Nei, jeg bare tuller.

Størrelse: px
Begynne med side:

Download "Nei, jeg bare tuller."

Transkript

1 Eksempel En medisin skilles ut fra kroppen med en hastighet proporsjonal med mengden i kroppen. Halveringstiden er timer. Anta at en dose injiseres i en pasient hver sjette time fra et visst tidspunkt. Den totale mengden medisin bør ikke overskride en faregrense G. Hva er det største kan være når vi ønsker at faregrensen ikke overskrides uansett hvor lenge behandlingen fortsetter?

2 Løsning Gitt ǫ > 0

3 Løsning Gitt ǫ > 0

4 Nei, jeg bare tuller.

5 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

6 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

7 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

8 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

9 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

10 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

11 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

12 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

13 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

14 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

15 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

16 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

17 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

18 Virkelig løsning Anta dose injiseres ved tid t 0. La yt) restene av denne dosen etter t timer Vet at dy dt ky, y0), y) Husker fra MAT-pensum 3.4) at yt) Ce kt. y0) Ce 0 C C yt) e kt y) e k k ln ln k ln yt) e ln t

19 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

20 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

21 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

22 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

23 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

24 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

25 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

26 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

27 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

28 Mengde medisin i kroppen etter første injeksjon er: Etter andre injeksjon: + y6) Etter tredje injeksjon: + y6)+y) Etter nte injeksjon: + y6)+y)+ +y6n )) y6j )) e ln 6j ) e ln j ) e ln ) j e ln ) j ) j

29 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

30 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

31 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

32 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

33 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

34 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

35 Vil ha: dvs. lim n G G Rekken til venstre er en geometrisk rekke 9.). Vet da at Får at G dvs. G ) Konklusjon: kan maks. være G ).

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:

Eksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2: Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2

Detaljer

Eksamen R2 høst 2011, løsning

Eksamen R2 høst 2011, løsning Eksamen R høst 0, løsning Oppgave (4 poeng) a) Deriver funksjonene f e ) Bruker produktregelen for derivasjon, uv uv uv f e e e e ) g sin Bruker kjerneregelen på uttrykket cos der u og g u sinu Vi har

Detaljer

R2 eksamen våren 2017 løsningsforslag

R2 eksamen våren 2017 løsningsforslag R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon

Detaljer

R Differensialligninger

R Differensialligninger R2-26.02.2015 - Differensialligninger Løsningsskisser Oppgave 1 Løs differensialligningene: a) y x e x b) y x y 0 c) y xy x d) y y x a) Eksakt dl: y x e x Løses direkte med vanlig integrasjon: y x2 2 e

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 5 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel 5 5.5 Ce kx y = kce kx Vi setter inn i y + ky og ser om vi får 0: 5.5 ax + a y = ax Vi setter inn i y 5.54 kce kx + k Ce kx = 0 x x + y: ax x(ax

Detaljer

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag

SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...

Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)... Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

Differensialligninger

Differensialligninger Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og

Detaljer

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2005 SØK 1001- Innføring i matematikk for økonomer Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 005 SØK 00- Innføring i matematikk for økonomer Besvarelse nr : OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

OPPGAVE 1 LØSNINGSFORSLAG

OPPGAVE 1 LØSNINGSFORSLAG LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Kapittel 4: Differensiallikninger

Kapittel 4: Differensiallikninger 4.. Innledning og objekter i bevegelse. 57 Kapittel 4: Differensiallikninger 4.. Innledning og objekter i bevegelse. Oppgave 4..: (NY.) a) Vi har slik at venstre side er lik y + xy = xe x + x y(x) = e

Detaljer

Eksamen R2, Va ren 2014

Eksamen R2, Va ren 2014 Eksamen R2, Va ren 204 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f sin3 b) 2 g e cos Oppgave 2

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H16 UKE 45. Oppgaver til seminaret 11/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H16 UKE 45 Avsn. 6.1: 19, 31 Avsn. 7.9: 9, 17, 22 På settet: S.1, S.2 Oppgaver til seminaret 11/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 6.1 4, 5, 29

Detaljer

Separable differensiallikninger.

Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Kapittel 2. Antiderivering. 2.1 Derivasjon

Kapittel 2. Antiderivering. 2.1 Derivasjon Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA400 Matematikk, høst 203 Forelesning 2 www.ntnu.no TMA400 Matematikk, høst 203, Forelesning 2 Transcendentale funksjoner I dagens forelesning skal vi se på følgende: Den naturlige logaritmen. 2 Eksponensialfunksjoner.

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Fasit, Separable differensiallikninger.

Fasit, Separable differensiallikninger. Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

differensiallikninger-oppsummering

differensiallikninger-oppsummering Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 5 1.3.5: Vi ønsker å finne de første ordens deriverte til funksjonen f definert ved f(, y) arctan(y/). Først finner vi den deriverte med ensyn på, ved å betrakte

Detaljer

Oppgave 1. Oppgave 2

Oppgave 1. Oppgave 2 Midtveiseksamen i MET1180 1 - Matematikk for siviløkonomer 12. desember 2018 Oppgavesettet har 15 flervalgsoppgaver. Rett svar gir poeng, galt svar gir svaralternativ (E) gir 0 poeng. Bare ett svar er

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler. 2 2x UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa

Q = π 4 D2 V = π 4 (0.1)2 0.5 m 3 /s = m 3 /s = 3.93 l/s Pa 35 Løsning C.1 Q π 4 D2 V π 4 (0.1)2 0.5 m 3 /s 0.00393 m 3 /s 3.93 l/s G gsρ vann Q 9.81 1.26 998 0.00393 N/s 0.0484 kn/s ṁ G/g 48.4/9.81 kg/s 4.94 kg/s Løsning C.2 Omregning til absolutt trykk: p abs

Detaljer

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed

Nå integrer vi begge sider og får på venstre side. der C 1 er en vilkårlig konstant. Høyre side blir. Dette gir. og dermed Kapittel 6 Vekstmodeller For å forstå prosesser i naturen er matematiske modeller et nyttig verktøy. Matematiske modeller tar utgangspunkt i naturlover og modellerer disse i et matematisk språk. Naturlovene

Detaljer

2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er.

2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er. MA2 Vår 28 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 9.2.9 Ønsker å finne ut om 3+ 2 n+2 er konvergent eller divergent. Observer først at; 3 + 2 n 2 n+2 = ( 3 ) + +2

Detaljer

Flervariable funksjoner: Kjerneregel og retningsderiverte

Flervariable funksjoner: Kjerneregel og retningsderiverte Flervariable funksjoner: Kjerneregel og retningsderiverte Forelest: 5. Nov, 2004 Først skal vi ta for oss kjerneregelen for funksjoner av flere variable. Se metodeark 7 og 8 for flervariable funksjoner.

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår 7 Kapittel 7.3: Rasjonale funksjoner og delbrøkoppspaltning 7.3:3 Bruk polynomdivisjon for

Detaljer

R2 eksamen våren 2018 løsningsforslag

R2 eksamen våren 2018 løsningsforslag R eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Oppgave ( poeng) Deriver funksjonene a) f ( x) = cos ( x ) f ( x) = sin( x ) = sin( x ) b) g ( x) = x sin x g ( x) = sin x + x cos x = sin x + x

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

Løsningsforslag sist oppdatert

Løsningsforslag sist oppdatert Løsningsfoslag sist oppdatet.. BOKMÅL Oppgave En funksjon f e definet i intevallet ved f ( ) ( ) e a) Finn f ( ). Avgjø hvo funksjonen e stigende og hvo funksjonen e avtagende. Bestem funksjonens eventuelle

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 3 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 3 i emnet MAT, høsten 206 Innleveringsfrist: Mandag 2. november 206, kl. 4, i Infosenterskranken i inngangsetasjen

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

ELE Matematikk valgfag

ELE Matematikk valgfag SENSORVEILEDNING - Skriftlig eksamen ELE 3711 Matematikk valgfag Institutt for Samfunnsøkonomi Utlevering: 11.06.018 Kl. 0:00 Innlevering: 11.06.018 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven.

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11

OPPGAVESETT MAT111-H17 UKE 47. Oppgaver til seminaret 24/11 OPPGAVESETT MAT111-H17 UKE 47 På settet: S.1, S.2, S.3, S.4, S.5 Oppgaver til seminaret 24/11 Oppgaver til gruppene uke 48 Løs disse først så disse Mer dybde Avsn. 6.6 3 Avsn. 6.7 3, 7 Avsn. 7.9 28, 29

Detaljer

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii)

1 MAT100 Obligatorisk innlevering 1. 1 Regn ut i) iii) ii) Regn ut i) ii) 1 MAT1 Obligatorisk innlevering 1 1 Regn ut 3 7 + 1 2. i) 13 14 ii) 11 14 iii) 9 14 2 Regn ut 8 9 + 3 4. i) 57 36 ii) 59 36 iii) 61 36 3 Regn ut 1 4 + 1 8. i) 3 16 ii) 3 8 iii) 5 8 4 Regn ut 1 8 + 1 16.

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Brukerkurs i matematikk Mandag 4. desember 9, kl. 9-4 BOKMÅL Tillatte hjelpemidler: Lærebok og kalkulator i samsvar

Detaljer

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b:

I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x Y = ax + b: OPPGAVE I et eksperiment er det målt følgende sammenheng mellom to størrelser x og y. x 7 74 546 y 48 6 45 a) Plott Y ln y mot X ln x i et rettvinklet koordinatsystem. ) Finn en lineær sammenheng mellom

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100

Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Areal - difflikninger - arbeid Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 7. oktober 2011 Kapittel 6.4. Areal til omdreiningslegemer 3 Overflate-areal av en rotasjonsflate

Detaljer

Figur 2: Fortegnsskjema for g (x)

Figur 2: Fortegnsskjema for g (x) Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

Through the Looking-Glass and What Alice Found There, Lewis Carroll

Through the Looking-Glass and What Alice Found There, Lewis Carroll Kapittel 4 Modellering Let s pretend that you re the Red Queen, Kitty! Do you know, I think if you sat up and folded your arms, you d look exactly like her. Now do try, there s a dear! And Alice got the

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

R2 eksamen våren 2014. (19.05.2014)

R2 eksamen våren 2014. (19.05.2014) R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler UNIVERSITETET I BERGEN De maemaisk-naurvienskapelige fakule Eksamen i emne MT11 Brukerkurs i maemaikk Mandag 15. desember 8, kl. 9-14 BOKMÅL Tillae hjelpemidler: Lærebok og kalkulaor i samsvar med fakulee

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00 SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn

Detaljer

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2

TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2 TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x

Detaljer

OPPGAVE 1 NYNORSK. LØYSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 16. mai 2012 kl. 09:00-14:00. a) La z 1 = 3 3 3i, z 2 = 4 + i,

OPPGAVE 1 NYNORSK. LØYSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 16. mai 2012 kl. 09:00-14:00. a) La z 1 = 3 3 3i, z 2 = 4 + i, LØYSINGSFORSLAG Eksamen i MAT - Grunnkurs i matematikk I onsdag 6. mai kl. 9:-4: NYNORSK OPPGAVE a) La z = i, z = 4 + i, finn (skriv på forma a + bi): i) z z og ii) z z. : i) z z = ( i)(4 + i) = i i =

Detaljer

OPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46

OPPGAVESETT MAT111-H17 UKE 45. Oppgaver til seminaret 10/11. Oppgaver til gruppene uke 46 OPPGAVESETT MAT111-H17 UKE 45 Avsn. 7.1: 3, 4 Avsn. 7.9: 22 På settet: S.1, S.2 Oppgaver til seminaret 10/11 Oppgaver til gruppene uke 46 Løs disse først så disse Mer dybde Avsn. 7.1 1, 2, 6, 7, 18 Avsn.

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

R2 - Eksamen Løsningsskisser

R2 - Eksamen Løsningsskisser R - V0 R - Eksamen 04.06.0 - Løsningsskisser Del - Uten hjelpemidler Oppgave a) ) Kjerneregel: fx 3 sin u, u x f x 3 cosu 6 cosu 6 cosx ) 3) Produktregel: g x x sin x x cosx x sin x x cosx Kjerneregel:

Detaljer

22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2. Brukerveiledning. Menopur. 600 IU eller 1200 IU

22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2. Brukerveiledning. Menopur. 600 IU eller 1200 IU 22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 2 Brukerveiledning Menopur 600 IU eller 1200 IU 22735 Menopur 600 IU + 1200 IU_Ferring 09.09.15 13.42 Side 3 Sjekk at pakningen inneholder følgende

Detaljer

Fagdag 7 - Start kapittel 6 - Differensialligninger. Arbeidsark

Fagdag 7 - Start kapittel 6 - Differensialligninger. Arbeidsark Fagdag 7 - Start kapittel 6 - Differensialligninger Arbeidsark Versjon: 11.04.09 - Var dessverre en del trykkfeil... Plan/innhold: Innledning Terminologi (6.1) Hva en differensialligning, orden, grad og

Detaljer

Løsningsskisser eksamen R

Løsningsskisser eksamen R R 9.. Løsningsskisser eksamen R 9.. Del - Uten hjelpemidler Oppgave a) ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x sin u, u x g x cosu cosx ) Kjerneregel: h x u, u sin x h x u cosx sin x cosx

Detaljer

TMA4100 Matematikk 1 Høst 2012

TMA4100 Matematikk 1 Høst 2012 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 202 Løsningsforslag til teknostartøving a) Denisjonsmengden til f() = 3 er D f (, ), som gir at V f (,

Detaljer

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab.

Oppgavesettet er på 3 sider eks. forside, og inneholder 12 deloppgaver: 1abc, 2, 3, 4abc, 5ab, 6ab. EKSAMENSOPPGAVE MAT-0001 (BOKMÅL) Eksamen i : Mat-0001 Brukerkurs i matematikk. Dato : tirsdag 4. desember 2012. Tid : 09.00-13.00. Sted: : Åsgårdvegen 9. Tillatte hjelpemidler : Alle trykte og skrevne.

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

Integraler. John Rognes. 15. mars 2011

Integraler. John Rognes. 15. mars 2011 15. mars 2011 forener geometrisk målbare områder Ω og skalarfelt f : Ω R definert på disse områdene. Vi danner produktet f (Ω) Ω av verdien f (Ω) av funksjonen og størrelsen Ω av området. Mer presist deler

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

Definisjoner og løsning i formel

Definisjoner og løsning i formel Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

4 Differensiallikninger

4 Differensiallikninger 4 Differensiallikninger Innhold Kompetansemål Differensiallikninger, R... Hva er en differensiallikning?... 3 4. Førsteordens differensiallikninger... 5 Lineære førsteordens differensiallikninger... 5

Detaljer

A = dn(t) dt. N(t) = N 0 e γt

A = dn(t) dt. N(t) = N 0 e γt 1 Radioaktivitet I generell kjemi er det vanlig å tenke på grunnstoffene som separate former for materie, men det er viktig å huske at et grunnstoff kan bli til et annet grunnstoff gjennom kjernekjemiske

Detaljer