EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)"

Transkript

1 KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk 0 EMNENUMMER: REA04 EKSAMENSDATO:. desember 008 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside og sider formelrk) TILLATTE HJELPEMIDLER: John Hugn: Formler og tbeller. INNFØRING MED PENN, evt. trykkblynt som gir gjennomslg. Ved innlevering skilles hvit og gul besvrelse og legges i hvert sitt omslg. Oppgvetekst, kldd og blå kopi beholder kndidten. Husk kndidtnummer på lle rk.

2 Eksmen i Mtemtikk 0. desember 008 Oppgve Finn grensen Oppgve lim x x ln(x). L funksjonen f være definert for lle reelle tll x ved ) Regn ut f (x). f(x) = x x +5 b ) c ) Avgjør for hvilke x funksjonen f er voksende. Finn likningen for tngenten til kurven gitt ved y = e (x )/(x +5) for punktet med koordinter (x, y) =(, ). Likningen skl omformes til formen y = x + b. Oppgve 3 En sirkelsektor (se figuren) hr omkrets og rel A. Hv er det største relet som kn oppnås for en slik sektor? Hint: Arelet v en sirkelsektor kn for eksempel finnes ved t det er så storndel v relet til hele sirkelen som ndelen sirkelbuen er v hele omkretsen. Oppgve 4 Regn ut gjennomsnittsverdien for funksjonen f gitt ved f(x) = cos(x) +sin (x), 0 x π/. Minner om t gjennomsnittet for en funksjon y = y(x) på intervllet x b er y = b b ydx.

3 Eksmen i Mtemtikk 0. desember 008 Oppgve 5 ) Vis ved integrsjon t 6xe x dx =3e x + C. b ) Vis ved integrsjon betyr t det ikke er godkjent løsning å derivere høyresiden og sjekke t denne er integrnden. Det er heller godkjent å henvise til en formel i Hugns formelsmling. Integrsjonsformler fr det vedlgte formelrket kn du derimot bruke uten å si hvor de kommer fr. Finn llmenn løsning y = y(x) v differensillikningen y +xy =6x. c ) En entydig kontinuerlig funksjon y = y(t), definert for lle t R, oppfyller følgende differensillikning med initilverdibetingelse: (y )() ẏ =, y(0) =. Finn et eksplisitt funksjonsuttrykk for y(t). Lykke til.

4 Eksmen i Mtemtikk 0. desember Formelrk. Derivsjon og integrsjon (to sider). Derivsjonsregler f, g, u og v er deriverbre funksjoner., b og r er konstnter. Generelle derivsjonsregler f f f + bg f + bg Lineritet u v u v + u v Produktregelen 3 u v u v u v v Kvotienttregelen 4 f(u(x)) f (u) u (x) Kjerneregelen Den deriverte v spesielle funksjoner f(x) f (x) 5 x + b Spesielt f(x) =0x + b: b =0 6 x r rx r Også omr er negtiv eller en brøk 7 sin(x) cos(x) 8 cos(x) sin(x) 9 tn(x) +tn (x) Alterntiv: tn(x) =/ cos (x) 0 e x e x ln(x) rcsin(x) x x Mer generelt: ln( x ) =/x 3 rctn(x) +x

5 Eksmen i Mtemtikk 0. desember Integrsjonsregler Generelle integrsjonsregler f + bg dx = fdx+ b gdx u v dx = uv u vdx 4 f(u(x)) u (x) dx = f(u) du Lineritet Delvis integrsjon Substitusjon Integrlet v spesielle funksjoner dx = x + C Integrsjon v konstnt x r dx = r+ xr+ + C r (Se for r = ) cos(x) dx = sin(x) +C sin(x) dx = cos(x) +C e x dx = e x + C x dx = ln( x )+C dx = rcsin(x)+c x dx = rctn(x)+c +x Bestemte integrler 4) Hvis f(x) er kontinuerlig og F (x) =f(x)er A d b b f(x) dx =[F (x)] b = F (b) F (). 5) Integrsjon over smmenstt område, A er disjunkt union v intervllene [, c] og [d, b]: c b b c b f(x) dx = f(x) dx+ f(x) dx. Spesielt f(x) dx = f(x) dx+ f(x) dx. c 6) Ombytting v grenser: 7) Substitusjon: b f(x) dx = f(u(x))u (x) dx = b f(x) dx. u(b) u() f(u) du. Helt slutt!

6 Løsning, eksmen i Mtemtikk 0. desember 008 Oppgve Siden =0ogln()=0erdetteet ( 0 0) uttrykk, og L Hopitls regel gjelder: x ( ) 0 lim x ln(x) = L Hopitl x = lim 0 x /x = / =. Oppgve ) Kvotientregelen: f (x) = (x +5) (x ) x (x +5) = x +4x +5 (x +5). b ) Funksjonen er voksende der f (x) > 0, som er der x +4x +5> 0 siden nevneren lltid er positiv. x +4x +5=0 x = 4 ± 4 4 ( ) 5 = 4 ± = 4 ± 6 Dette er for x = ogx = 5, og her skifter telleren fortegn. For x = 0 er telleren > 0, som betyr t den er større enn 0 mellom nullpunktne, og mindre enn 0 ellers. Det vil si t f(x) er voksende for <x<5. c) y() = e 0 = siden eksponenten er 0 for x =. Dette er forøvrig indirekte oppgitt i oppgveteksten, siden du skl finne tngenten i punktet x = ogy =, som ville vært meningsløst om ikke dette punktet lå pågrfen. Du finner y ved kjerneregelen, der den deriverte v kjernen (som er eksponenten) er funnet i ) oppgven: y (x) =e (x )/(x +5) x +4x +5 (x +5) Dermed er y () = e ( +5) = 9 9 = 9 Innstt i tngentlikningen y = y()+y ()(x ) får du d y =+ 9 (x ) y = 9 x y = 9 x Oppgve 3 Hvis du kller rdien for x, blir lengden v sirkelbuen x (siden x er går med til de to rette kntenene). Iså fll er relet v hele sirkelen πx,ogomkretsenπx. Andelen v sirkelen vi hr er dermed x πx, slik t relet A = A(x) er A = πx x πx = x( x) =6x x

7 Løsning, eksmen i Mtemtikk 0. desember 008 Domenet er 0 x 6, siden hele omkretsen går med til de to rdiene hvis x =6.Siden domenet er et lukket intervll vet du fr ekstremlverdisetningne t mksimum må finnes. D må du derivere A: A (x) =6 x Siden A eksisterer for lle x i domenet, og rndpunktene x =0ogx = 6 gir rel 0 som ikke kn være mks, er den eneste kndidten der A (x) =0: 6 x =0 6=x x =3 Mksimlt rel er dermed A mks = A(3) = =9 Arelformelen er forøvrig den smme som for rektngelet med omkrets. Mksimlt rel 9 får vi d for et kvdrt med sider 3. Kn dette klles en tilfeldighet, eller finnes det et nturlig rgument for t disse relene blir like? Noen som hr forslg til svr (jeg hr det ikke)? Oppgve 4 Du må bruket /( + u ) du =rctn(u)+c. Forå omforme integrnden til denne formen må du substituere med u =sin(x), siden u d er sin (x). D er du dx =cos(x) du =cos(x) dx som står ferdig i integrnden (telleren multiplisert med dx). Nedre grense er u =sin(0)=0ogøvregrenseu =sin(π/) = : π/ cos(x) 0 +sin (x) dx = 0 +u du = [rctn(u)] 0 =rctn() rctn(0) = π 4 0=π 4. Dermed er gjennomsnittet y = π/ 0 π 4 = π π 4 = Oppgve 5 ) Du må substituere med eksponenten, u = x.der du dx =x du =xdx. Dette står ferdig i integrnden ved åskrive6xdx=3 xdx=3du: 6xe x dx = 3e u du =3e u + C =3e x + C b) Difflikningen y +xy =6x er lineær, dvs. på formeny + P (x)y = Q(x). Den integrerende fktoren er ρ(x) =e P (x) dx = e xdx = e x, som multipliseres inn i likningen: ( ) e x y + e x xy =6xe x e x y =6xe x Begge sider integreres, og integrlet på høyresiden er løst (evt. oppgitt om du ikke klrte den oppgven) i oppgven: e x y = 6xe x dx e x y =3e x + C

8 Løsning, eksmen i Mtemtikk 0. desember Nå divideres begge sider v likhetstegnet med e x, og dette er det smme som å multiplisere med e x : ( ) y = 3e x + C e x y =3e x e x + Ce x y =3+Ce x c ) Denne difflikningen er seprbel, og omformes ved dy (y )() dt = dy = dt (y )() Integrlet på vensstresiden løses ved delbrøksoppsplting: 4 (y )() dy = (y )() = A y + B 4 A() + B(y ) = (y )() (y )() der vi i siste omforming hr ordnet summen på felles brøkstrek. De to brøkene er like for det vlget v A og B som gjør tellerne like for lle y, spesieltfor y =ogy =3: y = : =A( 3) + B( ) A = A = y =3 : =A(3 3) + B(3 ) B = B = Det vil si t (y )() dy = y + dy = ln y +ln Vi behøver ikke konstnten C på dette integrlet, men tr den med på høyresiden: dt = t + C Implisitt form på den lmenne løsningen er dermed ln ln y = t + C Venstresiden kn smles ved omformingsregelen ln() l(b) = ln(/b): ln y = t + C Tr eksponentilfunksjonen på begge sider: y = et+c y = ±ec e t. D ±e C er en vilkårlig konstnt ersttter vi dette med C, og bestemmer nå denne: y = Cet t=0,y= 3 = Ce0 =C Løser så likningen med hensyn på y: y = et = ye t + e t y + ye t =3+e t y( + e t )=3+e t y = 3+et +e t Vi ser t denne er definert og kontinuerlig for lle t R, og oppfyller dermed lle krvene til y. dt

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO:. desember 9 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9. 3.. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA42 og REA42f EKSAMENSDATO:. desember 2 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 6 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 6 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO: 5. desember 7 KLASSE:. klssene, ingenørutdnning. TID: kl. 9. 3.. EMNEANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 6 (innkl.

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

Difflikninger med løsningsforslag.

Difflikninger med løsningsforslag. Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette

Detaljer

Oppfriskningskurs i matematikk 2007

Oppfriskningskurs i matematikk 2007 Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea1042

I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea1042 Ukeoppgver, uke 43, i Mtemtikk, Substitusjon. Høgskolen i Gjøvik Avdeling for ingeniørfg Mtemtikk Ukeoppgver uke 43 I løpet v uken blir løsningsforslg lgt ut på emnesiden http://www.hig.no/toel/llmennfg/emnesider/re4

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Algebr Aritmetiske opersjoner (b + c) b + c + c b Potensregler Polynom b + c b b + c d + bc d bc b c d b d c d bc x y x+y x x / x y x y n x x /n 0 x n x n ( x ) y xy (b) x x y (

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x

Detaljer

Lineære differensiallikninger.

Lineære differensiallikninger. Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

EKSAMEN. Hans Petter Hornæs og Britt Rystad

EKSAMEN. Hans Petter Hornæs og Britt Rystad KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon Integrsjon del Deprtment of Mthemticl Sciences, NTNU, Norwy Octoer 5, 4 Integrsjon Sustitusjon for estemte integrler Husk kjærneregel d dt f (g(t)) = f (g(t)) g (t) ved fundmentlteoremet (del ) vi får

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Alger Aritmetiske opersjoner ( + c) = + c + c Potensregler Polynom = + c + c d + c = d c c d = d c = d c x y = x+y x = x / x y = x y n x = x /n 0 = x n = x n ( x ) y = xy () x =

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Repetisjon i Matematikk 1: Derivasjon 2,

Repetisjon i Matematikk 1: Derivasjon 2, Repetisjon i Matematikk 1: Derivasjon 2, 201. 1 Høgskolen i Gjøvik Avdeling TØL Repetisjonsoppgaver MATEMATIKK 1 REA1141 og REA1141F Derivasjon 2, 201. Oppgave 1 Denne oppgaven har forholdsvis enkle derivasjoner,

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave

Høgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y

Detaljer

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen

Derivasjon. Oversikt over Matematikk 1. Derivasjon anvendelser. Sekantsetningen 3 Oversikt over Mtemtikk Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens v ekstrempunkt Elementære funksjoner Derivsjon Sekntsetningen Integrsjon Differensilligninger Kurver i plnet Rekker

Detaljer

Kapittel 4.7. Newtons metode. Kapittel 4.8.

Kapittel 4.7. Newtons metode. Kapittel 4.8. Ekskt løsning Newtons metode - Integrsjon Forelesning i Mtemtikk TMA00 Hns Jko Rivertz Institutt for mtemtiske fg 0. septemer 0 Kpittel.7. Newtons metode Den ekskte løsningen v x x = 0er ikke særlig rukelig

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1

Repetisjon i Matematikk 1, 4. desember 2013: Komplekse tall og Derivasjon 1 Repetisjon i Mtemtikk, 4. desember 0: Komplekse tll og Derivsjon Komplekse tll. Regn ut og skriv på normlform i 5 + i b 8 i 7 + 5i c 5 + i 6 i. Regn ut og skriv på normlform d 4 i + i e i 5 + 4i eiπ 6

Detaljer

R2 eksamen våren 2014. (19.05.2014)

R2 eksamen våren 2014. (19.05.2014) R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Aveling for ingeniørutnning FAG : FOA192 Vieregåene nlyse og iskret mtemtikk KLASSAR : Mnge DATO : 21. mi 212 TAL PÅ OPPGÅVER 5 TAL PÅ SIDER 2 VEDLEGG Hjelpesetningr HJELPEMIDDEL Csio

Detaljer

θ grader sin θ cos θ tan θ

θ grader sin θ cos θ tan θ MA-8 Klkulus formelsmling versjon 8. Kvdrtsetning: ( + ) = + +. Kvdrtsetning: ( ) = + Konjugtsetningen: ( + )( ) = Andregrdslikningen: x + x + c = 0 x = ± c Fullstendig kvdrt: x + x + c = ( ) x + + c Trigonometriske

Detaljer

I løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.

I løpet av uken blir løsningsforslag lagt ut på emnesiden  Delvis integrasjon må brukes to ganger. Ukeoppgaver, uke 45, i Matematikk, Delvis integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 45 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4

Detaljer

Ubestemt integrasjon.

Ubestemt integrasjon. Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer.

Eksamen i FO929A Matematikk Underveiseksamen Dato 30. mars 2007 Tidspunkt Antall oppgaver 4 Sirkelskive i radianer. Eksamen i FO99A Matematikk Underveiseksamen Dato 30. mars 007 Tidspunkt 09.00-14.00 Antall oppgaver 4 Vedlegg Tillatte hjelpemidler Sirkelskive i radianer Godkjent kalkulator Godkjent formelsamling Oppgave

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Løsningsforslag midtveiseksamen Mat 1100

Løsningsforslag midtveiseksamen Mat 1100 Løsningsforslag midtveiseksamen Mat 00 Høsten 202 Oppgave : Riktig svaralternativ er C Vi får r = 2 2 +( 2 3) 2 = 4+4 3= 6 = 4. Videre ser vi (tegn figur) at argumentet til z vil være 60 mer enn 80, dvs.

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s)

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s) Integrl Kokeboken 4 3 4 6 8 log sinπ sinh π 4 + loglog loglog + C cos + sin π s e Γs n n s Γsζs π + sin +cos log + cos i Del I. Brøk................................... Trigonometriske funksjoner.....................

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

Anvendelser av derivasjon.

Anvendelser av derivasjon. Ukeoppgaver, uke 39, i Matematikk, Anvendelser av derivasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 39 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe Numerisk kvdrtur PROBLEM STILLING: Approksimér 1/18 I(f) = f(x)dx. hvor f : R R. Numerisk sett, integrlet I(f) = f(x)dx pproksimeres med en summe Q n (f) = w i f(x i ), n-punkter regel hvor x 1 < x 2

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1 Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer