ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012

Størrelse: px
Begynne med side:

Download "ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012"

Transkript

1 Introduksjon Prakstisk informasjon, s. 1 ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Ny rammeplan for ingeniørfag Sannsynlighetsregning og statistikk: fra 5 til 10sp Overgangsordning: begge kursene blir forelest Undervisningen er felles i ukene fom. 2 tom. 10 Forelesningene i ÅMA110 er ferdige innen uke 10 Studenter på BMF100 har forelesninger videre i tiden fram til uke 17. Eksamen i begge kursene blir i ordinær eksamenstid (ca. mai); eksamen i ÅMA110 og BMF100 på samme dag (noen felles oppgaver). ÅMA110/BMF100, vår 2012 Prakstisk informasjon, s. 1

2 Introduksjon Prakstisk informasjon, s. 2 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider: Mandager kl , rom G-001, forelesning. Mandager kl *, regneøvinger (ARs hus). Mandager kl , rom G-001, forelesning. Oppstart uke 3. Regneøvingene: Oppgaver til mandag 16/1 er lagt ut (its:learning). Jobb med dem fram til mandag. På forelesningen om morgenen 16/1, vil det bli gitt nærmere beskjed om lokaler mm. i forbindelse med gruppeøvingen. (Det er ingen påmelding til grupper eller inndeling i grupper dette ordner dere selv.) Obligatoriske aktiviteter To obligatoriske innleveringer. Begge må være bestått for å få adgang til avsluttende skriftlig eksamen. Nærmere informasjon, bl.a. tidspunkt, kommer seinere. ÅMA110/BMF100, vår 2012 Prakstisk informasjon, s. 2

3 Introduksjon Prakstisk informasjon, s. 3 Pensum, ÅMA110: Pensumbok: Gunnar G. Løvås: Statistikk for universiteter og høgskoler, 2. utg.; Pensum: kp. 1, 2, 3, 4, 5 og 6. Pensum, BMF100: Pensumbok: Gunnar G. Løvås: Statistikk for universiteter og høgskoler, Pensum: kp (Nærmere presisering reduksjon kommer seinere.) Opplegg for kurset (kan variere etter type kurs) Organisert undervisning Forelesning Felles regneøvinger / oppgavegjennomgang Eget arbeid med emnet Lese pensumlitteratur Arbeide med øvingsoppgaver Etterarbeid etter forelesning Tenke sjekke om teorien er forstått!... ÅMA110/BMF100, vår 2012 Prakstisk informasjon, s. 3

4 Introduksjon Prakstisk informasjon, s. 4 SPØRSMÅL om... All informasjon blir gitt på it s learning / nett. Øvingsoppgaver, ev. løsninger datafiler, illustrasjoner, o.l. Resultater av obligatoriske tester gamle eksamensoppgaver, gamle obl.oppgaver,... forelesningsnotater... Faglige spørsmål på e-post er vanligvis ikke effektivt! Spørsmål om it s learning (teknisk), timeplaner, oppmelding, osv. (administrativt) rettes til fakultetsadm. / IT-kontoret. Streaming, opptak Forelesningene vil bli streamet, og opptak tilgjengelige også i ettertid. Informasjon fra NettOp/UiS om dette (med link til opptakene) nnes på its:learning. Alle spørsmål i forbindelse med dette må rettes til: Arne Thomas Nilsen NettOp/UiS ( / ; epost: ÅMA110/BMF100, vår 2012 Prakstisk informasjon, s. 4

5 Introduksjon Prakstisk informasjon, s. 5 Oversikt over delene i pensumboken Kp. 16; ÅMA110-delen kp. 1: Bakgrunnssto; Hva er statistikk?... kp. 2: Beskrivende statistikk grask, numerisk litt om bruk av datamaskin kp. 3: Sannsynlghtesteori: grunnleggende begrep og denisjoner; sannsynlighetsregning kp. 4: Sannsynlghtesteori: sannsynlighetsfordelinger, tilfeldige (stokastiske) variable kp. 5: Sannsynlghtesteori: noen sentrale sannsynlighetsfordelinger kp. 6: Grunnleggende statistikk (Statistisk inferens): estimering, kon- densintervall go hypotesetesting. I dag: kp. 2: Beskrivende statistikk ÅMA110/BMF100, vår 2012 Prakstisk informasjon, s. 5

6 Beskrivende statistikk Grask beskrivelse, s. 6 kp. 2: Beskrivende statistikk Situasjon: Vi har et datasett og vil ha informasjon om egenskapene til dataene. Eksempel: Desembertemperaturen på Sola i årene 1957,..., 2006 (n=50 målinger). Desembertemp. i 2006: 7.2 Normal : 2.2 (gjennomsnitt for ) Beskrivende statistikk er metoder for å få informasjon om egenskaper til datasett. Hvordan er 7.2 i forhold til normal variasjon? (Hva er normaltemperatur lik 2.2?) Hva er minimum hva er maksimum?... Grafiske- ognumeriske metoder ÅMA110/BMF100, vår 2012 Grask beskrivelse, s. 6

7 Beskrivende statistikk Grask beskrivelse, s. 7 Graske beskrivelser Tidsrekkediagram Histogram,... Prikkdiagram Relativfrekvenshistogram areal = relativfrekvens høyde av søyle = rel.frk./bredde Tidsrekkediagram ÅMA110/BMF100, vår 2012 Grask beskrivelse, s. 7

8 Beskrivende statistikk Grask beskrivelse, s. 8 Histogram klasser frekvenser (-6,-2]: 1 (-2, 0]: 4 ( 0, 2]: 15 (2, 4]: 18 (4, 6]: 11 (6, 8]: 1 13 Relativfrekvenshistogram klasser frekvenser relativfrekvens (-6,-2]: 1 1/50 (-2, 0]: 4 4/50 ( 0, 2]: 15 15/50 (2, 4]: 18 18/50 (4, 6]: 11 11/50 (6, 8]: 1 1/50 areal = relativfrekvens => høyde av søyle = rel.frk. / bredde Gir visuelt bedre framstilling ÅMA110/BMF100, vår 2012 Grask beskrivelse, s. 8

9 Beskrivende statistikk Grask beskrivelse, s. 9 Prikkdiagram ÅMA110/BMF100, vår 2012 Grask beskrivelse, s. 9

10 Beskrivende statistikk Numerisk beskrivelse, s. 10 Numeriske beskrivelser (numeriske mål) Sentrumsmål (beliggenhetsmål): gjennomsnitt empirisk median empirisk prosentil (Q 1 og Q 3 : nedre- og øvre kvartil) Notasjon generelt: n data: x 1, x 2,..., x n Gjennomsnitt 1 x x n 1 x 2 x n x Viser: typisk verdi, beliggenhet på tallinjen, sentrum i datafordelingen, normalverdi,... ÅMA110/BMF100, vår 2012 Numerisk beskrivelse, s. 10

11 Beskrivende statistikk Numerisk beskrivelse, s. 11 Median: Den verdien der 50% av målingene er mindre og 50% er større. Temperaturdata (n=50): ( )/2 = 2.75 ÅMA110/BMF100, vår 2012 Numerisk beskrivelse, s. 11

12 Beskrivende statistikk Numerisk beskrivelse, s. 12 Første kvartil, Q 1 : Den verdien der 25% av målingene er mindre og 75% er større. Temperaturdata: 1.4 Tredje kvartil, Q 3 : Den verdien der 75% av målingene er mindre og 25% er større. Temperaturdata: 4.0 ÅMA110/BMF100, vår 2012 Numerisk beskrivelse, s. 12

13 Beskrivende statistikk Numerisk beskrivelse, s. 13 Spredningsmål Svært viktig å ta hensyn til i praksis! variasjonsbredde største - minste = (-4.1) = 11.3 kvartilbredde (kvartilavvik, kvartildieranse,...) Q 3 Q 1 = = 2.6 empirisk varians, empirisk standardavvik oftest brukt; deneres nedfor Empirisk varians (utvalgsvarians): s 2 = = 1 n (x i x) 2 n 1 i=1 1 n 1 {(x 1 x) 2 + (x 2 x) (x n x) 2 } For temperaturdataene: s 2 = 1 49 {( )2 + ( ) ( ) 2 } ÅMA110/BMF100, vår 2012 Numerisk beskrivelse, s. 13

14 Beskrivende statistikk Numerisk beskrivelse, s. 14 Empirisk standardavvik, s: s = s 2 = 1 n 1 n i=1 (x i x) 2 For temperaturdataene: s = 4.49 = 2.12 EXCEL-demo; ( TE199-Demo-beskrivende.xls) ÅMA110/BMF100, vår 2012 Numerisk beskrivelse, s. 14

15 Sannsynlighetsteori Grunnleggende denisjoner, s. 15 Sannsynlighetsteori Grunnleggende denisjoner Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallene av et stokastisk forsøk Utfallsrom: samling av alle mulige utfall Eks.: et terningkast; utfallsrommet kan bestå av de seks enkeltutfallene 1, 2, 3, 4, 5, og 6 (Andre utfallsrom er mulige) Sannsynligheten for et utfall Utafallsrom: S = {e 1, e 2,...} Sannsynligheten for utfallet e: P (e) Vi denerer: 0 P (e) 1, og P (e 1 ) + P (e 2 ) + = 1 Hvert utfall har en sannsynlighet, kjent eller ukjent Summen av alle sannsynligheter i utfallsrommet er lik 1 Tilordningen av sannsynlighet baseres på bl.a. erfaring og egenskaper ved det stokastiske forsøket God/realistisk tilordning: overensstemmelse mellom relativfrekvenser og sannsynligheter ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 15

16 Sannsynlighetsteori Grunnleggende denisjoner, s. 16 Sannsynlighet og relativfrekvens La n være antall gjentakelser av et stokastisk forsøk (f.eks. n kast med en terning) La n e være antall ganger utfallet e forkommer blant de n forøkene (f.eks. antall seksere blant alle de n kastene) Relativfrekvensen til e, er forholdet mellom n e og n: n e n EXCEL-simulering ( TE199-Demo-relativfrk) Sannsynlighetsmodell Utfallsrommet med sannsynligheter tilordnet alle enkeltutfall, kalles en sannsynlighetsmodell. Uniform sannsynlighetsmodell: For et stokastisk forsøk med k (endelig) antall utfall, der alle utfall har like stor mulighet for å inntree, deneres sannsynligheten til å være den samme for alle utfallene, 1 k. Denne modellen kalles en uniform sannsynlighetsmodell. k: antall mulige Eks. 1: kast med pengestykke; {mynt, kron} Eks. 2: kast med terning; {1, 2, 3, 4, 5, 6} ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 16

17 Sannsynlighetsteori Grunnleggende denisjoner, s. 17 Eks. 3: trekke en rekke i LOTTO (7 av tallene 1, 2,..., 34); k = Uniform modell? (JA!) Sannsynligheten for en bestemt rekke: P(en bestemt rekke trekkes) = 1/ = Eks. 4: kast med to terninger; betrakter summen av resultatene med de to terningene: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, (k = 11) P(sum = 7) = 1/11, (v/uniform sannsynlighetsmodell) Uniform modell 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0, Virkeligheten 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0, ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 17

18 Sannsynlighetsteori Grunnleggende denisjoner, s. 18 Blå: uniform; rød: virkeligheten 0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0, Nytt forslag til utfallsrom: { (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1),..., (2,6),... (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) }; k=36 (f.eks. betyr (3,5): rød terning=3 og blå terning=5) Her er alle utfall like mulige!! (=> uniform modell) ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 18

19 Sannsynlighetsteori Grunnleggende denisjoner, s. 19 Hendelser, begivenheter Sannsynlighetsteorien er matematisk formulert. Utfallsrom, utfall og hendelser (begivenheter) beskrives med mengdelære fra matematikken. En hendelse representeres ved en samling av de utfallene som beskriver hendelsen. Eks : minst fem: { 5, 6 } partall: { 2, 4, 6 } Generelt: En hendelse, A, representeres ved en delmengde av utfallsrommet, S. (A S). Vi sier at en hendelse, A, inntreer dersom et av utfallene som A består av, inntreer. Sannsynligheten for A = P (A) = summen av sannsynlighetene til enkeltutfallene i A. Eksempel: Terningkast; A = minst fem = {5, 6} P (A) = P ({5, 6}) = P ({5}) + P ({6}) = = 2 6 = 1 3 ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 19

20 Sannsynlighetsteori Grunnleggende denisjoner, s. 20 Generelle formuleringer og implikasjoner: P (A) = e A P (e) 0 P (A) 1 P (S) = 1 (Obs.: Hele utfallsrommet, S, er en hendelse. Den inntreer ALLTID siden vi har at den består av alle mulige utfall, S = {e 1, e 2,...}, og vi har denert at summen av sannsynlighetene for alle utfallene skal være 1.) Operasjoner med hendelser Vi har ofte behov for å utrykke og nne sannsynligheten for sammensatte hendelser; A eller B, A eller B eller C, B og C, osv. Snitt, union og komplement fra mengdelæren brukes. ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 20

21 Sannsynlighetsteori Grunnleggende denisjoner, s. 21 Referanseeks.: Tre kast med pengestykke; vi betrakter rekkefølge av kron (K) og mynt (M). { KKK, KKM, KMK, MKK, KMM, MKM, MMK, MMM } = { e 1, e 2, e 3, e 4, e 5, e 6, e 7, e 8 } A: kron minst to ganger, B: mynt i første Da: A = {e 1, e 2, e 3, e 4 } og A = {e 4, e 6, e 7, e 8 } Venndiagram A e 4 B e 5 Veldig nyttig hjelpemiddel i en del situasjoner. ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 21

22 Sannsynlighetsteori Grunnleggende denisjoner, s. 22 Union Operasjon: Skrivemåte: Inntreer Unionen mellom A og B A B A eller B (eller begge) inntreer A e 4 B e 5 Snitt Operasjon: Skrivemåte: Inntreer Snittet mellom A og B A B, AB A og B inntreer A e 4 B e 5 ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 22

23 Sannsynlighetsteori Grunnleggende denisjoner, s. 23 Komplement Operasjon: Skrivemåte: Inntreer Komplementet til A A C, A A ikke inntreer A A C Disjunkte hendelser To begivenheter sies å være disjunkte hvis og bare hvis begivenhetene ikke kan inntree samtidig. Disjunkte mengder har ingen felles element. C D C ÅMA110/BMF100, vår 2012 Grunnleggende denisjoner, s. 23

24 Sannsynlighetsteori Regneregler for sannsynlighet, s. 24 Regneregler for sannsynlighet 1. Komplementsetningen: P (A) = 1 P (A) A A C og P (S) = 1, og A A = S. Da, siden P (A A) = P (S) = 1 og P (A A) = P (A) + P (A), får vi at P (A A) = Addisjonssetningen (generell): P (A B) = P (A)+P (B) P (A B) A B ÅMA110/BMF100, vår 2012 Regneregler for sannsynlighet, s. 24

25 Sannsynlighetsteori Regneregler for sannsynlighet, s. 25 Er addisjonssetningen gyldig for to disjunkte begivenheter? P( C D) P( C) P( D) P( C D) C D Oppgave: P( A) 1P( A) P( AB) P( A) P( B) P( AB) Tokomponentsystem, parallellkoplet System ok når minst en av komponentene er ok. Antaat: P(Aok) 0.9 P(Bok) og P(begge ok) a) Hva er sannsynligheten for at systemet er ok? A B 0.85 b) Hva er sannsynligheten for at ingen av komponentene er ok? ÅMA110/BMF100, vår 2012 Regneregler for sannsynlighet, s. 25

26 Sannsynlighetsteori Regneregler for sannsynlighet, s. 26 Regneregler og denisjoner oppsummert P (A) = e A P (e) Komplementsetningen: P (A) = 1 P (A) Addisjonssetningen: P (A B) = P (A) + P (B) P (A B) Disjunkt hendelser: C D = ϕ (den tomme mengden); C og D har ingen felles element/utfall. ÅMA110/BMF100, vår 2012 Regneregler for sannsynlighet, s. 26

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sannsynlighetsregning med statistikk, våren 007 ÅMA0 Sannsynlighetsregning med statistikk våren 007 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 ÅMA0 Sannsynlighetsregning med statistikk våren 0 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannynlighetregning med tatitikk, våren 2010 Kp. 2 Sannynlighetregning (annynlighetteori) 1 Grunnbegrep Stokatik forøk: forøk med uforutigbart utfall Enkeltutfall: et av de mulige utfallene av et

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

Sannsynlighetsregning og Statistikk

Sannsynlighetsregning og Statistikk Sannsynlighetsregning og Statistikk Leksjon 2. Leksjon 2 omhandler begreper og regneregler for sannsynligheter. Dette er behandlet i kapittel 3.1 og 3.2 i læreboka. Du bør når du har fullført leksjon 2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk",

Detaljer

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter

Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Sannsynlighet i uniforme modeller. Addisjon av sannsynligheter Fagstoff Listen [] Hendelse En hendelse i en sannsynlighetsmodell består av ett eller flere utfall. Vi ser på det tilfeldige forsøket «kast

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016

MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 MULTIPLE CHOICE ST0103 BRUKERKURS I STATISTIKK September 2016 SETT RING RUNDT DET RIKTIGE SVARET FOR HVER OPPGAVE. Oppgave 1 Stokastisk forsøk Stokastiske forsøk karakteriseres ved to av følgende egenskaper.

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger Hypergeometrisk fordeling Binomisk fordeling Ørnulf Borgan Matematisk institutt Universitetet i Oslo Tilfeldige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Sannsynlighetsregning

Sannsynlighetsregning Sannsynlighetsregning Per G. Østerlie Thora Storm vgs per.osterlie@stfk.no 5. april 203 Hva og hvorfor? Hva? Vi får høre at det er sannsynlig at et eller annet kommer til å skje. Sannsynligheten for å

Detaljer

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte.

ting å gjøre å prøve å oppsummere informasjonen i Hva som er hensiktsmessig måter å beskrive dataene på en hensiktsmessig måte. Kapittel : Beskrivende statistikk Etter at vi har samlet inn data er en naturlig første ting å gjøre å prøve å oppsummere informasjonen i dataene på en hensiktsmessig måte. Hva som er hensiktsmessig måter

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet Definisjoner: Noen grunnleggende begrep. Stokastisk forsøk: Et forsøk/eksperiment der det er tilfeldig hva utfall blir. Utfallsrom, : Mengden av alle mulige utfall av et stokastisk

Detaljer

Sannsynlighetsregning og kombinatorikk

Sannsynlighetsregning og kombinatorikk Sannsynlighetsregning og kombinatorikk Introduksjon Formålet med sannsynlighet og kombinatorikk er å kunne løse problemer i statistikk, somoftegårutpååfattebeslutninger i situasjoner der tilfeldighet rår.

Detaljer

INNHOLD. Matematikk for ungdomstrinnet

INNHOLD. Matematikk for ungdomstrinnet INNHOLD STATISTIKK... 2 FREKVENS... 2 RELATIV FREKVENS... 2 FREKVENSTABELL... 2 KLASSEDELING... 3 SØYLEDIAGRAM (STOLPEDIAGRAM)... 3 LINJEDIAGRAM... 4 SEKTORDIAGRAM... 4 HISTOGRAM... 4 FRAMSTILLING AV DATA...

Detaljer

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y

Løsninger. Innhold. Sannsynlighet 1P, 1T og 2P-Y Løsninger Innhold 3. Hva er sannsynlighet?... 2 3.2 Addisjon av sannsynligheter. Gunstige og mulige utfall... 3.3 Beregne sannsynligheter ved å bruke tabeller... 2 3.4 Beregne sannsynligheter ved å bruke

Detaljer

Statistikk. Forkurs 2018

Statistikk. Forkurs 2018 Statistikk Forkurs 2018 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag ST0103 Brukerkurs i statistikk Høst 2014 Løsningsforslag Øving 1 2.1 Frekvenstabell For å lage en frekvenstabell må vi telle

Detaljer

Løsninger. Innhold. Sannsynlighet Vg1P

Løsninger. Innhold. Sannsynlighet Vg1P Løsninger Innhold Modul. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 7 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 3 Modul 4. Beregne sannsynligheter

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet

Detaljer

Statistikk. Forkurs 2017

Statistikk. Forkurs 2017 Statistikk Forkurs 2017 Hva er statistikk? Undersøke Registrere Lage oversikt Presentasjon av informasjon Formidle Arbeidet med statistikk kan vi dele inn i to hovedområder: Samle inn og ordne opplysninger

Detaljer

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse?

Dataanalyse. Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Hva er en dataanalyse og hvordan gå frem for å gjennomføre en dataanalyse av det innsamlede datagrunnlaget fra en feltundersøkelse? Skrevet av: Kjetil Sander Utgitt av: estudie.no Revisjon: 1.0 (Sept.

Detaljer

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19

Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel ST1101 (Gunnar Taraldsen) :19 Tema 1: Hendelser, sannsynlighet, kombinatorikk Kapittel 2.1-2.7 ST1101 (Gunnar Taraldsen) 2019-01-12 17:19 Sentrale definisjoner og regneregler Definisjoner: Stokastisk forsøk, utfallsrom, hendelser (snitt,

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres?

Fagdag 5-08.01.09. 2) Du skal fylle ut en tippekupong. På hvor mange måter kan dette gjøres? Fagdag Plan Fagdag - 08.01.0 1,2 time: Repetisjon kapittel 3 - Sannsynlighet Oppgaver Teori (lesestoff) 3, time: Arbeide med.1 og.2: 16, 17, 18, 1 3, time: Ekstra vurdering før terminoppgjør Repetisjon

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse.

Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Forelesning 3, kapittel 3. : 3.2: Sannsynlighetsregning. Kolmogoroffs aksiomer og bruk av disse. Den klassiske definisjonen (uniform modell) av sannsynlighet for en hendelse A i et utfallsrom S er at sannsynligheten

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger

Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave. Pensumoversikt. Forelesninger og øvinger 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 3 4 Pensumoversikt Forelesninger og øvinger

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sasylighetsregig med statistikk, våre 008 ÅMA0 Sasylighetsregig med statistikk våre 008 Praktisk om kurset Foreleser og faglig asvarlig: Øystei Arild (IRIS, oystei.arild@iris.o) Bjør H. Auestad (kotor:

Detaljer

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010

2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Foreleses onsdag 25. august 2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.3: Kombinatorikk 2.4: Sannsynlighet, og Monte Carlo simulering. Mette Langaas Foreleses onsdag 25. august 2010 2 Sist - Kap 0 Hva er statistikk, og hvorfor skal du lære det?

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Del I Innledning 1 Hva er statistikk?... 19 1.1 Bokas innhold 20 1.1.1 Noen eksempler 20 1.1.2 Historie 23 1.1.3 Bokas oppbygning 25 1.2 Noen viktige begreper 26 1.2.1 Populasjon og utvalg 26 1.2.2 Variasjon

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir

ØVINGER 2017 Løsninger til oppgaver. 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir ØVINGER 017 Løsninger til oppgaver Øving 3.1 Myntkast For et enkelt myntkast har vi to mulige utfall, M og K. Utfallsrommet blir S = {M, K}. Med to etterfølgende myntkast blir utfallsrommet S = {MM, MK,

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT000V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet Vi repeterer først et eksempel fra samlingen for sist uke Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet

Detaljer

Sannsynlighetsregning og Statistikk.

Sannsynlighetsregning og Statistikk. Sannsynlighetsregning og Statistikk. Leksjon Velkommen til dette kurset i sannsynlighetsregning og statistikk! Vi vil som lærebok benytte Gunnar G. Løvås:Statistikk for universiteter og høyskoler. I den

Detaljer

Sannsynlighet og statistikk

Sannsynlighet og statistikk Sannsynlighet og statistikk Arkeologiske utgravinger har vist at mennesker har underholdt seg med forskjellige spill i tusener av år. Terninger fra India som ble brukt i spill, er faktisk 5000 år gamle.

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren

ÅMA110 Sannsynlighetsregning med statistikk, våren ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 3. april Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Innledning kapittel 4

Innledning kapittel 4 Innledning kapittel 4 Sannsynlighet og tilfeldighet Basert på materiale fra Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk

Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Deterministiske fenomener MAT0100V Sannsynlighetsregning og kombinatorikk Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang Grunnleggende sannsynlighetsregning Det er mulig

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Svarer til avsnittene 2.1 og 2.2 i læreboka STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske fenomener Almanakk for Norge

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2017 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Deterministiske fenomener Almanakk for Norge viser: når det er fullmåne når det er soloppgang og solnedgang

Detaljer

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013

Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

STK1100 våren Generell introduksjon. Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov)

STK1100 våren Generell introduksjon. Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov) STK1100 våren 2017 Generell introduksjon Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov) Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 «Overalt»

Detaljer

4: Sannsynlighetsregning

4: Sannsynlighetsregning Plan for hele året: - Kapittel 5: Januar - Kapittel 6: Februar - Kapittel 7: Februar/mars 4: Sannsynlighetsregning - Kapittel 8: Mars/april - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

Blokk1: Sannsynsteori

Blokk1: Sannsynsteori Blokk1: Sannsynsteori Statistikk er vitskapen om læring frå data, og måling, kontroll og kommunikasjon av usikkerheit (Davians Louis, Science, 2012). Vi lærer frå data ved å spesifisere ein statistisk

Detaljer

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger

Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no

Detaljer

Deskriptiv statistikk., Introduksjon til dataanalyse

Deskriptiv statistikk., Introduksjon til dataanalyse Introduksjon til dataanalyse Deskriptiv statistikk 2 Kapittel 1 Denne timen og delvis forrige time er inspirert av Kapittel 1, men vi kommer ikke til å gå igjennom alt fra dette kapittelet i forelesning.

Detaljer

SENSORVEILEDNING. Khaled Jemai Stein Berggren

SENSORVEILEDNING. Khaled Jemai Stein Berggren SENSORVEILEDNING Emnekode: LBMAT10210 Emnenavn: Matematikk 102 (1-7) Eksamensform: Skriftlig Dato: 15/01/2019 Faglærer(e): Khaled Jemai Stein Berggren Denne sensorveiledningen inneholder: 1. Om eksamen

Detaljer

MAT110. Statistikk 1. Kompendium 2018, del 1. Per Kristian Rekdal

MAT110. Statistikk 1. Kompendium 2018, del 1. Per Kristian Rekdal MAT110 Statistikk 1 Kompendium 2018, del 1 Per Kristian Rekdal 2 Innhold 0 Introduksjon 7 0.1 Statistikk........................................ 8 0.2 Oversikt over MAT110 Statistikk 1.........................

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 2.5: Addisjonsregler (union) 2.6: Betinget sannsynlighet 2.7: Multiplikasjonsregler (snitt) 2.8: Bayes regel (starte litt) Mette Langaas Foreleses mandag 30. august 2010 2 Kapittel

Detaljer

SANNSYNLIGHETSREGNING

SANNSYNLIGHETSREGNING SANNSYNLIGHETSREGNING Er tilfeldigheter tilfeldige? Når et par får vite at de skal ha barn, vurderes sannsynligheten for pike eller gutt normalt til rundt 50/50. Det kan forklare at det fødes omtrent like

Detaljer

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere

Loven om total sannsynlighet. Bayes formel. Testing for sykdom. ST0202 Statistikk for samfunnsvitere 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) P(B oga)+p(b ogā) P(B A)P(A)+P(B Ā)P(Ā) ST0202 Statistikk for samfunnsvitere Bo Lindqvist

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)

Løsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012) 1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag

ST0202 Statistikk for samfunnsvitere. Bo Lindqvist Institutt for matematiske fag ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Lærebok Robert Johnson og Patricia Kuby: Elementary Statistics, 10. utgave 3 Pensumoversikt Kap. 2 Beskrivende statistikk,

Detaljer

Kapittel 2: Sannsynlighet

Kapittel 2: Sannsynlighet Kapittel 2: Sannsynlighet 2.1, 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel Eirik Mo Institutt for matematiske fag,

Detaljer

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk

STK1100 våren Introduksjon til sannsynlighetsbegrepet. Deterministiske fenomener. Stokastiske forsøk. Litt historikk STK1100 våren 2016 Introduksjon til sannsynlighetsbegrepet Svarer til avsnittene 2.1 og 2.2 i læreboka Geir Storvik Basert på presentasjon av Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Deterministiske

Detaljer

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere

Sannsynligheten for en hendelse (4.2) Empirisk sannsynlighet. ST0202 Statistikk for samfunnsvitere 2 Sannsynligheten for en hendelse (4.2) Sannsynligheten for en hendelse sier oss hvor ofte vi forventer at hendelsen inntreffer, dvs. den forventede relative frekvens av hendelsen. ST0202 Statistikk for

Detaljer

Oppgaver. Innhold. Sannsynlighet Vg1P

Oppgaver. Innhold. Sannsynlighet Vg1P Oppgaver Innhold Modul 1. Hva er sannsynlighet?... 2 Modul 2. Addisjon av sannsynligheter. Gunstige og mulige utfall... 6 Modul 3. Beregne sannsynligheter ved å bruke tabeller... 10 Modul 4. Beregne sannsynligheter

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Loven om total sannsynlighet La A og Ā være komplementære hendelser, mens B er en annen hendelse. Da er: P(B) =P(B oga)+p(b

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet!

Betinget sannsynlighet. MAT0100V Sannsynlighetsregning og kombinatorikk. Vi trenger en definisjon av betinget sannsynlighet! MAT0100V Sannsynlighetsregning og kombinatorikk Betinget sannsynlighet og uavhengige hendelser Produktsetningen Total sannsynlighet og Bayes' setning Betinget sannsynlighet Vil repeterer først et eksempel

Detaljer

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014

Statistikk 1. Nico Keilman. ECON 2130 Vår 2014 Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Test, 3 Sannsynlighet og statistikk

Test, 3 Sannsynlighet og statistikk Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...

Detaljer

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU

Utfallsrom og hendelser. Disjunkte hendelser. Kapittel 2: Sannsynlighet. Eirik Mo Institutt for matematiske fag, NTNU 3 Utfallsrom og hendelser Kapittel 2: Sannsynlighet 2., 2.2: Utfallsrom og hendelser 2.3, 2.4: Kombinatorikk og sannsynlighet 2.5, 2.6, 2.7: Regneregler, betinget sanns. 2.8: Bayes regel DEF 2. Ufallsrom:

Detaljer

Kompendium V-2014 MAT110. Statistikk 1. Del 1 av 2. Per Kristian Rekdal

Kompendium V-2014 MAT110. Statistikk 1. Del 1 av 2. Per Kristian Rekdal Kompendium V-2014 MAT110 Statistikk 1 Del 1 av 2 Per Kristian Rekdal 2 Figur 1: But under a different accounting convention... 3 4 Forord Dette er del I (av II) av kompendiet i faget MAT110 Statistikk

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1

(Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen vår 2011, s. 1 (Det tas forbehold om feil i løsningsforslaget.) Oppgave 1 a) Data: x 1, x 2, x 3, x 4, x 5 Gjennomsnitt: x = 1 5 (x 1

Detaljer

Kapittel 2: Sannsynlighet [ ]

Kapittel 2: Sannsynlighet [ ] Kapittel 2: Sannsynlighet [2.3-2.5] TMA4240 Statistikk (F2 og E7) 2.3, 2.4, 2.5: Kombinatorikk og sannsynlighet [18.august 2004] Ole.Petter.Lodoen@math.ntnu.no p.1/21 Produktregel for valgprosess TEO 2.1

Detaljer

FASIT TIL NOEN OPPGAVER I SANNSYNLIGHET OG KOMBINATORIKK. Oppgave 9 a) 8 utfall: MMM, MMK, MKM, MKK, KMM, KMK, KKM, KKK b)

FASIT TIL NOEN OPPGAVER I SANNSYNLIGHET OG KOMBINATORIKK. Oppgave 9 a) 8 utfall: MMM, MMK, MKM, MKK, KMM, KMK, KKM, KKK b) FASIT TIL NOEN OPPGAVER I SANNSYNLIGHET OG KOMBINATORIKK Oppgave 9 utfall: MMM, MMK, MKM, MKK, KMM, KMK, KKM, KKK b) d) Oppgave 0 40.4 % b) 4. % Oppgave 9 4 b) d) 7 Oppgave 5 0. % b) 9. % 50.5 % Oppgave

Detaljer

DEL 1 GRUNNLEGGENDE STATISTIKK

DEL 1 GRUNNLEGGENDE STATISTIKK INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................

Detaljer