Nei, jeg bare tuller.

Størrelse: px
Begynne med side:

Download "Nei, jeg bare tuller."

Transkript

1 Eksempel En medisin skilles ut fra kroppen med en hastighet proporsjonal med mengden i kroppen. Halveringstiden er timer. Anta at en dose injiseres i en pasient hver sjette time fra et visst tidspunkt. Den totale mengden medisin bør ikke overskride en faregrense G. Hva er det største kan være når vi ønsker at faregrensen ikke overskrides uansett hvor lenge behandlingen fortsetter?

2 Løsning Gitt ǫ > 0

3 Løsning Gitt ǫ > 0

4 Nei, jeg bare tuller.

5 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

6 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

7 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

8 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

9 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

10 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

11 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

12 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

13 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

14 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

15 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

16 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

17 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

18 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

19 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

20 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

21 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

22 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

23 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

24 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

25 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

26 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

27 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

28 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

29 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

30 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

31 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

32 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

33 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

34 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

35 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

R2 eksamen våren 2014. (19.05.2014)

R2 eksamen våren 2014. (19.05.2014) R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

MA0003-9. forelesning

MA0003-9. forelesning 17. august 2009 Outline 1 Outline 1 Regneregler for deriverte La f og g være kontinuerlige funksjoner og c 0 cf (x) dx = c f (x) dx f (x) ± g(x) dx = f (x) dx ± g(x) dx f (cx) dx = 1 c f (u) du u=cx f

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Tillegg A. Oppgaver. A.1 Kapittel 1. Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1.

Tillegg A. Oppgaver. A.1 Kapittel 1. Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1. Tillegg A Oppgaver A.1 Kapittel 1 Oppgave 1 Hva er definisjonsmengden til følgende funksjoner? a) f(x) = x 2 + 1 b) f(x) = x2 +1 2x 1 c) f(x) = x 3 2 2x + 1 d) f(x) = ln x + 2 sin x e) f(x) = 2x 4 5 e

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MEK1100 Differensiallikninger Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning i formel 3-4 spesielle

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Løsningsforslag eksamen R2

Løsningsforslag eksamen R2 Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

EKSAME SOPPGAVE MAT-0001 (BOKMÅL)

EKSAME SOPPGAVE MAT-0001 (BOKMÅL) EKSAME SOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : Tirsdag 21. februar 2012. Tid : 09.00-13.00. Sted: : Adm. bygget, B154. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI

Forelesninger i MET2214 Matematikk valgfag ved Handelshyskolen BI Forelesninger i MET4 Matematikk valgfag ved Handelshyskolen BI Forelesning : Integrasjon. Separable differensiallikninger. Trond Stølen Gustavsen. januar, Innhold Anbefalt lesning.. Kort repetisjon av

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et utvalg av tidligere eksamensoppgaver innenfor temaet differensiallikninger gitt ved UiO og NTNU (Norges Teknisk-Naturvitenskapelige Universitet). Oppgavene

Detaljer

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29

NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29 MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2. Brukerveiledning. Menopur. 600 IU eller 1200 IU

22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2. Brukerveiledning. Menopur. 600 IU eller 1200 IU 22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2 Brukerveiledning Menopur 600 IU eller 1200 IU 22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 3 Sjekk at pakningen inneholder følgende

Detaljer

Førsteordens lineære differensiallikninger

Førsteordens lineære differensiallikninger Førsteordens lineære differensiallininger Begrepet førsteordens lineære differensiallininger er ie sielig definert i Sinus R. Denne artielen omhandler det temaet. En førsteordens lineær differensiallining

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Lineære differensiallikninger.

Lineære differensiallikninger. Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave

Detaljer

Prłveversjon. Norsk Byggtjeneste AS LOGGBOKA. Kjøp og salg av boligen

Prłveversjon. Norsk Byggtjeneste AS LOGGBOKA. Kjøp og salg av boligen LOGGBOKA K 1 R /,,, B Pł B I,,, y H,, y B N By A 2 3 4 T P y,, FD-,, c. 5 L Pł N By A D 1 K 1 D 1 K I O L 3 Ny 4 y 4 K y y 4 L 5 B 6 E 7 F FD- 7 K 8 U 8 A 9 T 10 B 12 F 14 H 15 N 16 By 17 Ny 18 Pł L N

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk 0 EMNENUMMER: REA04 EKSAMENSDATO:. desember 008 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Oppgave Oppdatert svar Dato

Oppgave Oppdatert svar Dato Endringer fra versjon /86: Oppgave Oppdatert svar Dato.9a /06 8.6b [, ] /06 6.j + 6 /06 Ad y ( + y) /96 A4b /96 A9b + /96 A9c 4 /96 A9d + + + 6 /96 A9f 4 + + 4 + + /96 Kapittel Fasit betyr at det ikke

Detaljer

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.

Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Dagbok over sykdomsutvikling

Dagbok over sykdomsutvikling Å leve med lupus Informasjon til pasienter, familie og venner Dagbok over sykdomsutvikling Innledning Denne dagboken kan hjelpe deg å holde oversikt over sykdommen din og gi legen og/eller sykepleieren

Detaljer

Formelsamling i Regtek. Andreas Klausen. (Kontrollør Sondre S. Tørdal) 4. september 2012

Formelsamling i Regtek. Andreas Klausen. (Kontrollør Sondre S. Tørdal) 4. september 2012 Formelamling i Regtek Andrea Klauen (Kontrollør Sondre S. Tørdal) 4. eptember 0 Bruk på eget anvar. Innhold Ziegler Nochlie PID tuning 3. Open Loop.............................. 3. Cloed loop..............................

Detaljer

Dagbok over sykdomsutvikling

Dagbok over sykdomsutvikling Å leve med lupus Informasjon til pasienter, familie og venner Dagbok over sykdomsutvikling NOR_GSK_0052_15_Booklet2_Lupus_Dagbok.indd 1 04.06.2015 10:29:47 Innledning Denne dagboken kan hjelpe deg å holde

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Løsningsforslag for Eksamen i MAT 100, H-03

Løsningsforslag for Eksamen i MAT 100, H-03 Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt)

EKSAMENSOPPGÅVE. Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling og 2 eigne A4-ark (4 sider totalt) EKSAMENSOPPGÅVE/EKSAMENSOPPGAVE EKSAMENSOPPGÅVE Eksamen i: MAT-1003 Kalkulus 3 Dato: Tirsdag 17. 1.013 Tid: Kl 09:00 13:00 Stad: Åsgårdveien 9 Tilletne hjelpemiddel: Godkjend kalkulator og formelsamling

Detaljer

Veiledning for administrering av hetteglass og sprøyter (for pasienter, leger, sykepleiere, farmasøyter.)

Veiledning for administrering av hetteglass og sprøyter (for pasienter, leger, sykepleiere, farmasøyter.) VEILEDNING FOR Å STARTE MED APIDRA 10 ml HETTEGLASS Apidra 100 E/ml injeksjonsvæske, oppløsning er en klar, fargeløs, vandig oppløsning uten synlige partikler. Hvert hetteglass inneholder 10 ml oppløsning

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

NY OG UTSATT EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE

NY OG UTSATT EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE HØGSKOLEN I BERGEN Avdeling for helse og sosialfag Institutt for Radiografi NY OG UTSATT EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE Fag Utdanning : Farmakologi med medikamentregning : institutt for Radiografi Kull

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

www.printo.it/pediatric-rheumatology/no/intro

www.printo.it/pediatric-rheumatology/no/intro www.printo.it/pediatric-rheumatology/no/intro DIRA Versjon av 2016 1. Hva er DIRA 1.1 Hva er det? DIRA er en sjelden genetisk sykdom. Sykdommen gir betennelse i hud og knokler. Andre organer, som eksempelvis

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren.

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren. EKSAMEN TMA400 HØST 04 ØSNINGSFORSAG Oppgave. Uner rottegnet står et + e x, og en eriverte til ette uttrykket er e x, som står utenfor rottegnet. Sett erfor u +e x. Da får vi og vi kan løse intergralet:

Detaljer

OPPLÆRINGSGUIDE SMERTEPUMPE MODELL 6300 PCA CADD

OPPLÆRINGSGUIDE SMERTEPUMPE MODELL 6300 PCA CADD OPPLÆRINGSGUIDE SMERTEPUMPE MODELL 6300 PCA CADD 1. Legen doserer medikamenter og regner ut ml/t. 2. Nøkkelen til smertepumpa ligger i kofferten hjemme hos pasienten. 3. Stopp pumpa. - Trykk og hold inn

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Optimal kontrollteori

Optimal kontrollteori Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig

Detaljer

Instruksjonsveiledning i bruk av PRALUENT for pasient

Instruksjonsveiledning i bruk av PRALUENT for pasient alirokumab Instruksjonsveiledning i bruk av PRALUENT for pasient Denne brosjyren er basert på pakningsvedlegget til Praluent. Les hele pakningsvedlegget og PRALUENT pennens bruksanvisning før du går i

Detaljer

P-Bevis. Produksjonsbevis. Produsentnummer: 0412313249 Telefon: Mobil: 97746010 martinstensveen@hotmail.com

P-Bevis. Produksjonsbevis. Produsentnummer: 0412313249 Telefon: Mobil: 97746010 martinstensveen@hotmail.com nummer: 0412313249 Individ 04123132/5031 Opprinnelsesmerke: 04123132/5031 (2011) Fødseldato: 10/06/11 Tvilling: Nei Mor 04123132/0426 (2005) Side 1 av 9 nummer: 0412313249 Individ 04123132/5037 Opprinnelsesmerke:

Detaljer

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400

E K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400 UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall

Detaljer

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 21.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 21.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved

Oppgave 1. (a) Vi utvikler determinanten langs første kolonne og dette gir. (b) Med utgangspunkt i de tre datapunktene denerer vi X og y ved Sensorveiledning: ELE 37191 Maemaikk valgfag Eksamensdao: 13.06.2012 09:00 1:00 Toal anall sider: 5 Anall vedlegg: 0 Tillae hjelpemidler: BI-dener eksamenskalkulaor TEXAS INSTRUMENTS BA II Plus Innføringsark:

Detaljer

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag

HØGSKOLEN I BERGEN Avdeling for helse og sosialfag HØGSKOLEN I BERGEN Avdeling for helse og sosialfag EKSAMENSOPPGAVE/EKSAMENSOPPGÅVE Fag Utdanning : Farmakologi med medikamentregning : Institutt for radiografi Kull : R 08 Eksamensdato : 05.05.09 Fagansvarlig/fagansvarleg

Detaljer

TRANSPORT OG OPPBEVARING AV MENOPUR 600 IU ELLER 1200 IU. Oppbevares i kjøleskap, men kan i korte perioder. (maks 72 timer) oppbevares i romtemperatur

TRANSPORT OG OPPBEVARING AV MENOPUR 600 IU ELLER 1200 IU. Oppbevares i kjøleskap, men kan i korte perioder. (maks 72 timer) oppbevares i romtemperatur 22587 Menopur 600 IU + 1200 IU.e$S_Ferring 28.10.14 12.08 Side 1 TRANSPORT OG OPPBEVARING AV MENOPUR 600 IU ELLER 1200 IU Oppbevares i kjøleskap, men kan i korte perioder (maks 72 timer) oppbevares i romtemperatur

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:

Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der: Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn

Detaljer

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00

EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Legemiddelverket foreslår at følgende legemidler tas opp på byttelisten:

Legemiddelverket foreslår at følgende legemidler tas opp på byttelisten: Se mottakerliste Deres ref.: Dato: Vår ref.: Seksjon/saksbehandler: 28.05.2014 12/00145-32 Seksjon for legemiddelrefusjon/ Anne Marthe HØRING OM OPPTAK PÅ BYTTELISTEN Legemiddelverket foreslår at følgende

Detaljer

Fasit, Implisitt derivasjon.

Fasit, Implisitt derivasjon. Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde.

For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde. Beregning av trykk Kjetil Storli Aquatools AS Beregning av trykk For å få maksimal effekt ut av en pumpe og motor er det viktig å kunne gjøre visse beregninger m.h.t. trykk og vannmengde. Det er derfor

Detaljer

Forespørsel om deltakelse i studien om behandling av frossen skulder

Forespørsel om deltakelse i studien om behandling av frossen skulder 1 Forespørsel om deltakelse i studien om behandling av frossen skulder Bakgrunn og hensikt Dette er en forespørsel til deg om å delta i et forskningsprosjekt som innebærer behandling av frossen skulder

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus

Senter for Nukleærmedisin/PET Haukeland Universitetssykehus proton Senter for Nukleærmedisin/PET Haukeland Universitetssykehus nøytron Anriket oksygen (O-18) i vann Fysiker Odd Harald Odland (Dr. Scient. kjernefysikk, UiB, 2000) Radioaktivt fluor PET/CT scanner

Detaljer