Dimensjonering av bygg som påvirkes av seismiske belastninger

Størrelse: px
Begynne med side:

Download "Dimensjonering av bygg som påvirkes av seismiske belastninger"

Transkript

1 Dimensjonering av bygg som påvirkes av seismiske belastninger Midtveisrapport, Espen K. Jensen Henning Carlsen Stian Kristiansen Ole-Petter Jensen

2 I Forord Avgangstudentene på Høgskolen i Østfold ved avdeling ingeniørfag, har hvert år en avsluttende hovedoppgave. Denne oppgaven får studentene arbeide med på fulltid fra mars til juni, og den avsluttes med en utstilling, kalt EXPO, på høgskolen. Gruppen vår,, har fått i oppgave av Multiconsult AS, avdeling Fredrikstad, å se nærmere på temaet Dimensjonering av bygg som påvirkes av seismiske belastninger. I forprosjektperioden har gruppen satt seg inn i dynamikk, og det videre arbeidet har bestått av dynamiske og statiske beregninger av en enkel modell, hvor det er tatt hensyn til jordskjelv. Beregningene gjøres både for hånd og ved hjelp av dataprogrammet FEM-Design. Resultatene vil bli sammenlignet, og vurdert. Det videre arbeidet etter midtveisrapporten vil bestå av å utvikle denne enkle modellen, til en mer kompleks modell. Gruppen ønsker spesielt å takke Sissel Larsen (veileder ved Høgskolen i Østfold), Joachim Helgesen (veileder ved Multiconsult), Armand Åsheim (Multiconsult AS) og Kjell Sukkehagen (Multiconsult AS). Disse har vært svært hjelpsomme og imøtekommende når vi har hatt spørsmål angående hovedoppgaven. Gruppen vår består av Espen Kildebo Jensen, Henning Carlsen, Ole-Petter Jensen og Stian Kristiansen. Dato og sted: , Fredrikstad Espen Kildebo Jensen Henning Carlsen Ole-Petter Jensen Stian Kristiansen 2

3 II Innholdsfortegnelse III Sammendrag... 5 IV Symboler og begreper... 6 Symboler... 6 Begreper Innledning Kort om jordskjelv Generelt om jordskjelv Styrke og størrelse på skjelv Intensitet Dynamikk Frihetsgrader (degrees of freedom, DOFs) Dempningskraft Udempet system Stivhetskoeffisienten Konstruksjonens regularitet og symmetri Generelt Regularitet og symmetri i planet Vertikal regularitet og symmetri Duktilitet Lastkombinasjoner Generelt Ortogonale retninger Forenklet metode etter NS-EN Egenperiode C t Dimensjonerende spektrum for elastisk analyse Konstruksjonsfaktor, q Sammenhengen mellom q og k Q Duktilitetsklasser Grunntype S-verdi

4 7.4 Beregningene Utvidet metode etter NS-EN Hvorfor utvidet metode? Beregningene Massematrise MathCad funksjoner for å finne egenfrekvensen og formmatrise Beregninger i FEM-Design Generelt om FEM-Design Hvordan gjøre beregninger i FEM-Design Structure Loads Finite elements Analysis Resultater Svingeformer, forflytning, egenfrekvens og egenperiode Skjærkrefter Sammenlikning av resultater Egenperioder Egenfrekvenser Forskyning Skjærkrefter Utvidet modell Kildehenvisninger Referanser til standarder: Referanser til tekst: Referanser til figurer: Referanser til tabeller: Dataprogrammer vi har brukt:

5 III Sammendrag Presisering av oppgavens hensikt Opplysninger om undersøkelsens omfang Oppgaver over de metoder som er benyttet Opplysninger om sikkerheten i de gitte opplysninger De viktigste resultatene Hvilke konklusjoner som er trukket Planer for oppfølging 5

6 IV Symboler og begreper Symboler a g - c - C t - DOF - EI - f D - f s - H - k - k f,spiss - k Q - k S - m - q - S - S d - S e - t - T 1 - T B, T C, T D - T n - u - ù - ü - p - ω n - γ 1 - ξ - Grunnens akselerasjon Viskositets dempingskoeffisient Koeffisient avhengig av konstruksjonens avstivningssystem Frihetsgrader Bøyestivhet Dempingskraft Sideveis kraft som virker inn på konstruksjoner Konstruksjonens høyde Sideveis stivhetskoeffisient til aktuelt system Faktor som avhenger av referanseperioden for a g fra NS Konstruksjonsfaktor fra NS Forsterkningsfaktor som avhenger av grunnforholdet Masse Konstruksjonsfaktor fra NS-EN 1998 Parameter som bestemmer knekkpunkt for responsspektere Dimensjonerende horisontal seismisk akselerasjon Elastisk horisontalt responsspekter Tid Første egensvingeperiode Parametere som bestemmer knekkpunkter for responsspektere Naturlig vibrasjonsperiode Deformasjon Hastighet Akselerasjon Påførte ekstern dynamisk kraft Naturlig sirkulær frekvens / Egenfrekvens Seismisk faktor som avhenger av seismisk klasse Viskøst dempingsforhold 6

7 Begreper Alluvium Amplitude - - Erodert grunn. Avstanden vinkelrett fra likevektslinjen til maks utslag. Duktilitet - Den evne en konstruksjon eller deler av den har til å deformere seg ut over elastisk oppførsel uten å miste sin styrke. E-modul - Elastisitetsmodul. Forholdet mellom fasthet og forlengelse. Jo høyere E-modul materialet har, jo stivere er det. Egenlast Egenperiode - - Egenvekten ekten fra materialene i konstruksjonen. Tiden som bygget bruker for å forflytte seg fra start og tilbake igjen. Elastisk - Når materialer utsettes tes for en bestemt kraft, vil det oppstå elastisk deformasjon. Det vil si at materialet går tilbake til sin gamle form etter at kraften er fjernet. Elasto-plastisk Frihetsgrader - - Mellomtilstand av elastisk og plastisk virkning. Tallet på de uavhengige forskyvinger som er nødvendige for å definere e den forskyvende posisjonen til massene relativt til deres originale posisjon. Kartesisk koordinatsystem - Koordinataksene står vinkelrett på hverandre. Kohesjonsløs Magnitude - - Har ikke noen bindekraft. Brukes om størrelsen eller styrken på et jordskjelv. Dette er en logaritmisk skala. Massesenter Mode Node Nyttelast Senter for massen til bygget. Se svingemode. Punkt på en forenklet figur som angir en etasje. Laster som bygget dimensjoneres etter, som er avhengig av hva bygget skal brukes til. Ortogonal Plastisk - - Rettvinklet. Når materialer for en bestemt emt kraft, vil det oppstå plastisk deformasjon. Ved samme materiale vil denne lasten være større. Her får man en varig deformasjonsendring. Responsspekter - Spekter som viser responsen til ulike faktorer som er avhengige av tiden. Seismikk Shade mode - - Vitenskap om jordskjelv. Figur i FEM-Design, som viser strukturen med riktige profiler og former. 7

8 Snølast Stivhetssenter Stratigrafisk Svingemode Torsjon Viskositet Wireframe mode - Last som påsettes øverste etasje. Er avhengig av geografisk beliggenhet. - Senter for stivheten til bygget. - Lagdelt profil. - Svingeform - Vridning som oppstår på grunn av ytre krefter. - Seighet. - Figur i FEM-Design, som viser enkel pinnemodell. 8

9 1 Innledning Hvorfor skal man dimensjonere bygninger i Norge for jordskjelv? Dette er det nok mange som spør seg om. Faktisk er Norge det området i Nord-Europa hvor flest jordskjelv inntreffer. Så sent som 21. februar 2008 og 6.mars 2009 ble det målt to ganske kraftige jordskjelv på og like utenfor Svalbard. Skjelvene ble henholdsvis målt til 6,2 og 6,5 på Richters skala, og er til nå de kraftigste skjelvene som er målt i Norge [1][2]. De mest aktive landområdene i Norge er på Vestlandet, i Nordland og deler på Østlandet. I tillegg er det en del aktivitet ved norske områder i Nordsjøen og rundt Svalbard. Hvis vi går litt tilbake i norsk historie, så vet vi at det har vært to store jordskjelv tidligere. Det største av de to ble registrert på Helgelang i 1819 og styrken lå like under 6 på Richters skala, mens det andre ble registrert litt sør for Oslo i 1904 og målte 5,4 på Richters skala. Jordskjelv kan ikke forutsies, og man vet derfor ikke når slike skjelv vil oppstå, eller om det vil skje igjen her i landet [3]. Figur 1.1 Seismisk aktivitet de siste 200 år. [F1] 9

10 Når man i dag skal prosjektere og bygge i Norge, er man nødt til å forholde seg til plan- og bygningsloven, PBL. Dersom man velger å bruke Norsk Standard, NS, eller Eurokodene med nasjonalt tillegg, NS-EN + NA, når det gjelder metode og utførelse har man fulgt Plan- og bygningsloven. Dette skal sikre at konstruksjoner ikke kollapser, man unngår unødvendige økonomiske tap, og sikkerheten til mennesker og dyr blir ivaretatt. Slik som situasjonen er i dag, så er vi i en overgangsfase. Tidligere har man benyttet t seg av Norsk Standard, men de siste årene har man i Europa gått sammen om å lage felles standarder for de ulike emnene innenfor byggebransjen, såkalte Eurokoder. Siden forholdene i de europeiske landene er ulike, utgir man også nasjonale tillegg som gjelder for hvert enkelt land. Denne overgangsfasen hvor både Norsk Standard og Eurokodene med nasjonalt tillegg er gyldige, vil gjelde frem til mars Da kommer Eurokodene til å ta helt over. Eurokodene vil antakeligvis bli tatt tidligere i bruk av flere årsaker. En av de kan være at man vil være godt rustet og ha litt erfaring før overgangen. En annen grunn vil være at man påbegynner et nytt prosjekt nå, og prosjektet skal videreutvikles etter noen år. Man kan ikke da blande gammelt og nytt regelverk. En av de økonomiske grunnene vil være at man klarer å optimalisere byggene bedre i mange tilfeller, hvilket gir lavere kostnader. Når det gjelder standarder som omhandler seismiske laster så bruker vi i Norge NS og NS-EN med nasjonalt tillegg NA. Tidligere har man ikke sett på jordskjelvdimensjonering som nødvendig i Norge. Faktisk så trengte man ikke å undersøke bygninger for seismiske påkjenninger, så lenge det ikke var noe spesielt, før NS ble utgitt i Men på grunn av overgangen til Eurokodene, så vil ikke NS gjelde etter mars 2010 [4] [5]. Bygninger som utsettes for seismisk påvirkning, påføres dynamiske belastninger. Det betyr at lastene som virker inn på bygningene, er gjentakende. Det som skjer med et bygg under et jordskjelv, er at bygget påvirkes av kreftene under bakkenivå. Jordskjelvet forårsaker kraftig bevegelse i grunnen, som fører til at grunnen begynner å akselerere. Hvis denne akselerasjonen er kraftig nok, så vil bygget settes i bevegelse. Hvordan bygget oppfører seg under skjelvet, er avhengig av flere faktorer. Disse faktorene er blant annet byggets duktilitet, masse, stivhet, symmetri. Dessuten har geografisk seismisk sone (Figur NA.3(901), NS-EN 1998) og grunnforholdene ganske mye å si, sammen med fundamenteringen. Jordskjelvdimensjonering trenger ikke alltid å utføres på bygg her i landet. Ifølge Eurokode 8 er Norge et lavseismisk område. Det betyr at man som oftest kan bruke forenklet metode ved påvisning av jordskjelvlaster. Skal man derimot prosjektere en konstruksjon hvor jordskjelvlastene har en lengre returperiode enn 2000 år, konstruksjonen har separate fundamenter som står på både fjell og bløte løsmasser, eller geometrien til bygget er komplisert må man benytte seg av utvidet metode. Både forenklet og utvidet metode kommer vi tilbake til i henholdsvis kapittel 7 og 8. 10

11 Når man prosjekterer et bygg med tanke på seismisk belastning, kan man bruke visse utelatelseskriterier. Da ser man om man er nødt til å påvise kapasitet for konstruksjonen med tanke på seismiske laster eller ikke. I NS-EN 1998 NA 3.2.1(5) har man beskrevet når man kan utelate påvisning av kapasitet med tanke på seismiske laster. Der står det at man kan se bort ifra påvisning av seismisk last hvis: - S d 0,5 ms -2. S d er den horisontale dimensjonerende seismiske akselerasjonen. S d er nærmere beskrevet i kapittel Konstruksjoner i seismisk klasse I, og for lette byggverk av tre i seismisk klasse II, hvor det er mindre enn 4 etasjer. Seismisk klassifisering av konstruksjoner står beskrevet i NS-EN 1998 NA tabell NA.4(902). Her er de angitt etter konsekvensen av at bestemte typer bygg kollapser, eller ikke opprettholder sin funksjon under og etter et jordskjelv. I klasse I er konsekvensen av sammenbrudd liten, mens konsekvensen i klasse IV er særlig stor. [6a] [S8] [S14] I løpet av prosjekttiden, så skal vi beregne to typer bygg. Vi starter med en forenklet modell av et bygg som i figur 1.2. Der håndberegner vi bygget etter både forenklet og utvidet metode. Samtidig modellerer vi bygget i det kommersielle dataprogrammet FEM-Design, og lar programmet beregne det samme som vi regnet for hånd. Det forenklede bygget har tre etasjer, hvor etasjehøyden er 3m. Avstanden mellom m søylene er 5m, og søylene er HE280A-profiler. Dekkene i hver etasje er laget uendelig stive (EI = ). Figur 1.2 Forenklet modell [F2] 11

12 Etter at vi har beregnet den forenklede modellen, så sammenligner vi resultatene vi fikk ved håndberegning og svarene fra FEM-Design. Der ser vi blant annet på byggets svingeformer, og egenperioder. Deretter går vi over til å regne på en mer komplisert modell i FEM-Design. Denne e modellen gjøres usymmetrisk med utsparinger, ulike bjelker og ulike søyler. Da vil massesenter og stivhetssenter være mer komplisert å finne. Vi ser da på hvordan bygget reagerer ved påsatte seismiske laster. FIGUR AV KOMPLISERT MODELL I FEM-DESIGN. 12

13 2 Kort om jordskjelv 2.1 Generelt om jordskjelv Årlig anslås det å være over 1 million jordskjelv rundt om i verden. I løpet av de siste hundre årene, har over en million mennesker mistet livet på grunn av jordskjelv. De aller ler fleste er riktignok små skjelv som ikke engang merkes, men noen få er kraftige som fører til store ødeleggelser og tap av menneskeliv. Kort fortalt oppstår jordskjelv når tektoniske plater som jordskorpen består av, kolliderer med hverandre slik at det over tid oppstår store spenninger langs jordskorpen. Figur 2.1 viser hvor de tektoniske platene befinner seg. Før disse platene kolliderer, beveger de seg årlig med en hastighet på mellom en til ti centimeter. Når disse spenningene blir for store, gir platene etter, og det oppstår et brudd i jordskorpen. Bruddet gjør at det sendes bølger med varierende styrke utover, som kan føre til ødeleggelser. Bølgene avtar i styrke jo lengre bort fra senteret til skjelvet de kommer. Vi kan snakke om to typer sentere, hyposenteret og episenteret. Hyposenteret, også kalt fokus, er det punktet inne i jorden hvor bruddet starter. Episenteret er det punktet på jordoverflaten som ligger loddrett over hyposenteret. Lengden på bruddet vil kunne variere mellom noen få centimeter til mange kilometer [3] [7] [8]. Figur 2.1 Tektoniske plater rundt om i verden. [F3] 13

14 2.2 Styrke og størrelse på skjelv Styrken og størrelsen på jordskjelvene varierer kolossalt, og de kan måles på forskjellige måter. Tre vanlige målemetoder for jordskjelv er magnitude, intensitet og fysisk størrelse. Alle typer magnitude-målinger målinger er logaritmiske, og de setter tall på hvor mye energi som frigjøres under et jordskjelv. Det finnes flere forskjellige magnitude-målinger, men den mest kjente av de er Richter-magnituden. Under i tabell 2.1 er Richterskalaen oppgitt med virkningene. For hvert trinn er det en energiøkning på 31 ganger [3]. Tabell 2.1: Richter-skalaen [T1] Verdi på Richters skala < 2 2,0 2,9 3,0 3,9 4,0 4,9 5,0 5,9 Virkning Vanligvis ikke følbart Marginalt følbart Merkes av noen Merkes av de fleste Ødeleggende rystelser Anslått antall skjelv per år > 1 million > ,0 6,9 Ødeleggelser med dødsofre 108 7,0 7,9 Kraftige skjelv, omfattende skader 18 8,0 Store skjelv, katastrofale 1 1,5 skader 2.3 Intensitet Intensiteten nsiteten av jordskjelv oppleves forskjellig fra person til person. Informasjon om skjelvet innhentes fra de involverte, som graderer skjelvet fra 1 til 12. Skalaen viser hva som skjer under et jordskjelv, og har man mange nok målinger vil man kunne få et godt resultat av hvordan skjelvet har virket. Disse målingene brukes også der hvor det finnes gode målestasjoner. I dag brukes en skala med 12 punkter som ble utviklet i starten på 1900-tallet. Denne skalaen finnes det utallige videreutviklinger av i hele verden. Her i Norge bruker vi skalaen EMS98, Europeisk Makroseismisk Skala I tabell 2.2 er intensitetsskalaen EMS98 oppgitt [9]. 14

15 Tabell 2.2: Europeisk Makroseismisk Skala 1998 [T2] Intensitet Navn I Ikke merket II Så vidt merket III Svak IV V VI VII VIII IX X XI XII Stort sett merket Sterk Litt skadelig Skadelig Svært skadelig Destruktivt Svært destruktivt Ødeleggende Totalt ødeleggende Observasjoner (forkortet) Ikke merket. Merket kun av svært få personer i ro innendørs. Merket av noen innendørs. Personer i ro merker svaiing eller lette rystelser. Merket av mange innendørs, utendørs av få. Noen personer vekkes. Vinduer, dører og porselen skrangler. Merket av de fleste innendørs, utendørs av få. Mange vekkes. Noen blir redde. Bygninger ryster gjennomgående. Hengende gjenstander svinger betydelig. Små gjenstander flyttes. Dører og vinduer svinger opp og igjen. Mange blir redde og løper ut. Noen gjenstander faller. Mange hus får mindre, ikke strukturelle skader som hårfine sprekker i mur og små skader på murpuss. De fleste blir redde og løper ut. Møbler flyttes og mange gjenstander faller fra hyller. Mange vanlige, velbygde konstruksjoner får moderate skader. Mindre sprekker i vegger, murpuss løsner, skader på piper. Eldre bygninger kan få sprekker i mur. Mange får problemer med å holde seg oppreist. Mange hus får store sprekker i veggene. Noen vanlige, velbygde konstruksjoner kan få alvorlige brudd i vegger. Noen svakere, eldre bygninger kan kollapse. Generell panikk. Mange svake konstruksjoner kollapser. Selv velbygde konstruksjoner får alvorlige skader. Mange vanlige, velbygde konstruksjoner kollapser. De fleste vanlige, velbygde konstruksjoner kollapser, noen jordskjelvsikre konstruksjoner ødelegges. Nesten alle bygninger ødelegges. 15

16 3 Dynamikk 3.1 Frihetsgrader (degrees of freedom, DOFs) Frihetsgrader for dynamisk analyse er tallet på de uavhengige forskyvninger som er nødvendige for å definere forskjøvet posisjon til massene relativt til deres opprinnelige posisjon. For å beskrive stivhetsegenskaper til en struktur, er det normalt nødvendig å bruke flere DOFs, sammenliknet med hvor mange DOFs som er nødvendig for å vise treghetsegenskapene. For et lineært elastisk system er forholdet mellom sideveis kraften, f s, og den resulterende deformasjon, u, lineær f = ku k er sideveis stivhetskoeffisientenskoeffisienten til systemet; med enheten [N/m] For et uelastisk system gjelder f = f ( u, u& ). 3.2 Dempningskraft s s s Når et system blir satt i svingning vil det ikke fortsette å svinge i det uendelige, men avta med tiden, for til slutt å stoppe helt opp. Dette at svingningene avtar, (amplituden blir mindre og mindre), kalles dempning. I et virkelig system er det mange faktorer som spiller inn på dempningen (energiopptaket). For eksempel friksjon i stålsamlinger, åpning og lukking av mikrosprekker kker i betong og friksjon mellom strukturen og ikke strukturelle elementer. Det å finne og gjøre en matematisk fremstilling av disse energiopptakene er nesten umulig. Derfor brukes det svært idealiserte metoder for å presentere demping i en struktur. I de fleste strukturer med en frihetsgrad, kan den virkelige dempningen på en tilfredsstillende måte idealiseres ved en lineær viskositets demper. Dempingskoeffisienten er valgt slik at energitapet til vibrasjonen er likt det samlede energitapet i hele dempingsmekanismen i en virkelig struktur. Dempingskraften er relativ til hastigheten over den lineære viskositets demper ved = cu& (3.2.1) f D s c er viskositets dempingskoeffisient; som har enheten N m f s og f D er interne krefter som virker mot deformasjonen, u, og hastigheten, ù, respektivt. Resultatet ved bruk av Newtons 2. bevegelseslov blir da p f f = mu&& (3.2.2) s D (3.1.1) (3.1.2) [10a] p er den påførte eksterne dynamiske kraften, ü er akselerasjonen og ù er hastigheten. 16

17 Bevegelseslikningen for et lineært system kan da skrives slik mu&& + cu& + ku = p( t) og for et ikke-lineært system mu&& + cu& + f ( u, u& ) = p( t). 3.3 Udempet system s (3.2.3) (3.2.4) [10b] For et udempet system er den naturlige sirkulære frekvensen ω = n k m rad s (3.3.1) Ved å sette forskyvningen kan likningen for forskyvningen skrives slik Ved å sette forskyvningen u = u(0) og hastigheten ù = ù(0), dvs. ved tiden null, u(0) u( t) = u(0)cosωnt + & sinωnt ω Bevegelsen som er beskrevet i likning (2.3.2) er vist i figur 3.1, og kalles en simpel harmonisk bevegelse n (3.3.2) Figur 3.1 Fri vibrasjon av et system uten demping [F4a] Den naturlige vibrasjons periode T naturlige vibrasjons periode [ ] vibrasjonsfrekvensen T n n 2π = ω n s er relatert til den naturlige sirkulære (3.3.3) 17

18 Den naturlige sykliske frekvensen er 1 ωn fn = [ Hz] el. fn = T 2π n (3.3.4) De naturlige vibrasjons stivheten til strukturen. [10c] De naturlige vibrasjonsegenskaper ω n, T n og f n avhenger bare av 3.4 Stivhetskoeffisienten avhenger bare av massen og Figur 3.2 Stivhetskoeffisienter [F4b] 18

19 4 Konstruksjonens regularitet og symmetri 4.1 Generelt Hvor avansert en seismisk dimensjonering av en bygningskonstruksjon blir avhenger av bygningens regularitet i plan (horisontalt) og oppriss (vertikalt). Et regulært bygg får en mye enklere analyse metode enn et ikke-regulært. Tabell 4.1 forklarer hvilken analysemetode som skal benyttes avhengig av regularitet i plan og/eller oppriss. Tabell 4.1 [T3] [S8] Regularitet Plan Ja Ja Nei Nei Oppriss Ja Nei Ja Nei Tillatt forenkling Konstruksjonsfaktor Lineær-elastisk Modell analyse (for lineær analyse) Plan Tverrkraft Referanseverdi Plan Modal Redusert verdi Romlig Tverrkraft Referanseverdi Romlig Modal Redusert verdi Beregningsmetodene for tverrkraftmetoden og modal responsspektrumanalyse er forklart i henholdsvis kapittel 7 og Regularitet og symmetri i planet En bygning må tilfredsstille alle krav i punktene 1-9 i NS-EN 1998 pkt [S8]. Under følger et utdrag og forklaringer til de viktigste kriterier for regularitet i planet. Bygningen skal være tilnærmet symmetrisk om to ortogonale akser med hensyn til masse og stivhet. Figur 4.1 viser gode og dårlige løsninger for konstruering av bygninger utsatt for seismiske laster. Som vi ser av figuren på neste side er det plasseringen av massesenteret og stivhetssenteret i forhold til hverandre som avgjør om en konstruksjon er godt eller dårlig konstruert. Så lenge stivhetssenteret og massesenteret sammenfaller eller er i nærheten av hverandre får man en tilnærmet symmetrisk konstruksjon. Hvis massesenteret og stivhetssenteret er langt fra hverandre vil bygget bli utsatt for torsjon ved påføring av seismiske laster og bygget vil få deformasjoner. 19

20 Figur 4.1 Ulike sideveisbæresystem i plan [F5a] Utformingen av planet skal være kompakt, dvs. at hver etasjeskiller skal kunne omgis av en konveks polygonal linje (utbuet mangekantet linje). Etasjeskillerens stivhet må i forbindelse med vertikale konstruksjonsdelers sideveis stivhet være stor, slik at deformasjon av etasjeskiller har liten innvirkning nvirkning på fordelingen av kreftene blant de vertikale konstruksjonsdelene. Forholdet mellom bygningens største og minste side i planet skal ikke være større enn 4. LMAX Bygningens slankhet, λ = 4 L MIN Selv om standarden sier at alle punktene skal være oppfylt både for regularitet og symmetri i plan og oppriss for at bygget skal kunne regnes som regulært, står det i den interne jordskjelvveiledning for Multiconsult: I lavseismiske soner, som det meste av Norge, er det ikke forventet at man oppfyller alle disse betingelsene. Det er viktig at konstruktøren forstår følgende og effektene med hensyn til dynamisk respons ved valgte avstivningssystem [6b]. 20

21 4.3 Vertikal regularitet og symmetri For at en bygning skal kunne kategoriseres som regulær i oppriss etter NS-EN 1998 må punktene 1-5 i pkt [S8] være oppfylt. Under følger et utdrag og forklaringer til de viktigste punktene. - Avstivningssystemet bør gå kontinuerlig gjennom hele bygningen. - Stivheten og massen til de forskjellige etasjene må være konstant eller reduseres gradvis. Figur 4.2 Vertikal symmetri og regelmessighet [F5b] - Hvis det finnes tilbaketrukkede deler(etasjer) med aksial symmetri skal den tilbaketrukkede delen av et plan ikke være større en 20% av planet under.(se fig. 4.3 a) - Hvis en tilbaketrukket del er på de nederste 15% av bygget skal ikke den tilbaketrukkede delen være større enn 50% av forrige plan, men hvis den tilbaketrukkede delen er over de nederste 15% av bygget kan kun 20% av forrige plan tilbaketrekkes.(se fig. 4.3 b og c) - Ved usymmetrisk tilbaketrekking kan totalt 30% av nederste plan mål tilbaketrekkes for hele bygget, og de enkelte tilbaketrukkede delen kan ikke være større en 10% av forrige plan (se fig. 4.3 d). 21

22 Figur 4.3 Kriterier for regularitet av bygninger med tilbaketrukkede deler. [F6] [S8] 22

23 5 Duktilitet Duktilitet kommer av det latinske ordet: ductilis, den som lar seg lede. I internveiledningen i Multiconsult Dimensjonering for jordskjelv, er duktilitet definert på følgende måte Den evne en konstruksjon eller deler av den har til å deformere seg utover elastisk grense uten å miste sin styrke. Duktilitet blir beskrevet av ulike faktorer i de ulike standardene. I NS bruker man faktoren k Q, for å beskrive duktiliteten, mens man bruker faktoren q i NS-EN Man har flere ulike typer duktilitetsnivåer. Disse nivåene er lav duktilitet (LD), medium duktilitet (MD) og høy duktilitet (HD). Disse nivåene klassifiseres etter hvor mye energi konstruksjonen klarer å ta opp. Lav duktilitet (høy k Q - og lav q-verdi) vil si at lite energi blir tatt opp, mens høy duktilitet (lav k Q - og høy q-verdi) vil si at mye energi kan tas opp. Konstruksjonsfaktorene k Q og q velges av konstruktøren. Konstruktøren må imidlertid kunne dokumentere at konstruksjonen tilfredsstiller kravene for valgt konstruksjonsfaktor. Dette skal gjøres både lokalt og globalt for konstruksjonen. Mer om konstruksjonsfaktoren står nærmere beskrevet i kapittel 7. Konstruksjoner opptar bevegelser, som seismisk akselerasjon, elastisk eller elastoplastisk. Når et bygg blir utsatt for jordskjelv vil bygget forflytte seg i flere gjentatte bevegelser. Bygget må derfor dimensjoneres for å kunne gjentatte ganger gå over i plastisk tilstand, med tilhørende deformasjoner som fører til skjevstilling, momenter og rotasjon. Ved et jordskjelv vil massene i grunnen settes i bevegelse, med enten negativ eller positiv akselerasjon. Disse bevegelsene vil gå inn i konstruksjonen via løsmasser. Man må derfor vurdere løsmassenes egenskaper på en ordentlig måte. Noen konstruksjoner har ingen eller liten evne til å absorbere energi. Vanligvis blir de ustabile ved store forskyvninger og de mister sammenføyningen sin. Det er flere grunner til at konstruksjonen ikke klarer å ta opp energi. Disse grunnene kan være geometriske forhold, svake materialer i visse deler i konstruksjonen eller at sammenføyningene ryker. Se figur 5.1 for to eksempler på konstruksjoner med ingen eller liten evne til å absorbere energi [11]. Figur 5.1: To eksempler på konstruksjoner med ingen eller liten evne til å absorbere energi. [F7] 23

24 6 Lastkombinasjoner 6.1 Generelt Jordskjelv er en ulykkeshendelse og dermed en ulykkeslast, som etter NS 3490 skal kombineres med andre laster. Tabell 6.1 forklarer hvordan lastene skal kombineres. Vindlaster skal ikke regnes samtidig som jordskjelvlaster, mens snølaster kun skal regnes med 20% av maksimalverdi. Nyttelaster (dimensjonerende og andre variable laster i tab. 6.1) avhenger av type bygg når det skal beregnes i forbindelse med jordskjelvlaster. Lastfaktoren for nyttelasten er gitt i tabell 6.2 for forskjellige bygg. Last- og materialfaktorer for jordskjelvhendelsen er mye lavere en last- og materialfaktorene for den ordinære bruddgrensetilstanden. Det vil si at kreftene som jordskjelvsituasjonen lager kan være mye større enn kreftene fra den ordinære bruddgrensetilstanden uten at jordskjelvet blir dimensjonerende. Materialfaktorer for konstruksjoner i ulykkessituasjon er angitt i tabell 6.3 [6c]. Jordskjelvlast 1,0 1,0 Lager 0,8 Tabell 6.1 Kombinasjonsfaktorer med andre laster [T4] [S9] Permanente laster Dimensjonerende variabel last Andre variable laster For krefter 1,0 0,0-0,8 0,0 0,8 i konstruksjoner (se tab ) (se tab ) For brudd i grunnen 1,0 1,0 1,0 Tabell 6.2 Lastfaktorer avhengig av type bygg [T5] [S0] Type Boliger Kontorer Forsamlingslokale Butikker bygg Lastfaktor 0,3 0,3 0,6 0,6 Tabell 6.3 Materialfaktorer [T6] [S2] [S3] [S5] [S6] [S7] [S9] Materiale Stål Betong Tre Mur Aluminium Standard NS- EN 1993 NS- EN 1992 NS- EN 1995 NS- EN 1996 NS- EN 1999 Faktor 1,0 1,2 betong 1,1 1,0 1,4 2,0 1,0 armert Fundamentering NS-EN ,3 24

25 6.2 Ortogonale retninger En konstruksjon som utsettes for seismiske laster settes vanligvis inn i et kartesisk koordinatsystem med ortogonale akser. X og y-retningen antas da å være lengde og bredde i konstruksjonen. Retningene til et skjelv vil naturligvis ikke sammenfalle med det ortogonale aksesystemet, derfor brukes beregningsfaktorer for å ta hensyn til dette. Her regnes skjelvets primærretning med faktor 1,0 og sekundærretningene med faktor 0,3. Hvis bygningen er symmetrisk og regelmessig både i planet og vertikalt kan faktoren for sekundærretningen reduseres til 0,1. Vanligvis trenger man ikke ta hensyn til vertikale rystelser i Norge, har bygningen normale spenn og befinner seg i et lavseismisk område settes beregningsfaktoren E dz =0 [6d]. 25

26 Hovedprosjekt Forenklet metode etter NS-EN Egenperiode Egenperioden til bygget er den tiden det tar for bygget å forflytte seg fra start, ut av posisjon og tilbake igjen. Figur 7.1 Betingelser for å kunne finne egenperioden etter en forenklet metode [F8] Byggets første og laveste egenverdi kan tilnærmes med følgende formel: T 1 = C t H 3 / 4 NS-EN 1998 pkt (3) [S8], hvis Bygningens høyde h 40m 4 2,0 Bygget er innenfor regularitet og symmetri betingelsene i NS-EN 1998 pkt Bygget tilfredsstiller betingelsene i NS-EN 1998 Tab C t C t er en koeffisient som er avhengig av konstruksjonens avstivningssystem og materiale. Se tabell 7.1. Tabell 7.1 [T7] [S8] C t 0,085 0,075 0,05 Avstivningssystem Momentstive romlige stålrammer Momentstive romlige betongrammer For alle andre konstruksjoner 26

Hvordan prosjektere for Jordskjelv?

Hvordan prosjektere for Jordskjelv? Hvordan prosjektere for Jordskjelv? Norsk Ståldag 2006 Øystein Løset Morten Rotheim, Contiga AS 1 Hvordan prosjektere for Jordskjelv? Jordskjelv generelt Presentasjon av prosjektet: Realistisk dimensjonering

Detaljer

Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser

Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser Identifisering av grunntype etter Eurokode 8, og seismisk grunnresponsanalyser Øyvind Torgersrud Innhold Del I Lokal jordskjelvrespons Definisjon responsspektrum Del II Grunntyper etter Eurokode 8 Definisjon

Detaljer

Seismisk dimensjonering av prefab. konstruksjoner

Seismisk dimensjonering av prefab. konstruksjoner Seismisk dimensjonering av prefab. konstruksjoner Geir Udahl Konstruksjonssjef Contiga Agenda DCL/DCM Modellering Resultater DCL vs DCM Vurdering mhp. prefab DCL Duktiltetsfaktoren q settes til 1,5 slik

Detaljer

Eurokode 8, introduksjon, kontekst og nasjonalt tillegg

Eurokode 8, introduksjon, kontekst og nasjonalt tillegg Eurokode 8, introduksjon, kontekst og nasjonalt tillegg Roald Sægrov Forskjellig praksis Byggteknisk forskrift Byggteknisk forskrift TEK 10, 10-2: "Grunnleggende krav til byggverkets mekaniske motstandsevne

Detaljer

Dimensjonering av bygg som påvirkes av seismiske belastninger

Dimensjonering av bygg som påvirkes av seismiske belastninger Dimensjonering av bygg som påvirkes av seismiske belastninger Hovedprosjektrapport Våren 29 Gruppe H9B8 Espen K. Jensen Henning Carlsen Stian Kristiansen Ole-Petter Jensen http://prosjektexpo.hiof.no/expo9/h9b8/

Detaljer

Seismisk dimensjonering av pelefundamenter

Seismisk dimensjonering av pelefundamenter Seismisk dimensjonering av pelefundamenter Amir M. Kaynia Oversikt Jordskjelvpåvirkning i peler og EC8s krav Jord konsktruksjon samvirke (SSI) Beregning av stivheter Ikke lineære stivheter lateral kapasitet

Detaljer

Seismisk analyse og dimensjonering av støttekonstruksjoner og skråningsstabilitet

Seismisk analyse og dimensjonering av støttekonstruksjoner og skråningsstabilitet Seismisk analyse og dimensjonering av støttekonstruksjoner og skråningsstabilitet Kristoffer Skau Støttekonstruksjoner Hva sier standarden? I hht. standaren kan det sees bort fra seismiske krefter for

Detaljer

Forord. Til slutt vil jeg takke mine venner og familie som har støttet meg gjennom denne prosessen. Tarawat Rasuli

Forord. Til slutt vil jeg takke mine venner og familie som har støttet meg gjennom denne prosessen. Tarawat Rasuli Forord Denne rapporten er skrevet som en avsluttende del av et masterstudium innen byggteknikk og arkitektur ved Norges miljø -og biovitenskapelige universitet. Oppgaven har blitt gjennomført våren 15.

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE TOLKNING OG HÅNDTERING AV SEISMISKE SKIVEKREFTER

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE TOLKNING OG HÅNDTERING AV SEISMISKE SKIVEKREFTER DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Konstruksjoner og Materialer / Bygg Vårsemesteret, 2015 Åpen Forfatter: Kristian Olav Sæterdal Bøyum Fagansvarlig: Sven

Detaljer

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2.

Følgende systemer er aktuelle: Innspente søyler, rammesystemer, skivesystemer og kombinasjonssystemer. Se mer om dette i bind A, punkt 3.2. 52 B8 STATISK MODELL FOR ASTININGSSYSTEM Hvilke feil er egentlig gjort nå? Er det på den sikre eller usikre siden? Stemmer dette med konstruksjonens virkemåten i praksis? Er den valgte modellen slik at

Detaljer

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner

Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Prinsipper bak seismisk dimensjonering av betongkonstruksjoner Max Milan Loo Innhold Generelle dimensjoneringsprinsipper Duktile/jordskjelvsikre betongkonstruksjoner Betongoppførsel under jordskjelvspåvirkning

Detaljer

Innføring av EUROKODER. Stålpeledagene 2010 Ruukki 2010-04-26. Roald Sægrov Standard Norge. 2010-04-26 Roald Sægrov, Standard Norge

Innføring av EUROKODER. Stålpeledagene 2010 Ruukki 2010-04-26. Roald Sægrov Standard Norge. 2010-04-26 Roald Sægrov, Standard Norge Innføring av EUROKODER Stålpeledagene 2010 Ruukki 2010-04-26 Roald Sægrov Standard Norge Eurokoder, generelt NS-EN 1990 Basis for struc. design NS-EN 1998 Jordskjelv (6) NS-EN 1991 Laster på konstruksjoner

Detaljer

Vedlegg A. Innhold RIG NOT 002_rev00 Vedlegg A 14. november 2014 Side 1 av 4

Vedlegg A. Innhold RIG NOT 002_rev00 Vedlegg A 14. november 2014 Side 1 av 4 Lade alle 67 69 Forutsetninger for prosjektering multiconsult.no Vedlegg A Innhold... 2 1.1 Normativt grunnlag for geoteknisk vurdering... 2 1.2 Geotekniske problemstillinger... 2 1.3 TEK 10 7, Sikkerhet

Detaljer

MULTICONSULT. 1. Innledning. 2. Grunntype. Gystadmarka Boligsameie Grunntype og responsspektrum

MULTICONSULT. 1. Innledning. 2. Grunntype. Gystadmarka Boligsameie Grunntype og responsspektrum 1. Innledning Peab Bolig AS skal etablere boligblokkeri byggefelt B2 ved Gystadmarka på Jessheim i Ullensaker kommune. Blokkene planlegges med 4.etasjer og uten kjeller, og skal fundamenteres på peler

Detaljer

Innføring i seismisk jord-konstruksjonssamvirke (fokus på konstruksjonsdynamikk) Innhold

Innføring i seismisk jord-konstruksjonssamvirke (fokus på konstruksjonsdynamikk) Innhold Innføring i seismisk jord-konstruksjonssamvirke (fokus på konstruksjonsdynamikk) Farzin Shahrokhi Alexander Ziotopoulos Innhold Krav til SSI SSI - Definisjon SSI - effekter SSI Beregningsmetodikk Impedansanalyse

Detaljer

Statiske Beregninger for BCC 800

Statiske Beregninger for BCC 800 Side 1 av 12 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Pelefundamentering NGF Tekna kurs april 2014

Pelefundamentering NGF Tekna kurs april 2014 Pelefundamentering NGF Tekna kurs april 2014 Veiledning gjennom det greske alfabetet regelverket Astri Eggen, NGI 19 1 Agenda Regelverket peler Viktig standarder og viktige punkt i standardene Eksempler

Detaljer

6. og 7. januar PRAKTISK BETONGDIMENSJONERING

6. og 7. januar PRAKTISK BETONGDIMENSJONERING 6. og 7. januar PRAKTISK BETONGDIMENSJONERING (9) Fundamentering- pelehoder www.betong.net Øystein Løset, Torgeir Steen, Dr. Techn Olav Olsen 2 KORT OM MEG SELV > 1974 NTH Bygg, betong og statikk > ->1988

Detaljer

Statiske Beregninger for BCC 250

Statiske Beregninger for BCC 250 Side 1 av 7 DEL 1 - GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER 1.1 GENERELT Det er i disse beregningene gjort forutsetninger om dimensjoner og fastheter som ikke alltid vil være det man har i et aktuelt

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Tov Ramberg

DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Tov Ramberg DET TEKNISK-NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Konstruksjoner og materialer, bygg. Vårsemesteret, 2011 Åpen Forfatter: Tov Ramberg (signatur forfatter) Fagansvarlig:

Detaljer

Uforming av duktile knutepunkt i stål l med hensyn påp

Uforming av duktile knutepunkt i stål l med hensyn påp Uforming av duktile knutepunkt i stål l med hensyn påp jordskjelv Norsk Ståldag 13. oktober 2004 Gunnar Solland Det Norske Veritas Bakgrunn En ny standard NS 3491-12 12 Seismisk påvirkning p har vært påp

Detaljer

Seismisk dimensjonering av grunne fundamenter

Seismisk dimensjonering av grunne fundamenter Seismisk dimensjonering av grunne fundamenter Farzin Shahrokhi EC7 - Fundamentsystemer EC7 1 krever følgende i bruddgrensetilstand (ULS) for grunne fundamenter: Totalstabilitet Sikkerhet mor bæreevne brudd

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

HiN Eksamen IST 1484 18.12.03 Side 4

HiN Eksamen IST 1484 18.12.03 Side 4 HiN Eksamen IST 1484 18.1.3 Side 4 Materialer og mekanikk. Teller 5% av eksamen Poengangivelsen viser kun vektingen mellom de fire oppgavene. Innenfor hver oppgave er det læringsmålene som avgjør vektingen.

Detaljer

Limtre Bjelkelags- og sperretabeller

Limtre Bjelkelags- og sperretabeller Pb 142 2391 Moelv www.limtre.no pr juni 2005 Forutsetninger for bjelkelags- og sperretabeller Tabellene bygger på følgende norske standarder og kvaliteter: NS 3470-1, 5.utg. 1999, Prosjektering av trekonstruksjoner

Detaljer

Eurokoder Dimensjonering av trekonstruksjoner

Eurokoder Dimensjonering av trekonstruksjoner Eurokoder Dimensjonering av trekonstruksjoner NS-EN 1995 NS-EN 1990 NS-EN 338 NS-EN 1194 NS-EN 1991 Ved Ingvar Skarvang og Arnold Sagen 1 Beregningseksempel 1 -vi skal beregne sperrene på dette huset laster

Detaljer

2 Normativt grunnlag for geoteknisk prosjektering

2 Normativt grunnlag for geoteknisk prosjektering Det skal graves ned til kote +39,70 for å etablere byggegrop for bygging av pumpestasjonen, det blir ca. 6 m gravedybde fra eksisterende terreng. Pumpestasjonens utvendige mål er ikke avklart i detalj.

Detaljer

HRC T-Hodet armering Fordeler for brukerne

HRC T-Hodet armering Fordeler for brukerne HIGH PERFORMANCE REINFORCEMENT PRODUCTS HRC T-Hodet armering Fordeler for brukerne HRC T-hodet armering har spesielle egenskaper som skiller den fra konvensjonell armering. HRC T-hoder forankrer den fulle

Detaljer

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning.

B12 SKIVESYSTEM 141. Figur B Oppriss av veggskive. Plassering av skjøtearmering for seismisk påkjenning. 12 KIVEYTEM 141 kjærkraft Den horisontale skjærkraften finnes som regel enkelt samtidig med moment og aksialkraft se figur 12.72. vært ofte vil skivene ha så stor aksiallast at friksjonseffekten µ N Ed

Detaljer

7 Rayleigh-Ritz metode

7 Rayleigh-Ritz metode 7 Rayleigh-Ritz metode Innhold: Diskretisering Rayleigh-Ritz metode Essensielle og naturlige randbetingelser Nøyaktighet Hermittiske polynomer Litteratur: Cook & Young, Advanced Mechanics of Materials,

Detaljer

Gangbro Kjøkøysund. Forprosjekt rapport

Gangbro Kjøkøysund. Forprosjekt rapport Bilde: (Kjøkøysund bro) Gangbro Kjøkøysund Forprosjekt rapport Denne rapporten er første del i hovedprosjektet som omhandler komposittgangbro over Kjøkøysund. I denne rapporten framlegger vi hovedmål for

Detaljer

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske

4.4.5 Veiledning i valg av søyledimensjoner I det følgende er vist veiledende dimensjoner på søyler for noen typiske A HJELPEMIDLER TIL OVERSLAGSDIMENSJONERING Verdier for β er angitt for noen typiske søyler i figur A.. Verdier for β for andre avstivningsforhold for søyler er behandlet i bind B, punkt 1.2... Veiledning

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

DET TEKNISK NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Studieprogram/spesialisering: Vår...semesteret, 20...

DET TEKNISK NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE. Studieprogram/spesialisering: Vår...semesteret, 20... DET TEKNISK NATURVITENSKAPELIGE FAKULTET MASTEROPPGAVE Studieprogram/spesialisering: Vår...semesteret, 20... Åpen / Konfidensiell Forfatter: Nevzet Muratovic (signatur forfatter) Faglig ansvarlig: Ove

Detaljer

Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter:

Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter: Avdeling for ingeniørfag PROSJEKTRAPPORT Prosjektkategori: Forprosjektrapport Fritt tilgjengelig X Omfang i studiepoeng: 20 Fritt tilgjengelig etter: Fagområde: Konstruksjonsteknikk Rapporttittel: Kvalitetssikring

Detaljer

Eurokode 5. Konstruksjonskurs Eurokode 5 Generelt om Eurokode. Treteknisk Sigurd Eide Onsdag 9. april 2014 NS-EN :2004/NA:2010/A1:2013

Eurokode 5. Konstruksjonskurs Eurokode 5 Generelt om Eurokode. Treteknisk Sigurd Eide Onsdag 9. april 2014 NS-EN :2004/NA:2010/A1:2013 Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner Del 1-1 Allmenne regler og regler for bygninger Konstruksjonskurs Eurokode 5 Generelt om Eurokode Treteknisk

Detaljer

Eurokode 5 en utfordring for treindustrien

Eurokode 5 en utfordring for treindustrien Eurokode 5 en utfordring for treindustrien Bruk av Eurokode 5- generell gjennomgang Treteknisk 2013.10.15 Sigurd Eide Eurokode 5 NS-EN 1995-1-1:2004/NA:2010/A1:2013 Eurokode 5: Prosjektering av trekonstruksjoner

Detaljer

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket

Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Prøving av materialenes mekaniske egenskaper del 1: Strekkforsøket Frey Publishing 21.01.2014 1 Prøvemetoder for mekaniske egenskaper Strekkprøving Hardhetsmåling Slagseighetsprøving Sigeforsøket 21.01.2014

Detaljer

Praktisk betongdimensjonering

Praktisk betongdimensjonering 6. og 7. januar (7) Veggskiver Praktisk betongdimensjonering Magnus Engseth, Dr.techn.Olav Olsen www.betong.net www.rif.no 2 KORT OM MEG SELV > Magnus Engseth, 27 år > Jobbet i Dr.techn.Olav Olsen i 2.5

Detaljer

Kapittel 1:Introduksjon - Statikk

Kapittel 1:Introduksjon - Statikk 1 - Introduksjon - Statikk Kapittel 1:Introduksjon - Statikk Studér: - Emnebeskrivelse - Emneinformasjon - Undervisningsplan 1.1 Oversikt over temaene Skjærkraft-, Moment- og Normalkraft-diagrammer Grunnleggende

Detaljer

RIG 01, Geoteknisk rapport

RIG 01, Geoteknisk rapport IDD SKOLE RIG 01, Geoteknisk rapport Side 1 av 13 1 INNLEDNING... 3 2 BAKGRUNN FOR PROSJEKTET... 4 3 GRUNNFORHOLD... 4 3.1 Topografi... 4 3.2 Dybde til fjell... 5 3.3 Løsmasser... 5 3.4 Grunnvannstand...

Detaljer

Konstruksjoner Side: 1 av 10

Konstruksjoner Side: 1 av 10 Konstruksjoner Side: 1 av 10 1 HENSIKT OG OMFANG...2 2 LASTBILDE...3 3 GENERELT OM STÅLMASTER...4 3.1.1 B-mast...4 3.1.2 H-mast...4 4 KREFTER VED FOTEN AV MAST (TOPP AV FUNDAMENT)...5 4.1 Kl-fund program...5

Detaljer

Praktiske opplysninger

Praktiske opplysninger Praktiske opplysninger Prosjektering av stålkonstruksjoner iht 84252281 Tromsø: Tirsdag 14. oktober. Quality Hotel Saga 84254281 Trondheim: Tirsdag 4. november. Britannia Hotel 84257281 Oslo: Tirsdag 2.

Detaljer

Seismisk analyse av endring / påbygg til eksisterende konstruksjoner

Seismisk analyse av endring / påbygg til eksisterende konstruksjoner Seismisk analyse av endring / påbygg til eksisterende konstruksjoner Arild Bølviken Røberg Hvilke krav gjelder til nye og eksisterende konstruksjoner? 1. Plan og bygningsloven (PBL) PBL 29-5: "Ethvert

Detaljer

Hva er en sammensatt konstruksjon?

Hva er en sammensatt konstruksjon? Kapittel 3 Hva er en sammensatt konstruksjon? 3.1 Grunnlag og prinsipp Utgangspunktet for å fremstille sammensatte konstruksjoner er at vi ønsker en konstruksjon som kan spenne fra A til B, og som samtidig

Detaljer

DIMENSJONERING AV FLERETASJES TREHUS. Sigurd Eide, Splitkon AS

DIMENSJONERING AV FLERETASJES TREHUS. Sigurd Eide, Splitkon AS DIMENSJONERING AV FLERETASJES TREHUS Sigurd Eide, Splitkon AS SPLITKON AS Limtre og massivtre 15 ansatte Ligger i Modum 90 km fra Oslo Omsetning ca 50 Mill. Prosjekter: -Prosjektering Dimensjonering, Tegning

Detaljer

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS

(8) Geometriske toleranser. Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS (8) Geometriske toleranser Geometriske toleranser Pål Jacob Gjerp AF Gruppen Norge AS Kursdagene 2011 Ny norsk standard NS-EN 13670: Utførelse av betongkonstruksjoner - konsekvenser og bruk av nytt regelverk

Detaljer

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen.

~ høgskolen i oslo. sa 210 B Dato: 6. desember -04 Antall oppgaver 7 3BK. Emne: Emnekode: Faglig veileder: Hanmg/Rolfsen/Nilsen. I DIMENSJONERING I -~ ~ høgskolen i oslo Emne: Il ~Gruppe(r) 3BK Eksamensoppgaven Antall sider (inkl. består av: forsiden): _L Tillatte hjelpemidler Alle skriftlige kilder. Enkel ikkeprogrammerbar Emnekode:

Detaljer

Fundamenteringsplan, Skogtun, Ullensaker kommune

Fundamenteringsplan, Skogtun, Ullensaker kommune Ullensaker kommune GEOTEKNISK RAPPORT Fundamenteringsplan, Skogtun, Ullensaker kommune Rapport nr. 301 00 81-2 2015-01-09 Oppdragsnr.: 301 00 81 Dokument nr.301 00 81-2 00 2015-01-09 Geoteknisk rådgiving

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Status på utgivelse av Eurokoder

Status på utgivelse av Eurokoder Nye Eurokoder. Status Ståldag 2008 Gunnar Solland, Det e Veritas Onsdag 29. oktober, Grand Hotel, Oslo Status på utgivelse av Eurokoder I det følgende vil status på de viktigste standardene vedrørende

Detaljer

Beregning av konstruksjon med G-PROG Ramme

Beregning av konstruksjon med G-PROG Ramme Side 1 av 11 Beregning av konstruksjon med G-PROG Ramme Introduksjon G-Prog Ramme er et beregningsprogram for plane (2-dimensjonale) ramme-strukturer. Beregningene har følgende fremgangsmåte: 1) Man angir

Detaljer

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører

BUBBLEDECK. Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer. Veileder for Rådgivende ingeniører BUBBLEDECK Beregning, dimensjonering og utførelse av biaksiale hulldekkelementer Veileder for Rådgivende ingeniører 2009 Veileder for Rådgivende ingeniører Denne publikasjon er en uavhengig veileder for

Detaljer

Preben Aanensen. Innflytelsen av stivhet til stabiliserende system utsatt for seismisk last, med hovedvekt på takskiver basert på Lett-Tak elementer.

Preben Aanensen. Innflytelsen av stivhet til stabiliserende system utsatt for seismisk last, med hovedvekt på takskiver basert på Lett-Tak elementer. UNIVERSITETET FOR MILJØ- OG BIOVITENSKAP INSTITUTT FOR MATEMATIKK OG TEKNOLOGI (IMT) MASTEROPPGAVE HØST 2013, 30 STP. Innflytelsen av stivhet til stabiliserende system utsatt for seismisk last, med hovedvekt

Detaljer

Nye Molde sjukehus. NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2

Nye Molde sjukehus. NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2 Nye Molde sjukehus NOTAT Bærestruktur og avstivningssystem 1 INNLEDNING...2 2 GRUNNLEGGENDE FORUTSETNINGER...2 2.1 BESKRIVELSE AV BYGNINGEN...2 2.2 PÅLITELIGHETSKLASSE OG KONTROLLKLASSE...2 2.3 BESTANDIGHET

Detaljer

4.3.4 Rektangulære bjelker og hyllebjelker

4.3.4 Rektangulære bjelker og hyllebjelker 66 Konstruksjonsdetaljer Oppleggsdetaljene som benyttes for IB-bjelker er stort sett de samme som for SIB-bjelker, se figurene A 4.22.a og A 4.22.b. 4.3.4 Rektangulære bjelker og yllebjelker Generelt Denne

Detaljer

Klassifisering, modellering og beregning av knutepunkter

Klassifisering, modellering og beregning av knutepunkter Side 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter Del 1 - Konstruksjonsanalyse og klassifisering av knutepunkter

Detaljer

Fagdag for lærere i matematikk Matematikk i bruprosjektering. 03.05.2013 Matematikk i bruprosjektering - Trondeim

Fagdag for lærere i matematikk Matematikk i bruprosjektering. 03.05.2013 Matematikk i bruprosjektering - Trondeim Fagdag for lærere i matematikk Matematikk i bruprosjektering Om oss Foredragsholder Kristian Berntsen Kvaløya videregående skole i Tromsø, ferdig 2002 Tok 2. klasse som utvekslingsstudent i USA Høgskolen

Detaljer

FORSKALINGSBLOKKER STATISKE BEREGNINGER PROSJEKTERING OG UTFØRELSE FORSKALINGSBLOKKER 01-04-2011 1 (10) Oppdragsgiver Multiblokk AS

FORSKALINGSBLOKKER STATISKE BEREGNINGER PROSJEKTERING OG UTFØRELSE FORSKALINGSBLOKKER 01-04-2011 1 (10) Oppdragsgiver Multiblokk AS 1 (10) FORSKALINGSBLOKKER Oppdragsgiver Multiblokk AS Rapporttype Dokumentasjon 01-04-2011 FORSKALINGSBLOKKER STATISKE BEREGNINGER PROSJEKTERING OG UTFØRELSE PROSJEKTERING OG UTFØRELSE 2 (10) Oppdragsnr.:

Detaljer

MEK4510 Svingninger i konstruksjoner

MEK4510 Svingninger i konstruksjoner MEK4510 Svingninger i konstruksjoner H. Osnes Avdeling for mekanikk, Matematisk institutt Universitetet i Oslo MEK4510 p. 1 Generelt om kurset Informasjon tilgjengelig fra: www.uio.no/studier/emner/matnat/math/mek4510/v11/

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Geoteknikk KONTAKTPERSON Tore Tveråmo

Geoteknikk KONTAKTPERSON Tore Tveråmo NOTAT OPPDRAG Tjalghallen Brønnøysund DOKUMENTKODE 416683 RIG NOT 001 EMNE Geoteknisk grunnlag for totalentreprise TILGJENGELIGHET Åpen OPPDRAGSGIVER Tjalghallen AS ANSVARLIG ENHET 3012 Trondheim Geoteknikk

Detaljer

MULTICONSULT. Stålpeldag 2011. Tine meieriet Seismisk dimensjonering av peler etter Eurokode 8. Farzin Shahrokhi Multiconsult as

MULTICONSULT. Stålpeldag 2011. Tine meieriet Seismisk dimensjonering av peler etter Eurokode 8. Farzin Shahrokhi Multiconsult as MULTICONSULT Totalleverandør av rådgivningstjenester kompetent - kreativ - komplett Stålpeldag 2011 Tine meieriet Seismisk dimensjonering av peler etter Eurokode 8 Farzin Shahrokhi Multiconsult as Norsk

Detaljer

God økologisk tilstand i vassdrag og fjorder

God økologisk tilstand i vassdrag og fjorder Norsk vann / SSTT Fagtreff «Gravefrie løsninger i brennpunktet» Gardermoen, 20. oktober 2015 PE-ledninger og strømpeforinger av armert herdeplast: Hva er ringstivhet? Krav til ringstivhet Gunnar Mosevoll,

Detaljer

Klassifisering, modellering og beregning av knutepunkter

Klassifisering, modellering og beregning av knutepunkter Side 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter dr.ing. Bjørn Aasen 1 Konstruksjonsanalyse, klassifisering og beregning av knutepunkter Del 1 - Konstruksjonsanalyse og klassifisering

Detaljer

Dynamisk Analyse av Eksisterende Bygninger

Dynamisk Analyse av Eksisterende Bygninger Dynamisk Analyse av Eksisterende Bygninger Eurokode 8 Del 1 og Del 3 Pål Helge Holum Bygg- og miljøteknikk (-årig) Innlevert: desember 14 Hovedveileder: Anders Rönnquist, KT Medveileder: Svein N Remseth,

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109

7.2 RIBBEPLATER A7 ELEMENTTYPER OG TEKNISKE DATA 109 A7 ELEMENTTYPER OG TEKNISKE DATA 19 7.2 RIBBEPLATER Generelt DT-elementer har lav egenlast og stor bæreevne, med spennvidder inntil 24 m. Elementene brukes til tak, dekker, bruer, kaier og enkelte fasadeløsninger.

Detaljer

Dimensjonering av fleretasjes trehus. Harald Landrø, Tresenteret

Dimensjonering av fleretasjes trehus. Harald Landrø, Tresenteret Dimensjonering av fleretasjes trehus Harald Landrø, Tresenteret Mange takk til Sigurd Eide, Treteknisk Rune Abrahamsen, Sweco Kristine Nore, Moelven Massivtre For bruk av bilder og tekst som underlag til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

Elastisitetens betydning for skader på skinner og hjul.ca.

Elastisitetens betydning for skader på skinner og hjul.ca. 2. ARENA Narvik, 26. -27. november 2013 Elastisitetens betydning for skader på skinner og hjul.ca. Foreleser: Kjell Arne Skoglund Seniorforsker, dr.ing. jernbaneteknikk, Infrastruktur Kontakt: Kjell.Arne.Skoglund@sintef.no,

Detaljer

EKSAMEN I EMNE TKT4116 MEKANIKK 1

EKSAMEN I EMNE TKT4116 MEKANIKK 1 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: BOKMÅL Førsteamanuensis Arild H. Clausen, 482 66 568 Førsteamanuensis Erling Nardo Dahl, 917 01 854 Førsteamanuensis Aase Reyes,

Detaljer

M U L T I C O N S U L T

M U L T I C O N S U L T 13-11. Byggverk skal, med hensyn til vibrasjoner, plasseres, prosjekteres og utføres slik at det sikres tilfredsstillende lyd- og vibrasjonsforhold i byggverk og på uteoppholdsareal avsatt for rekreasjon

Detaljer

Barduneringskonsept system 20, 25 og 35

Barduneringskonsept system 20, 25 og 35 Introduksjon Barduneringskonsept system 20, 25 og 35 Det skal utarbeides en beregning som skal omhandle komponenter i forbindelse med bardunering av master. Dimensjonering av alle komponenter skal utføres

Detaljer

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER

D4 BRANNTEKNISK DIMENSJONERING AV ELEMENTER 26 Innstøpningsgods av ubrennbart materiale kan benyttes i steget, forutsatt at avstanden mellom innstøpningsgods og armeringen ikke er mindre enn krav til armeringsdybde. Innstøpningsgods og sveiseplater

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet

Detaljer

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel

BWC 80 500. MEMO 724a. Søyler i front Innfesting i bærende vegg Eksempel INNHOLD BWC 80 500 Side 1 av 10 GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... GENERELT... LASTER... BETONG OG ARMERING... 3 VEGG OG DEKKETYKKELSER... 3 BEREGNINGER... 3 LASTER PÅ BWC ENHET... 3 DIMENSJONERING

Detaljer

Håndbok N400 Bruprosjektering

Håndbok N400 Bruprosjektering Håndbok N400 Bruprosjektering Kapittel 5: Laster Forskrift for trafikklast Kapittel 6: Konstruksjonsanalyse Kristian Berntsen Hva er nytt? Trafikklaster er flyttet ut til en egen forskrift Alt om fergekai

Detaljer

Oppgave for Haram Videregående Skole

Oppgave for Haram Videregående Skole Oppgave for Haram Videregående Skole I denne oppgaven er det gitt noen problemstillinger knyttet til et skip benyttet til ankerhåndtering og noen av verktøyene, hekkrull og tauepinne, som benyttes om bord

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve

Detaljer

TEKNISK RAPPORT PETROLEUMSTILSYNET HVA SKJER MED KJETTINGER ETTER LOKALE BRUDD RAPPORT NR.2006-0898 DET NORSKE VERITAS I ANKERLØKKER? REVISJON NR.

TEKNISK RAPPORT PETROLEUMSTILSYNET HVA SKJER MED KJETTINGER ETTER LOKALE BRUDD RAPPORT NR.2006-0898 DET NORSKE VERITAS I ANKERLØKKER? REVISJON NR. PETROLEUMSTILSYNET HVA SKJER MED KJETTINGER ETTER LOKALE BRUDD I ANKERLØKKER? RAPPORT NR.2006-0898 REVISJON NR. 01 DET NORSKE VERITAS Innholdsfortegnelse Side 1 SAMMENDRAG... 1 2 INNLEDNING... 1 3 KJETTING

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 av 7 Faglig kontakt under eksamen: NORSK Arild H. Clausen, 73 59 76 32 Kjell Holthe, 73 59 35 53 Jan B. Aarseth, 73 59 35 68 EKSAMEN I EMNE TKT4122 MEKANIKK 2

Detaljer

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg:

I! Emne~ode: j Dato: I Antall OPf9aver Antall vedlegg: -~ ~ høgskolen i oslo IEmne I Gruppe(r): I Eksamensoppgav en består av: Dimensjonering 2BA 288! Antall sider (inkl. 'forsiden): 4 I I! Emne~ode: LO 222 B I Faglig veileder:! F E Nilsen / H P Hoel j Dato:

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

Komfort-egenskaper for etasjeskillere i TRE

Komfort-egenskaper for etasjeskillere i TRE Komfort-egenskaper for etasjeskillere i TRE Lydisolering * luft- og trinnlydisolering Vibrasjoner * Akseptable rystelser i forhold til spennvidder 1 Lydisolering Krav og anbefalinger Typer konstruksjoner

Detaljer

Norges miljø- og biovitenskapelige universitet

Norges miljø- og biovitenskapelige universitet FORORD Denne rapporten er skrevet i forbindelse med avslutningen av et masterstudium i byggteknikk og arkitektur ved institutt for Matematiske realfag og teknologi, Norges miljø- og biovitenskapelige universitet.

Detaljer

N o t a t 415823-RIG-NOT-1-REV-0

N o t a t 415823-RIG-NOT-1-REV-0 N o t a t 415823-RIG-NOT-1-REV-0 Oppdrag: Røstad studentboliger Dato: 21. mars 2013 Emne: Oppdr.nr.: 415823 Til: Stiklestad Eiendom as v/gunnar Reitan reitan@bygginvest.no Kopi: Utarbeidet av: Erling Romstad

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7

Symboler og forkortelser 1. INNLEDNING 1. 1.1 Hva er fasthetslære? 1. 1.2 Motivasjon 5. 1.3 Konvensjoner - koordinater og fortegn 7 Innhold Forord Symboler og forkortelser v og vi xv 1. INNLEDNING 1 1.1 Hva er fasthetslære? 1 1.2 Motivasjon 5 1.3 Konvensjoner - koordinater og fortegn 7 1.4 Små forskyvninger og lineær teori 11 1.5 Omfang

Detaljer

Forankring av antennemast. Tore Valstad NGI

Forankring av antennemast. Tore Valstad NGI Forankring av antennemast Tore Valstad NGI 40 Antennemast på 3960 berggrunn 1400 1400 1400 2800 0 40 Antennemast på 3960 jordgrunn 1400 1400 1400 2800 0 BRUDD I KRAFTLINJEMAT BRUDD I KRAFTLINJEMAT FUNDAMENTERING

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING

SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING MEMO 711 Dato: 11.0.015 Sign.: sss SØYLER I FRONT INNFESTING I PLASSTØPT DEKKE, BEREGNING AV DEKKE OG BALKONGARMERING Siste rev.: Dok. nr.: 18.05.016 K5-10/711 Sign.: Kontr.: sss ps SØYLER I FRONT INNFESTING

Detaljer

MEMO 812. Beregning av armering DTF/DTS150

MEMO 812. Beregning av armering DTF/DTS150 Side 1 av 7 INNHOLD GRUNNLEGGENDE FORUTSETNINGER OG ANTAGELSER... 2 GENERELT... 2 STANDARDER... 2 KVALITETER... 2 LAST... 3 ARMERINGSBEREGNING... 3 YTRE LIKEVEKT... 3 NØDVENDIG FORANKRINGSARMERING...3

Detaljer

Newtons lover i én dimensjon (2)

Newtons lover i én dimensjon (2) Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter

Detaljer

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng)

Experiment Norwegian (Norway) Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Q2-1 Hoppende frø - En modell for faseoverganger og ustabilitet (10 poeng) Vennligst les de generelle instruksjonene som ligger i egen konvolutt, før du begynner på denne oppgaven. Introduksjon Faseoverganger

Detaljer

PG CAMPUS ÅS Samlokalisering av NVH og Vet. inst. med UMB. Eksternt notat Barnehage, grunn- og fundamenteringsforhold

PG CAMPUS ÅS Samlokalisering av NVH og Vet. inst. med UMB. Eksternt notat Barnehage, grunn- og fundamenteringsforhold Prosjekt: PG CAMPUS ÅS Samlokalisering av NVH og Vet. inst. med UMB Tittel: Eksternt notat Barnehage, grunn- og fundamenteringsforhold Dokumentnummer: PGCAas-RIG-ENOT-104 Til: Statsbygg Kopi: Sammendrag:

Detaljer