030 Diskret Matematikk. Repetisjon og mer motivasjon. Repetisjon og mer motivasjon. Forelesning 23: Grafteori. MAT030 Diskret Matematikk Forelesning 23: Grafteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 23 22. april 2009 (Sist oppdatert: 2009-04-22 2:37) MAT030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert

Detaljer

Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview

Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview Algoritmer Teoribok: Algorithms Kap 5 fra Brookshear & Brylow: Computer Science: An Overview TDT 4105 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Lære om Algoritme som konsept Representasjon

Detaljer

Læringsmål og pensum. Algoritmeeffektivitet

Læringsmål og pensum. Algoritmeeffektivitet 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis. Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Algoritmer i praksis Professor Alf Inge Wang 2 Læringsmål og pensum Mål Lære å forstå og kunne programmere algoritmer for søk og sortering. Lære å forstå

Detaljer

INF3170 Forelesning 1

INF3170 Forelesning 1 INF3170 Forelesning 1 Introduksjon og mengdelære Roger Antonsen - 26. januar 2010 (Sist oppdatert: 2010-01-26 14:58) Dagens plan Innhold Velkommen til INF3710 Logikk 1 Litt praktisk informasjon...................................

Detaljer

Morfologi i Binære Bilder II

Morfologi i Binære Bilder II Morfologi i Binære Bilder II Lars Vidar Magnusson March 28, 2017 Delkapittel 9.3 Opening and Closing Delkapittel 9.4 The Hit-or-Miss Transformation Opening (Åpning) Opening er en morfologisk operasjon

Detaljer

Mengder, relasjoner og funksjoner

Mengder, relasjoner og funksjoner MAT1030 Diskret Matematikk Forelesning 15: og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo Mengder, relasjoner og funksjoner 9. mars 2010 (Sist oppdatert: 2010-03-09 14:18) MAT1030

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

Forelesning 19 torsdag den 23. oktober

Forelesning 19 torsdag den 23. oktober Forelesning 19 torsdag den 23. oktober 5.3 Eulers kriterium Merknad 5.3.1. Følgende proposisjon er kjernen til teorien for kvadratiske rester. Kanskje ser beviset ikke så vanskelig ut, men la merke til

Detaljer

Forelesning 1 mandag den 18. august

Forelesning 1 mandag den 18. august Forelesning 1 mandag den 18 august 11 Naturlige tall og heltall Definisjon 111 Et naturlig tall er et av tallene: 1,, Merknad 11 Legg spesielt merke til at i dette kurset teller vi ikke 0 iblant de naturlige

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 16: Rekursjon og induksjon Roger Antonsen Institutt for informatikk, Universitetet i Oslo 17. mars 009 (Sist oppdatert: 009-03-17 11:4) Forelesning 16 MAT1030 Diskret

Detaljer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer

INF Algoritmer og datastrukturer. Hva er INF2220? Algoritmer og datastrukturer Praktiske opplysninger INF2220 - Algoritmer og datastrukturer HØSTEN 2007 Institutt for informatikk, Universitetet i Oslo Tid og sted: Mandag kl. 12:15-14:00 Store auditorium, Informatikkbygningen Kursansvarlige

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme* er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015

MAT-INF1100 Oblig 1. Teodor Spæren, brukernavn teodors. September 16, 2015 MAT-INF1100 Oblig 1 Teodor Spæren, brukernavn teodors September 1, 015 1 Oppgave 1 I de oppgavene som krever at man gjør om et rasjonalt tall i intervallet (0, 1) om til en binærsifferutvikling, fant jeg

Detaljer

PG4200 Algoritmer og datastrukturer Forelesning 2

PG4200 Algoritmer og datastrukturer Forelesning 2 PG4200 Algoritmer og datastrukturer Forelesning 2 Lars Sydnes, NITH 15. januar 2014 I. Forrige gang Praktisk eksempel: Live-koding II. Innlevering Innlevering 1 2.februar Offentliggjøring: 22.januar Innhold:

Detaljer

Grunnleggende Grafalgoritmer III

Grunnleggende Grafalgoritmer III Grunnleggende Grafalgoritmer III Lars Vidar Magnusson 26.3.2014 Kapittel 21 og 22 Usammenhengende-sett Strongly-connected components Usammenhengende Sett Usammenhengende sett er ikke en grafalgoritme i

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Analysedrypp II: Kompletthet

Analysedrypp II: Kompletthet Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 14: Mer om funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) MAT1030

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen

Dagens plan INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon, mengdelære og utsagnslogikk. Christian Mahesh Hansen og Roger Antonsen Dagens plan INF3170 Logikk Forelesning 1: Introduksjon, mengdelære og utsagnslogikk Christian Mahesh Hansen og Roger Antonsen Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 23.

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 13: Dynamisk programmering (Ifi, UiO) INF2220 H2017, forelesning 13 1 / 30 Dagens plan Dynamisk

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

LØSNINGSFORSLAG EKSAMEN V06, MA0301

LØSNINGSFORSLAG EKSAMEN V06, MA0301 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 LØSNINGSFORSLAG EKSAMEN V06, MA0301 Oppgave 1 a) Sett opp en sannhetsverditabell(truth table) for det logiske uttrykket

Detaljer

Grunnleggende Grafalgoritmer II

Grunnleggende Grafalgoritmer II Grunnleggende Grafalgoritmer II Lars Vidar Magnusson March 17, 2015 Kapittel 22 Dybde-først søk Topologisk sortering Relasjonen til backtracking Dybde-Først Søk Dybde-først søk i motsetning til et bredde-først

Detaljer