MAT1030 Diskret Matematikk

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MAT1030 Diskret Matematikk"

Transkript

1 MAT1030 Diskret Matematikk Plenumsregning 4: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 6. februar 2009 (Sist oppdatert: :21)

2 Plenumsregning 4 MAT1030 Diskret Matematikk 6. februar

3 Oppgave 4.1 Uttrykk følgende utsagn i utsagnslogikk og identifiser hovedkonnektivene. (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. (b) It is not the case that if it is sunny then I will carry an umbrella. (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. MAT1030 Diskret Matematikk 6. februar

4 Løsning 4.1 (a) MAT1030 Diskret Matematikk 6. februar

5 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. MAT1030 Diskret Matematikk 6. februar

6 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing MAT1030 Diskret Matematikk 6. februar

7 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics MAT1030 Diskret Matematikk 6. februar

8 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics Svar: (p q) q MAT1030 Diskret Matematikk 6. februar

9 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics Svar: (p q) q Hovedkonnektivet er (eller) MAT1030 Diskret Matematikk 6. februar

10 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics Svar: (p q) q Hovedkonnektivet er (eller) Siden (a b) c a (b c) må vi skjønne hva som menes. MAT1030 Diskret Matematikk 6. februar

11 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics Svar: (p q) q Hovedkonnektivet er (eller) Siden (a b) c a (b c) må vi skjønne hva som menes. Kommaet foran or viser at muntlig gjøres det en liten pause foran dette eller et. MAT1030 Diskret Matematikk 6. februar

12 Løsning 4.1 (a) Either Karen is studying computing and Minh is not studying mathematics, or Minh is studying mathematics. p: Karen is studying computing q: Minh is studying mathematics Svar: (p q) q Hovedkonnektivet er (eller) Siden (a b) c a (b c) må vi skjønne hva som menes. Kommaet foran or viser at muntlig gjøres det en liten pause foran dette eller et. Dette identifiserer som hovedkonnektiv i denne oppgaven. MAT1030 Diskret Matematikk 6. februar

13 Løsning 4.1 (b d) MAT1030 Diskret Matematikk 6. februar

14 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. MAT1030 Diskret Matematikk 6. februar

15 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella MAT1030 Diskret Matematikk 6. februar

16 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) MAT1030 Diskret Matematikk 6. februar

17 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. MAT1030 Diskret Matematikk 6. februar

18 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate MAT1030 Diskret Matematikk 6. februar

19 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric MAT1030 Diskret Matematikk 6. februar

20 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed MAT1030 Diskret Matematikk 6. februar

21 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) MAT1030 Diskret Matematikk 6. februar

22 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) MAT1030 Diskret Matematikk 6. februar

23 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. MAT1030 Diskret Matematikk 6. februar

24 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 MAT1030 Diskret Matematikk 6. februar

25 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 Svar: (p q r) MAT1030 Diskret Matematikk 6. februar

26 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 Svar: (p q r) MAT1030 Diskret Matematikk 6. februar

27 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 Svar: (p q r) ( (q r) MAT1030 Diskret Matematikk 6. februar

28 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 Svar: (p q r) ( (q r) (p r)) MAT1030 Diskret Matematikk 6. februar

29 Løsning 4.1 (b d) (b) It is not the case that if it is sunny then I will carry an umbrella. p: it is sunny q: I will carry an umbrella Svar: (p q) Hovedkonnektivet er (ikke). (c) The program will terminate if and only if the input is not numeric or the escape key is pressed. p: the program will terminate q: the input is numeric r: the escape key is pressed Svar: p ( q r) Hovedkonnektivet er (hvis-og-bare-hvis) (d) If x = 7 and y 4 and z = 2, then if it is not true that either y = 4 or z 2 then x = 7 or z = 2. p: x = 7 q: y = 4 r: z = 2 Svar: (p q r) ( (q r) (p r)) Hovedkonnektivet er første forekomst av (hvis-så) MAT1030 Diskret Matematikk 6. februar

30 Oppgave 4.2 p: det snør q: jeg skal gå på ski MAT1030 Diskret Matematikk 6. februar

31 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning MAT1030 Diskret Matematikk 6. februar

32 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: MAT1030 Diskret Matematikk 6. februar

33 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke MAT1030 Diskret Matematikk 6. februar

34 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og MAT1030 Diskret Matematikk 6. februar

35 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. MAT1030 Diskret Matematikk 6. februar

36 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: MAT1030 Diskret Matematikk 6. februar

37 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, MAT1030 Diskret Matematikk 6. februar

38 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. MAT1030 Diskret Matematikk 6. februar

39 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. (c) q p: MAT1030 Diskret Matematikk 6. februar

40 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. (c) q p: Hvis jeg ikke skal gå på ski, MAT1030 Diskret Matematikk 6. februar

41 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. (c) q p: Hvis jeg ikke skal gå på ski, så snør det. MAT1030 Diskret Matematikk 6. februar

42 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. (c) q p: Hvis jeg ikke skal gå på ski, så snør det. (d) (p q) p: MAT1030 Diskret Matematikk 6. februar

43 Oppgave 4.2 p: det snør q: jeg skal gå på ski Løsning (a) p q: Det snør ikke og jeg skal gå på ski. (b) p q: Hvis det snør, så skal jeg gå på ski. (c) q p: Hvis jeg ikke skal gå på ski, så snør det. (d) (p q) p: Det snør eller jeg skal ikke gå på ski, og det snør. MAT1030 Diskret Matematikk 6. februar

44 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. MAT1030 Diskret Matematikk 6. februar

45 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden, så har vi at MAT1030 Diskret Matematikk 6. februar

46 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden, så har vi at q p er den konverse, og at MAT1030 Diskret Matematikk 6. februar

47 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden, så har vi at q p er den konverse, og at q p er den kontrapositive. MAT1030 Diskret Matematikk 6. februar

48 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden, så har vi at q p er den konverse, og at q p er den kontrapositive. Den konverse betyr noe annet enn den opprinnelige påstanden MAT1030 Diskret Matematikk 6. februar

49 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden, så har vi at q p er den konverse, og at q p er den kontrapositive. Den konverse betyr noe annet enn den opprinnelige påstanden, mens den kontrapositive er logisk ekvivalent med den opprinnelige påstanden. MAT1030 Diskret Matematikk 6. februar

50 Løsning (a) Hvis inputfilen eksisterer, så genereres ikke en feilmelding. MAT1030 Diskret Matematikk 6. februar

51 Løsning (a) Hvis inputfilen eksisterer, så genereres ikke en feilmelding. Konvers: Hvis det ikke genereres en feilmelding, så eksisterer inputfilen. MAT1030 Diskret Matematikk 6. februar

52 Løsning (a) Hvis inputfilen eksisterer, så genereres ikke en feilmelding. Konvers: Hvis det ikke genereres en feilmelding, så eksisterer inputfilen. Kontrapositiv: Hvis det genereres en feilmelding, så eksisterer ikke inputfilen. MAT1030 Diskret Matematikk 6. februar

53 Løsning (b) Hvis databasen ikke er tilgjengelig, så kan ikke programmet mitt kjøre. MAT1030 Diskret Matematikk 6. februar

54 Løsning (b) Hvis databasen ikke er tilgjengelig, så kan ikke programmet mitt kjøre. Konvers: Hvis ikke programmet mitt kan kjøre, så er ikke databasen tilgjengelig. MAT1030 Diskret Matematikk 6. februar

55 Løsning (b) Hvis databasen ikke er tilgjengelig, så kan ikke programmet mitt kjøre. Konvers: Hvis ikke programmet mitt kan kjøre, så er ikke databasen tilgjengelig. Kontrapositiv: Hvis programmet mitt kan kjøre, så er databasen tilgjengelig. MAT1030 Diskret Matematikk 6. februar

56 Løsning (c) Hvis programmet ikke inneholder noen feil, så gir det korrekt output. MAT1030 Diskret Matematikk 6. februar

57 Løsning (c) Hvis programmet ikke inneholder noen feil, så gir det korrekt output. Konvers: Hvis programmet gir korrekt output, så inneholder det ikke noen feil. MAT1030 Diskret Matematikk 6. februar

58 Løsning (c) Hvis programmet ikke inneholder noen feil, så gir det korrekt output. Konvers: Hvis programmet gir korrekt output, så inneholder det ikke noen feil. Kontrapositiv: Hvis programmet ikke gir korrekt output, så inneholder det noen feil. MAT1030 Diskret Matematikk 6. februar

59 Oppgave 4.7 MAT1030 Diskret Matematikk 6. februar

60 Oppgave 4.7 La P og Q stå for logiske uttrykk. MAT1030 Diskret Matematikk 6. februar

61 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være MAT1030 Diskret Matematikk 6. februar

62 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, MAT1030 Diskret Matematikk 6. februar

63 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. MAT1030 Diskret Matematikk 6. februar

64 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. MAT1030 Diskret Matematikk 6. februar

65 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. Løsning (a) MAT1030 Diskret Matematikk 6. februar

66 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. Løsning (a) Hvis P er sann for en gitt tilordning av sannhetsverdier til variablene, MAT1030 Diskret Matematikk 6. februar

67 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. Løsning (a) Hvis P er sann for en gitt tilordning av sannhetsverdier til variablene, så må P Q være MAT1030 Diskret Matematikk 6. februar

68 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. Løsning (a) Hvis P er sann for en gitt tilordning av sannhetsverdier til variablene, så må P Q være sann for den tilordningen, MAT1030 Diskret Matematikk 6. februar

69 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. Løsning (a) Hvis P er sann for en gitt tilordning av sannhetsverdier til variablene, så må P Q være sann for den tilordningen,så det er ikke nødvendig å finne verdien til Q. MAT1030 Diskret Matematikk 6. februar

70 Oppgave 4.7 La P og Q stå for logiske uttrykk. Hvis P er usann for en gitt tilordning av sannhetsverdier til variablene i P og Q, så må P Q være usann for den tilordningen, så det er ikke nødvendig å finne verdien til Q. (a) Gi en tilsvarende regel for P Q. (b) Konstruer, ved å bruke disse reglene som snarveier, sannhetsverditabellene for følgende uttrykk. (i) [ (p q) (p r)] [(p r) q] (ii) [ p (q r)] ( p r) Løsning (a) Hvis P er sann for en gitt tilordning av sannhetsverdier til variablene, så må P Q være sann for den tilordningen,så det er ikke nødvendig å finne verdien til Q. MAT1030 Diskret Matematikk 6. februar

71 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] MAT1030 Diskret Matematikk 6. februar

72 Løsning (b(i)) p q r [ (p q) (p r)] T T T T T F T F T T F F F T T F T F F F T F F F [(p r) q] MAT1030 Diskret Matematikk 6. februar

73 Løsning (b(i)) p q r [ (p q) (p r)] T T T T T F T F T F T F F F F T T F F T F F F F T F F F F F [(p r) q] MAT1030 Diskret Matematikk 6. februar

74 Løsning (b(i)) p q r [ (p q) (p r)] T T T T T T F T T F T F T F F F F T T F F T F F F F T F F F F F [(p r) q] MAT1030 Diskret Matematikk 6. februar

75 Løsning (b(i)) p q r [ (p q) (p r)] T T T F T T T F F T T F T T F T F F T F F T T T F F T F T F F F T T F F F F T F [(p r) q] MAT1030 Diskret Matematikk 6. februar

76 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T F F T F F T T T F F T F T F F F T T F F F F T F MAT1030 Diskret Matematikk 6. februar

77 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T F F T F T F T T T F F T F T F T F F T T F F F F T F T MAT1030 Diskret Matematikk 6. februar

78 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T F F T F T T F T T T F F T F T F T T F F T T F F F F T F T T MAT1030 Diskret Matematikk 6. februar

79 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T F F T F T T F T T T F F F T F T F T T F F T T F F F F F T F T T MAT1030 Diskret Matematikk 6. februar

80 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T F F T F T T F T T T F F F F F T F T F T T F F T T F F F F F F F T F T T MAT1030 Diskret Matematikk 6. februar

81 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T F F T F T T T T F T T T F F F F F T F T F T T F F T T F F F F F F F T F T T T T MAT1030 Diskret Matematikk 6. februar

82 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T T F F T F T T T T T F T T T F F F F F T F T F T T F F T T F F F F F F F T F T T T T T MAT1030 Diskret Matematikk 6. februar

83 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T T F F T F T T T T T F T T T F F F F F T F T F T T F F F T T F F F F F F F T F T T T T T MAT1030 Diskret Matematikk 6. februar

84 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T T F F T F T T T T T F T T T F F F F F T F T F T T F F F F T T F F F F F F F T F T T T T T MAT1030 Diskret Matematikk 6. februar

85 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T T F F T F T T T T T F T T T F F F F F T F T F T T F F F F F T T F F F F F F F T F T T T T T MAT1030 Diskret Matematikk 6. februar

86 Løsning (b(i)) p q r [ (p q) (p r)] [(p r) q] T T T F T F F T T F F T F F T F T T F T T T T T T F F T F T T T T T F T T T F F F F F T F T F T T F F F F F F T T F F F F F F F T F T T T T T MAT1030 Diskret Matematikk 6. februar

87 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T T F T F T T F F F T T F T F F F T F F F MAT1030 Diskret Matematikk 6. februar

88 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T T F T F T T F F F T T F T F T F F T F F F T MAT1030 Diskret Matematikk 6. februar

89 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T T F T F T T F F F T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

90 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T F T T F F T F T F T F F F F T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

91 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T F F T T F F F T F T F F T F F F F F T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

92 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T F T F F T F T T F F T F F T F F F T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

93 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

94 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

95 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

96 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T T T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

97 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

98 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

99 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T F F F T T MAT1030 Diskret Matematikk 6. februar

100 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T T F F F T T MAT1030 Diskret Matematikk 6. februar

101 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T T T F F F T T MAT1030 Diskret Matematikk 6. februar

102 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T T T T F F F T T MAT1030 Diskret Matematikk 6. februar

103 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T F T T T F F F T T MAT1030 Diskret Matematikk 6. februar

104 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T F T T T F F F F T T MAT1030 Diskret Matematikk 6. februar

105 Løsning (b(ii)) p q r [ p (q r)] ( p r) T T T T F F T T T F T F F T T F T T F F T T F F T F F T F T T F T T T F F F T F T T F F T F T T T F F F F F T T MAT1030 Diskret Matematikk 6. februar

106 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. MAT1030 Diskret Matematikk 6. februar

107 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T MAT1030 Diskret Matematikk 6. februar

108 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T MAT1030 Diskret Matematikk 6. februar

109 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T T MAT1030 Diskret Matematikk 6. februar

110 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T T F MAT1030 Diskret Matematikk 6. februar

111 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T T T F MAT1030 Diskret Matematikk 6. februar

112 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F MAT1030 Diskret Matematikk 6. februar

113 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F MAT1030 Diskret Matematikk 6. februar

114 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F T MAT1030 Diskret Matematikk 6. februar

115 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T MAT1030 Diskret Matematikk 6. februar

116 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T MAT1030 Diskret Matematikk 6. februar

117 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F MAT1030 Diskret Matematikk 6. februar

118 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F T MAT1030 Diskret Matematikk 6. februar

119 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F T T MAT1030 Diskret Matematikk 6. februar

120 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F T T T MAT1030 Diskret Matematikk 6. februar

121 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T MAT1030 Diskret Matematikk 6. februar

122 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F MAT1030 Diskret Matematikk 6. februar

123 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F MAT1030 Diskret Matematikk 6. februar

124 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F MAT1030 Diskret Matematikk 6. februar

125 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F MAT1030 Diskret Matematikk 6. februar

126 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T MAT1030 Diskret Matematikk 6. februar

127 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T F MAT1030 Diskret Matematikk 6. februar

128 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T F F MAT1030 Diskret Matematikk 6. februar

129 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T F F F MAT1030 Diskret Matematikk 6. februar

130 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F MAT1030 Diskret Matematikk 6. februar

131 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T MAT1030 Diskret Matematikk 6. februar

132 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T MAT1030 Diskret Matematikk 6. februar

133 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T MAT1030 Diskret Matematikk 6. februar

134 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F MAT1030 Diskret Matematikk 6. februar

135 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F MAT1030 Diskret Matematikk 6. februar

136 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F MAT1030 Diskret Matematikk 6. februar

137 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F T MAT1030 Diskret Matematikk 6. februar

138 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F T T MAT1030 Diskret Matematikk 6. februar

139 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F F T T MAT1030 Diskret Matematikk 6. februar

140 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F F T T T MAT1030 Diskret Matematikk 6. februar

141 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F F T T T F MAT1030 Diskret Matematikk 6. februar

142 Oppgave 4.8 Bruk sannhetsverditabeller for å vise at (p q) og p q er logisk ekvivalente. Løsning p q (p q) p q T T F T T F F F T T F F T T T F F F F T T F F F T T T F F F F T T T F F MAT1030 Diskret Matematikk 6. februar

143 Oppgave 4.9 Bruk sannhetsverditabeller for å vise følgende logiske lover. (a) p (q r) (p q) (p r) (b) p (p q) p MAT1030 Diskret Matematikk 6. februar

144 Oppgave 4.9 Bruk sannhetsverditabeller for å vise følgende logiske lover. (a) p (q r) (p q) (p r) (b) p (p q) p Løsning (a) p q r p (q r) (p q) (p r) T T T T T T T T T T F T T T T T T F T T T T T T T F F F F F F F F T T F F F F F F T F F F F F F F F T F F F F F F F F F F F F F MAT1030 Diskret Matematikk 6. februar

145 Oppgave 4.10 MAT1030 Diskret Matematikk 6. februar

146 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. MAT1030 Diskret Matematikk 6. februar

147 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. (Dette er analogt til å forenkle algebraiske uttrykk.) MAT1030 Diskret Matematikk 6. februar

148 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. (Dette er analogt til å forenkle algebraiske uttrykk.) (a) (p q) (p q) MAT1030 Diskret Matematikk 6. februar

149 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. (Dette er analogt til å forenkle algebraiske uttrykk.) (a) (p q) (p q) (b) [p (p q)] MAT1030 Diskret Matematikk 6. februar

150 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. (Dette er analogt til å forenkle algebraiske uttrykk.) (a) (p q) (p q) (b) [p (p q)] (c) [p (q p)] MAT1030 Diskret Matematikk 6. februar

151 Oppgave 4.10 Bruk de logiske lovene til å forenkle følgende uttrykk. (Dette er analogt til å forenkle algebraiske uttrykk.) (a) (p q) (p q) (b) [p (p q)] (c) [p (q p)] (d) [(p q) (r p)] (r q) MAT1030 Diskret Matematikk 6. februar

152 Løsning 4.10 (a c) MAT1030 Diskret Matematikk 6. februar

153 Løsning 4.10 (a c) (a) (p q) (p q) MAT1030 Diskret Matematikk 6. februar

154 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) MAT1030 Diskret Matematikk 6. februar

155 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) MAT1030 Diskret Matematikk 6. februar

156 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F MAT1030 Diskret Matematikk 6. februar

157 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p MAT1030 Diskret Matematikk 6. februar

158 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] MAT1030 Diskret Matematikk 6. februar

159 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] MAT1030 Diskret Matematikk 6. februar

160 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] MAT1030 Diskret Matematikk 6. februar

161 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] MAT1030 Diskret Matematikk 6. februar

162 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) MAT1030 Diskret Matematikk 6. februar

163 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q MAT1030 Diskret Matematikk 6. februar

164 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q MAT1030 Diskret Matematikk 6. februar

165 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q (c) [p (q p)] MAT1030 Diskret Matematikk 6. februar

166 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q (c) [p (q p)] dem. p (q p) MAT1030 Diskret Matematikk 6. februar

167 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q (c) [p (q p)] dem. p (q p) dem. p ( q p) MAT1030 Diskret Matematikk 6. februar

168 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q (c) [p (q p)] dem. p (q p) dem. p ( q p) Dist. ( p q) ( p p) MAT1030 Diskret Matematikk 6. februar

169 Løsning 4.10 (a c) (a) (p q) (p q) Dist. p ( q q) Com. p (q q) Inv. p F Id. p (b) [p (p q)] Imp. [ p (p q)] dem. [p ( p q)] Ass. [( p p) q] Idm. ( p q) dem. p q DoN. p q (c) [p (q p)] dem. p (q p) dem. p ( q p) Dist. ( p q) ( p p) p q (p q) MAT1030 Diskret Matematikk 6. februar

170 Løsning 4.10 (d) MAT1030 Diskret Matematikk 6. februar

171 Løsning 4.10 (d) [(p q) (r p)] (r q) MAT1030 Diskret Matematikk 6. februar

172 Løsning 4.10 (d) [(p q) (r p)] (r q) [ [( p q) ( q p)] ( r p)] ( r q) MAT1030 Diskret Matematikk 6. februar

173 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) MAT1030 Diskret Matematikk 6. februar

174 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) [ ( p q) ( q p)] (r p) ( r q) MAT1030 Diskret Matematikk 6. februar

175 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) ( p q) ( q p) (r p) ( r q) MAT1030 Diskret Matematikk 6. februar

176 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) ( p q) ( q p) (r p) ( r q) (p q) (q p) (r p) r q MAT1030 Diskret Matematikk 6. februar

177 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) ( p q) ( q p) (r p) ( r q) (p q) (q p) (r p) r q [( r r) ( r p)] [( q q) ( q p)] (p p) MAT1030 Diskret Matematikk 6. februar

178 Løsning 4.10 (d) [(p q) (r p)] (r q) [( p q) ( q p)] ( r p) ( r q) ( p q) ( q p) (r p) ( r q) (p q) (q p) (r p) r q [( r r) ( r p)] [( q q) ( q p)] (p p) ( r p) ( q p) p q r MAT1030 Diskret Matematikk 6. februar

179 Oppgave 4.13 MAT1030 Diskret Matematikk 6. februar

180 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. MAT1030 Diskret Matematikk 6. februar

181 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) MAT1030 Diskret Matematikk 6. februar

182 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) MAT1030 Diskret Matematikk 6. februar

183 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q MAT1030 Diskret Matematikk 6. februar

184 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, MAT1030 Diskret Matematikk 6. februar

185 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. MAT1030 Diskret Matematikk 6. februar

186 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning MAT1030 Diskret Matematikk 6. februar

187 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) ( p q) MAT1030 Diskret Matematikk 6. februar

188 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q MAT1030 Diskret Matematikk 6. februar

189 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q MAT1030 Diskret Matematikk 6. februar

190 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q MAT1030 Diskret Matematikk 6. februar

191 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q ( p q) q MAT1030 Diskret Matematikk 6. februar

192 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q MAT1030 Diskret Matematikk 6. februar

193 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T MAT1030 Diskret Matematikk 6. februar

194 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] MAT1030 Diskret Matematikk 6. februar

195 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F MAT1030 Diskret Matematikk 6. februar

196 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F MAT1030 Diskret Matematikk 6. februar

197 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q MAT1030 Diskret Matematikk 6. februar

198 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q MAT1030 Diskret Matematikk 6. februar

199 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q [ p (p q)] q MAT1030 Diskret Matematikk 6. februar

200 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q MAT1030 Diskret Matematikk 6. februar

201 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q MAT1030 Diskret Matematikk 6. februar

202 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q MAT1030 Diskret Matematikk 6. februar

203 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q p q q MAT1030 Diskret Matematikk 6. februar

204 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q p q q MAT1030 Diskret Matematikk 6. februar

205 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q T (b) [p (q p)] (p p) [ p q p F] T F F (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q p q q T MAT1030 Diskret Matematikk 6. februar

206 Oppgave 4.13 Bruk de logiske lovene til å klassifisere følgende uttrykk some tautologier eller kontradiksjoner. (a) (p q) ( p q) (b) [p (q p)] (p p) (c) [p (p q)] q Modus Ponens En tautologi er sann for enhver tilordning av sannhetsverdier, en kontradiksjon er usann. Løsning (a) (p q) p q [( p p) ( p q)] q p q q Tautologi (b) [p (q p)] (p p) [ p q p F] T F FKontradiksjon (c) [p (p q)] q [p ( p q)] q p (p q) q [( p p) ( p q)] q p q q Tautologi MAT1030 Diskret Matematikk 6. februar

207 Oppgave 4.16 Finn et uttrykk som er logisk ekvivalent med p q, men som kun bruker konnektivene og. Løsning MAT1030 Diskret Matematikk 6. februar

208 Oppgave 4.16 Finn et uttrykk som er logisk ekvivalent med p q, men som kun bruker konnektivene og. Løsning Vi vet at p q er logisk ekvivalent med (p q). MAT1030 Diskret Matematikk 6. februar

209 Oppgave 4.16 Finn et uttrykk som er logisk ekvivalent med p q, men som kun bruker konnektivene og. Løsning Vi vet at p q er logisk ekvivalent med (p q). Vi vet også at (p q) er logisk ekvivalent med p q. MAT1030 Diskret Matematikk 6. februar

210 Oppgave 4.16 Finn et uttrykk som er logisk ekvivalent med p q, men som kun bruker konnektivene og. Løsning Vi vet at p q er logisk ekvivalent med (p q). Vi vet også at (p q) er logisk ekvivalent med p q. Da må p q (p q) ( p q). MAT1030 Diskret Matematikk 6. februar

211 Oppgave 4.16 Finn et uttrykk som er logisk ekvivalent med p q, men som kun bruker konnektivene og. Løsning Vi vet at p q er logisk ekvivalent med (p q). Vi vet også at (p q) er logisk ekvivalent med p q. Da må p q (p q) ( p q). p q p q ( p q) T T T T F F F T F T T F F T F T T T T F F F F F F T T T MAT1030 Diskret Matematikk 6. februar

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 4: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 6. februar 2009 (Sist oppdatert: 2009-02-10 11:20) Plenumsregning 4 MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 4: Ukeoppgaver fra kapittel 3 & 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 7. februar 2008 Oppgave 3.15 Forklar følgende påstand ved å vise til

Detaljer

Ukeoppgaver fra kapittel 3 & 4

Ukeoppgaver fra kapittel 3 & 4 Plenumsregning 4 Ukeoppgaver fra kapittel 3 & 4 Roger Antonsen - 7. februar 2008 Oppgave 3.15 Forklar følgende påstand ved å vise til beregninger med reelle tall på eksponentiell form: Man mister presisjon

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 5: Ukeoppgaver fra kapittel 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse

Detaljer

Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn.

Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Plenumsregning 5 Ukeoppgaver fra kapittel 4 Roger Antonsen - 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden,

Detaljer

Vi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q

Vi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q Vi startet forelesningen med litt repetisjon fra forrige uke: Det omvendte, kontrapositive og inverse utsagnet. La p og q være to utsagn, og p -> q Begrepene «tilstrekkelig», «nødvendig» og «bare hvis».

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 6: Ukeoppgaver fra kapittel 5 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 21. februar 2008 Oppgave 5.1 Skriv følgende mengder på listeform. (a) Mengden

Detaljer

Kapittel 4: Logikk. MAT1030 Diskret Matematikk. Oppsummering. En digresjon. Forelesning 6: Utsagnslogikk og predikatlogikk.

Kapittel 4: Logikk. MAT1030 Diskret Matematikk. Oppsummering. En digresjon. Forelesning 6: Utsagnslogikk og predikatlogikk. MAT1030 Diskret Matematikk Forelesning 6: Utsagnslogikk og predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 4: Logikk 3. februar 2010 (Sist oppdatert: 2010-02-03 12:49) MAT1030

Detaljer

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Utsagnslogikk. Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Eksempler: Avgjør om følgende setninger er et utsagn, og i så fall;

Detaljer

Emne 13 Utsagnslogikk

Emne 13 Utsagnslogikk Emne 13 Utsagnslogikk Et utsagn er en erklæring som er entydig sann eller usann, men ikke begge deler. Noen eksempler på (ekte) utsagn: Utsagn : Gjøvik har bystatus er sann ( i alle fall pr. dags dato

Detaljer

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand.

Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Utsagnslogikk. Et utsagn (eng: proposition) er en erklærende setning som enten er sann eller usann. Vi kaller det gjerne en påstand. Eksempler: Avgjør om følgende setninger er et utsagn, og i så fall;

Detaljer

Kapittel 4: Logikk (utsagnslogikk)

Kapittel 4: Logikk (utsagnslogikk) MAT1030 Diskret Matematikk Forelesning 6: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Logikk (utsagnslogikk) 28. januar 2009 (Sist oppdatert: 2009-01-28

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 6: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 28. januar 2009 (Sist oppdatert: 2009-01-28 12:23) Kapittel 4: Logikk (utsagnslogikk)

Detaljer

Sammensatte utsagn, sannhetsverditabeller. MAT1030 Diskret matematikk. Sammensatte utsagn, sannhetsverditabeller

Sammensatte utsagn, sannhetsverditabeller. MAT1030 Diskret matematikk. Sammensatte utsagn, sannhetsverditabeller Sammensatte utsagn, sannhetsverditabeller MAT1030 Diskret matematikk Forelesning 6: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 30. januar 2008 Mandag 28/1 innførte vi bindeordene (konnektivene)

Detaljer

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030

Plenumsregning 1. MAT1030 Diskret Matematikk. Repetisjon: Algoritmer og pseudokode. Velkommen til plenumsregning for MAT1030 MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo Plenumsregning 1 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) MAT1030 Diskret Matematikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 1: Kapittel 1 Mathias Barra Matematisk institutt, Universitetet i Oslo 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 MAT1030 Diskret Matematikk

Detaljer

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring

Kvantorer. MAT1030 Diskret matematikk. Kvantorer. Kvantorer. Eksempel. Eksempel (Fortsatt) Forelesning 8: Predikatlogikk, bevisføring Kvantorer MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 008 Mandag 04.0.008 introduserte vi predikatlogikk Vi innførte

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 8: Predikatlogikk, bevisføring Dag Normann Matematisk Institutt, Universitetet i Oslo 6. februar 2008 Kvantorer Mandag 04.02.2008 introduserte vi predikatlogikk Vi

Detaljer

Kalles p for premissen og q for konklusjonen. Utsagnet kan uttrykkes på mange forskjellige måter:

Kalles p for premissen og q for konklusjonen. Utsagnet kan uttrykkes på mange forskjellige måter: Logisk implikasjon (eng: conditional statement) La p og q være to utsagn. Utsagnet leses som «p impliserer q». Utsagnet er usant hvis p er sant og q er usant, og er sant ellers. Huskeregel: «SUSS» Operatoren

Detaljer

Kapittel 4: Mer predikatlogikk

Kapittel 4: Mer predikatlogikk MAT1030 Diskret Matematikk Forelesning 8: Logikk, predikatlogikk, bevisteknikker Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Mer predikatlogikk 11. februar 009 (Sist oppdatert:

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Løsningsforslag for 1. obligatoriske oppgave høsten 2014

Løsningsforslag for 1. obligatoriske oppgave høsten 2014 Løsningsforslag for 1 obligatoriske oppgave høsten 2014 Oppgave 1a) 1) Bruk av sannhetsverditabell: p q p p ( p ) p (( p ) S S U S U S S U U S U S U S S S S S U U S U U S Vi ser at (( p ) er en tautologi,

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

MAT1030 Forelesning 8

MAT1030 Forelesning 8 MAT1030 Forelesning 8 Logikk, predikatlogikk, bevisteknikker Roger Antonsen - 11. februar 009 (Sist oppdatert: 009-0-17 10:5) Kapittel 4: Mer predikatlogikk Oppsummering Læringsmålene for kapitlet om logikk

Detaljer

Chapter 1 - Discrete Mathematics and Its Applications

Chapter 1 - Discrete Mathematics and Its Applications Chapter 1 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Avsnitt 1.2 Oppgave 3 På norsk blir dette: Du kan velges til president i USA bare hvis du er minst 35 år, er født

Detaljer

Vi var midt i et eksempel, som vi tar opp igjen her, da tiden var ute.

Vi var midt i et eksempel, som vi tar opp igjen her, da tiden var ute. Forelesning 6 Logikk Dag Normann - 30. januar 2008 Sammensatte utsagn, sannhetsverditabeller Mandag 28/1 innførte vi bindeordene (konnektivene) for og, for eller og for ikke. Vi så hvordan vi kunne definere

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 27. januar 2010 (Sist oppdatert: 2010-01-27 12:47) Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 7: Predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo 4. februar 2008 Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel ((p q) r) Eksempel (p (q r))

Oppsummering. MAT1030 Diskret matematikk. Oppsummering. Oppsummering. Eksempel ((p q) r) Eksempel (p (q r)) Oppsummering MAT1030 Diskret matematikk Forelesning 7: Predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo 4. februar 2008 Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel

Detaljer

TMA 4140 Diskret Matematikk, 2. forelesning

TMA 4140 Diskret Matematikk, 2. forelesning TMA 4140 Diskret Matematikk, 2. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 2, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

MAT1030 Forelesning 6

MAT1030 Forelesning 6 MAT1030 Forelesning 6 Logikk, predikatlogikk Roger Antonsen - 28. januar 2009 (Sist oppdatert: 2009-01-28 12:23) Kapittel 4: Logikk (utsagnslogikk) Mer om parenteser Eksempel. (p q r) (p r) (q r) Her mangler

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Plenumsregning 11: Ukeoppgaver Mathias Barra Matematisk institutt, Universitetet i Oslo 7. mars 009 (Sist oppdatert: 009-03-30 09:39) Oppgave 7. Finn en rekursiv og en ikke-rekursiv

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 4: Logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 21. januar 2009 (Sist oppdatert: 2009-01-22 13:02) Kapittel 4: Logikk (fortsettelse) MAT1030

Detaljer

Kapittel 4: Logikk (fortsettelse)

Kapittel 4: Logikk (fortsettelse) MAT1030 Diskret Matematikk Forelesning 4: Logikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Logikk (fortsettelse) 21. januar 2009 (Sist oppdatert: 2009-01-22 13:03) MAT1030

Detaljer

MAT1030 Plenumsregning 1

MAT1030 Plenumsregning 1 MAT1030 Plenumsregning 1 Kapittel 1 Mathias Barra - 16. januar 2009 (Sist oppdatert: 2009-02-02 14:21) Plenumsregning 1 Velkommen til plenumsregning for MAT1030 Fredager 12:15 14:00 Vi vil gjennomgå utvalgte

Detaljer

I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser

I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser Forelesning 5 Logikk Dag Normann - 28. januar 2008 Oppsummering av Kapittel 3 I Kapittel 3 så vi på hvordan data, som hele tall og reelle tall, kan representeres som bitsekvenser i en datamaskin. Stoffet

Detaljer

Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F.

Det betyr igjen at det får verdien F nøyaktig når p = T, q = T og r = F. Forelesning 7 Dag Normann - 4. februar 2008 Oppsummering Vi har innført sannhetsverdiene T og F, begrepet utsagnsvariabel og de utsagnslogiske bindeordene,,, og. Vi har sett hvordan vi kan undersøke egenskapene

Detaljer

Kapittel 4: Mer predikatlogikk

Kapittel 4: Mer predikatlogikk MAT1030 Diskret Matematikk Forelesning 8: Logikk, predikatlogikk, bevisteknikker Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 4: Mer predikatlogikk 10. februar 010 (Sist oppdatert: 010-0-10

Detaljer

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p

Ekvivalente utsagn. Eksempler: Tautologi : p V p Selvmotsigelse: p Λ p Ekvivalente utsagn Definisjoner: Et sammensatt utsagn som ALLTID er SANT kalles for en TAUTOLOGI. Et sammensatt utsagn som ALLTID er USANT kalles for en SELVMOTIGELSE eller en KONTRADIKSJON (eng. contradiction).

Detaljer

TMA 4140 Diskret Matematikk, 1. forelesning

TMA 4140 Diskret Matematikk, 1. forelesning TMA 4140 Diskret Matematikk, 1. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) August 29, 2011 Haaken Annfelt Moe (NTNU) TMA 4140

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Praktisk informasjon Endringer

Detaljer

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet.

Praktisk informasjon INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK. Endringer i undervisningen. Spørreskjemaet. INF1800 LOGIKK OG BEREGNBARHET FORELESNING 5: UTSAGNSLOGIKK Roger Antonsen Praktisk informasjon Institutt for informatikk Universitetet i Oslo 2. september 2008 (Sist oppdatert: 2008-09-04 17:26) Endringer

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode

Plenumsregning 1. Kapittel 1. Roger Antonsen januar Velkommen til plenumsregning for MAT1030. Repetisjon: Algoritmer og pseudokode Plenumsregning 1 Kapittel 1 Roger Antonsen - 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang av ukeoppgaver Gjennomgang av eksempler fra boka Litt repetisjon

Detaljer

MAT1030 Forelesning 4

MAT1030 Forelesning 4 MAT1030 Forelesning 4 Logikk Roger Antonsen - 21. januar 2009 (Sist oppdatert: 2009-01-22 13:02) Kapittel 4: Logikk (fortsettelse) Enda et eksempel (a) Jeg liker ikke Bamsemums. (b) Du liker alt jeg liker.

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgaver fra forelesningene Oppgave (fra forelesningen 10/3) a)

Detaljer

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver

Oppgaver fra forelesningene. MAT1030 Diskret matematikk. Oppgave (fra forelesningen 10/3) Definisjon. Plenumsregning 9: Diverse ukeoppgaver Oppgaver fra forelesningene MAT1030 Diskret matematikk Plenumsregning 9: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 10. april 2008 Oppgave (fra forelesningen 10/3) a)

Detaljer

Kapittel 4: Logikk (predikatlogikk)

Kapittel 4: Logikk (predikatlogikk) MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Dag Normann Matematisk Institutt, Universitetet i Oslo Kapittel 4: Logikk (predikatlogikk) 9. februar 2010 (Sist oppdatert: 2010-02-09 14:22)

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 6: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo 10. februar 2009 (Sist oppdatert: 2009-02-11 01:52) Kapittel 4: Logikk (predikatlogikk)

Detaljer

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon.

Generell induksjon og rekursjon. MAT1030 Diskret matematikk. Generell induksjon og rekursjon. Generell induksjon og rekursjon. MAT1030 Diskret matematikk Forelesning 18: Generell rekursjon og induksjon Dag Normann Matematisk Institutt, Universitetet i Oslo 12. mars 2008 Mandag så vi på induktivt definerte mengder og noen eksempler

Detaljer

Velkommen til MAT1030!

Velkommen til MAT1030! MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo Velkommen til MAT1030! 13. januar 2009 (Sist oppdatert:

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 1: Algoritmer, pseudokoder, kontrollstrukturer Roger Antonsen Institutt for informatikk, Universitetet i Oslo 13. januar 2009 (Sist oppdatert: 2009-01-14 16:44) Velkommen

Detaljer

MAT1030 Forelesning 5

MAT1030 Forelesning 5 MAT1030 Forelesning 5 Logikk, utsagnslogikk Roger Antonsen - 27. januar 2009 (Sist oppdatert: 2009-01-28 09:12) Kapittel 4: Logikk (fortsettelse) Repetisjon Forrige gang snakket vi om utsagn og predikater,

Detaljer

MAT1030 Plenumsregning 5

MAT1030 Plenumsregning 5 MAT1030 Plenumsregning 5 Ukeoppgaver Mathias Barra - 13. februar 2009 (Sist oppdatert: 2009-03-06 18:29) Oppgave 4.18 Uttrykk følgende påstander i predikatlogikk, og finn deres sannhetsverdier. (a) Det

Detaljer

Chapter 1 - Discrete Mathematics and Its Applications

Chapter 1 - Discrete Mathematics and Its Applications Chapter 1 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Avsnitt 1.1 Oppgave 1 Her tar vi utgangspunkt i flg. definisjon: Et utsagn (eng: proposition) er en erklærende

Detaljer

INF1800 Forelesning 6

INF1800 Forelesning 6 INF1800 Forelesning 6 Utsagnslogikk Roger Antonsen - 3. september 2008 (Sist oppdatert: 2008-09-03 12:49) Mer om bruk av utsagnslogikk Hvordan fange inn utsagn? Jeg spiser det hvis det er godt. Jeg spiser

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 5: Logikk Dag Normann Matematisk Institutt, Universitetet i Oslo 28. januar 2008 Oppsummering av Kapittel 3 I Kapittel 3 så vi på hvordan data, som hele tall og reelle

Detaljer

INF1800 LOGIKK OG BEREGNBARHET

INF1800 LOGIKK OG BEREGNBARHET INF1800 LOGIKK OG BEREGNBARHET FORELESNING 4: UTSAGNSLOGIKK Roger Antonsen Institutt for informatikk Universitetet i Oslo 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger

Detaljer

INF1800. Logikk og Beregnbarhet

INF1800. Logikk og Beregnbarhet INF1800 Logikk og Beregnbarhet Lærebok: Discrete Structures, Logic, and Computability Utdrag blir pensum. Obs: Første opplag inneholder mange feil, andre opplag inneholder noen feil. Har du kjøpt boken

Detaljer

Matematikk for IT, høsten 2017

Matematikk for IT, høsten 2017 Matematikk for IT, høsten 017 Oblig 5 Løsningsforslag 0. september 017 Oppgave 1 (eksamen desember 013) Gitt følgende logiske utsagn: ( p ( p q)) Benytt lovene i logikk til å finne hvilket av følgende

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Innledning Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon

Innledning. MAT1030 Diskret matematikk. Kapittel 11. Kapittel 11. Forelesning 33: Repetisjon Innledning MAT1030 Diskret matematikk Forelesning 33: Repetisjon Dag Normann Matematisk Institutt, Universitetet i Oslo 26. mai 2008 Onsdag 21/5 gjorde vi oss ferdige med det meste av den systematiske

Detaljer

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel

Dagens plan. INF3170 Logikk. Induktive definisjoner. Eksempel. Definisjon (Induktiv definisjon) Eksempel INF3170 Logikk Dagens plan Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen Institutt for informatikk, Universitetet i Oslo 1 Induktive definisjoner 2 29.

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2013 Tid for eksamen: 09.00 13.00 Oppgave 1 Mengdelære (10 poeng)

Detaljer

Repetisjonsforelesning

Repetisjonsforelesning Repetisjonsforelesning INF3170 Andreas Nakkerud Institutt for informatikk 24. november 2014 Institutt for informatikk Universitetet i Oslo Repetisjon 24. november 2014 1 / 39 Utsagnslogikk Utsagnslogikk

Detaljer

Kapittel 4: Logikk (predikatlogikk)

Kapittel 4: Logikk (predikatlogikk) MAT1030 Diskret Matematikk Forelesning 7: Logikk, predikatlogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 4: Logikk (predikatlogikk) 10. februar 2009 (Sist oppdatert: 2009-02-11

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum

Detaljer

INF1800 Forelesning 4

INF1800 Forelesning 4 INF1800 Forelesning 4 Utsagnslogikk Roger Antonsen - 27. august 2008 (Sist oppdatert: 2008-09-03 12:39) Før vi begynner Praktiske opplysninger Kursets hjemmeside blir stadig oppdatert: http://www.uio.no/studier/emner/matnat/ifi/inf1800/

Detaljer

if (be): else (not_to_be): TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap.

if (be): else (not_to_be): TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk Utgave 3: Kap. 3 Terje Rydland - IDI/NTNU 2 if (be): else (not_to_be): 3 Læringsmål og pensum

Detaljer

Matematikk for IT, høsten 2015

Matematikk for IT, høsten 2015 Matematikk for IT, høsten 015 Oblig 5 Løsningsforslag 5. oktober 016 3.1.1 3.1.13 a) Modus ponens. b) Modus tollens. c) Syllogismeloven. a) Ikke gyldig. b) Gyldig. 3.1.15 a) Hvis regattaen ikke avlyses,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 29. november 2013 Tid for eksamen: 09.00 13.00 (Fortsettes på side 2.) Oppgave

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 10: Diverse ukeoppgaver Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs

Detaljer

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel

Litt mer mengdelære. INF3170 Logikk. Multimengder. Definisjon (Multimengde) Eksempel INF3170 Logikk Forelesning 2: Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen Institutt for informatikk, Universitetet i Oslo Litt mer mengdelære 2. februar 2010 (Sist oppdatert: 2010-02-02

Detaljer

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre

Python: Valg og betingelser. TDT4110 IT Grunnkurs Professor Guttorm Sindre Python: Valg og betingelser TDT4110 IT Grunnkurs Professor Guttorm Sindre Læringsmål og pensum Mål Kunne forstå og bruke if-setninger sammenlikning av strenger nøstede beslutningsstrukturer betingelser

Detaljer

TDT4110 IT Grunnkurs Høst 2015

TDT4110 IT Grunnkurs Høst 2015 TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 26. november 2010 Tid for eksamen: 13:00 17:00 Oppgave 1 La A = { }. Mengdelære

Detaljer

Læringsmål og pensum. if (be): else (not_to_be):

Læringsmål og pensum. if (be): else (not_to_be): 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og

Detaljer

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007

Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen januar 2007 Forelesning 2: Induktive definisjoner, utsagnslogikk og sekventkalkyle Christian Mahesh Hansen - 29. januar 2007 1 Induktive definisjoner Induktive definisjoner Definisjon 1.1 (Induktiv definisjon). Å

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler: INF1080

Detaljer

TDT4110 IT Grunnkurs Høst 2016

TDT4110 IT Grunnkurs Høst 2016 TDT4110 IT Grunnkurs Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Vennligst fyll ut følgende informasjon i blokkbokstaver

Detaljer

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk. - 3rd edition: Kapittel 3. Professor Alf Inge Wang

TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk. - 3rd edition: Kapittel 3. Professor Alf Inge Wang 1 TDT4110 Informasjonsteknologi grunnkurs: Tema: Betingelser og logiske uttrykk - 3rd edition: Kapittel 3 Professor Alf Inge Wang 2 if (be): else (not_to_be): 3 Læringsmål og pensum Mål Lære å bruke og

Detaljer

Sekventkalkyle for utsagnslogikk

Sekventkalkyle for utsagnslogikk Sekventkalkyle for utsagnslogikk Tilleggslitteratur til INF1800 Versjon 11. september 2007 1 Hva er en sekvent? Hva er en gyldig sekvent? Sekventkalkyle er en alternativ type bevissystem hvor man i stedet

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk or IT, høsten 016 Oblig 4 Løsningsorslag 30. setember 016.4.11 a) ( 1, 3, 5, 7, ) Her vil relasjonsmengden være slik: {(1, 1), (3, 1), (3, 3), (5, 1), (5, 3), (5, 5), (7, 1), (7, 3), (7, 5),

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 28. november 2014 Tid for eksamen: 08.15 12.15 Oppgave 1 Mengdelære (10 poeng)

Detaljer

MAT1030 Forelesning 7

MAT1030 Forelesning 7 MAT1030 Forelesning 7 Logikk, predikatlogikk Dag Normann - 9. februar 2010 (Sist oppdatert: 2010-02-09 14:24) Kapittel 4: Logikk (predikatlogikk) Predikatlogikk Vi brukte hele forrige uke til å innføre

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 30. april 2008 Oppsummering Mandag så vi på hvordan vi kan finne uttrykk og termer på infiks form,

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 27: Trær Dag Normann Matematisk Institutt, Universitetet i Oslo 4. mai 2010 (Sist oppdatert: 2010-05-04 14:11) Forelesning 27 MAT1030 Diskret Matematikk 4. mai 2010

Detaljer

INF3170 Forelesning 2

INF3170 Forelesning 2 INF3170 Forelesning 2 Mengdelære, induktive definisjoner og utsagnslogikk Roger Antonsen - 2. februar 2010 (Sist oppdatert: 2010-02-02 14:26) Dagens plan Innhold Litt mer mengdelære 1 Multimengder.........................................

Detaljer

Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner

Oppsummering. MAT1030 Diskret matematikk. Relasjoner. Relasjoner. Forelesning 11: Relasjoner Oppsummering MAT1030 Diskret matematikk Forelesning 11: Relasjoner Dag Normann Matematisk Institutt, Universitetet i Oslo 18. februar 2008 Vi har gjort oss ferdige med innføringen av Boolesk mengdelære.

Detaljer

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28)

Forelesning 27. MAT1030 Diskret Matematikk. Bevistrær. Bevistrær. Forelesning 27: Trær. Roger Antonsen. 6. mai 2009 (Sist oppdatert: :28) MAT1030 Diskret Matematikk Forelesning 27: Trær Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 27 6. mai 2009 (Sist oppdatert: 2009-05-06 22:28) MAT1030 Diskret Matematikk 6.

Detaljer

Disjunktiv normalform, oppsummering

Disjunktiv normalform, oppsummering Disjunktiv normalform, oppsummering type av formel Et litteral En fundamental konjunksjon En formel i disjunktiv normalform definisjon er en utsagnsvariabel eller negasjonen av en utsagnsvariabel. er en

Detaljer

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21.

Dagens plan. INF3170 Logikk. Obliger og eksamen. Forelesning 1: Introduksjon. Utsagnslogikk og sekventkalkyle. Arild Waaler. 21. INF3170 Logikk Dagens plan Forelesning 1: Introduksjon. og sekventkalkyle Arild Waaler Institutt for informatikk, Universitetet i Oslo 1 Praktisk informasjon 2 21. januar 2008 3 Institutt for informatikk

Detaljer

Slides til 1.6 og 1.7. Andreas Leopold Knutsen

Slides til 1.6 og 1.7. Andreas Leopold Knutsen Slides til 1.6 og 1.7 Andreas Leopold Knutsen January 17, 2010 Begreper Matematiske resultater/utsagn som er sanne kalles gjerne: Teorem = viktig utsagn Proposisjon/Sats/Setning = litt mindre viktig utsagn

Detaljer

Kvalitative utsagn fra en logikers ståsted

Kvalitative utsagn fra en logikers ståsted Kvalitative utsagn fra en logikers ståsted Bjørnar Solhaug Seminar om estimering av sikkerhetsnivå fra et tverrfaglig perspektiv SINTEF, 29. september, 2015 1 Oversikt Hva er logikk? Logikk vs. naturlig

Detaljer

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo

INF3170 Logikk. Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle. Roger Antonsen. Institutt for informatikk, Universitetet i Oslo INF3170 Logikk Forelesning 3: Utsagnslogikk, semantikk, sekventkalkyle Roger Antonsen Institutt for informatikk, Universitetet i Oslo 9. februar 2010 (Sist oppdatert: 2010-02-09 15:10) Utsagnslogikk INF3170

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) Kapittel 5: Relasjoner MAT1030 Diskret

Detaljer

Kapittel 5: Relasjoner

Kapittel 5: Relasjoner MAT1030 Diskret Matematikk Forelesning 11: Relasjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Relasjoner 25. februar 2009 (Sist oppdatert: 2009-03-03 11:37) MAT1030 Diskret

Detaljer

Prøveeksamen 2016 (med løsningsforslag)

Prøveeksamen 2016 (med løsningsforslag) Prøveeksamen 2016 (med løsningsforslag 1 Grunnleggende mengdelære La A = {0, {0}} og B = {0, {0}, {0, {0}}}. Er følgende påstander sanne eller usanne? 1 {{0}} A 2 0 B 3 A B 4 A B 1 Usann 2 Usann 3 Sann

Detaljer