Eksamen MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
|
|
- Ivar Ketil Claussen
- 8 år siden
- Visninger:
Transkript
1 Eksamen MAT1005 Matematikk 2P-Y Nynorsk/Bokmål
2 Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast inn seinast etter 5 timar. Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Alle hjelpemiddel er tillatne, med unntak av Internett og andre verktøy som tillèt kommunikasjon. Der oppgåveteksten ikkje seier noko anna, kan du fritt velje framgangsmåte. Om oppgåva krev ein bestemt løysingsmetode, vil også ein alternativ metode kunne gi noko utteljing. Rettleiing om vurderinga: Poeng i Del 1 og Del 2 er berre rettleiande i vurderinga. Karakteren blir fastsett etter ei samla vurdering. Det betyr at sensor vurderer i kva grad du viser reknedugleik og matematisk forståing gjennomfører logiske resonnement ser samanhengar i faget, er oppfinnsam og kan ta i bruk fagkunnskap i nye situasjonar kan bruke formålstenlege hjelpemiddel vurderer om svar er rimelege forklarer framgangsmåtar og grunngir svar skriv oversiktleg og er nøyaktig med utrekningar, nemningar, tabellar og grafiske framstillingar Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 2 av 24
3 DEL 1 Utan hjelpemiddel Oppgåve 1 (15 poeng) a) Ei gruppe ungdommar blir spurd om kor mange sysken dei har. Her er resultata: 1, 3, 0, 3, 1, 2, 1, 0, 4, 2 Finn medianen og gjennomsnittet. b) Rekn ut 1) ) 3 4 a b a b c) Rekn ut og skriv svaret på standardform 7 3 6,0 10 2,5 10 d) I ein twistpose er det 30 twistbitar. Per liker 18 av dei. Vi trekkjer tilfeldig éin twistbit frå posen. 1) Finn sannsynet for at Per liker denne twistbiten. Sannsynet for at Ola liker ein tilfeldig vald twistbit frå posen, er 0,4. 2) Kor mange av twistbitane i posen liker Ola? Kjelde: Utdanningsdirektoratet Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 3 av 24
4 e) Jens og far har sprunge 100-meteren. Far fekk starte tre sekund før Jens. Ovanfor ser du ei forenkla grafisk framstilling av løpet til Jens og av løpet til far. Kva kan du seie om dei to løpa ut frå den grafiske framstillinga ovanfor? f) Dei tre funksjonane f, g og h er gitt ved 2 f x 5x 100 g x x h x x Kva for ein av dei tre funksjonane beskriv lineær vekst? Lag eit eksempel der du bruker denne lineære funksjonen til å beskrive ein praktisk situasjon. g) Jorunn har aksjar i eit firma. Først stig verdien av aksjane éin gong. Seinare stig verdien igjen. Jorunn kan rekne ut den nye verdien slik: Ny verdi Gammel verdi 1,1 1,2 Kor mange prosent har verdien av aksjane til saman stige med? Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 4 av 24
5 Oppgåve 2 (5 poeng) I talsystemet som vi vanlegvis bruker, er grunntalet 10. I totalsystemet er grunntalet 2. Det finst også talsystem med andre grunntal. Teikn av tabellen nedanfor i svaret ditt, gjer berekningar og fyll inn det som manglar. Talsystem med grunntal 10 Talsystem med grunntal 2 Talsystem med grunntal Oppgåve 3 (4 poeng) Vi skal arrangere klassefest. Det vil koste kroner. Utgiftene skal delast likt mellom elevane som blir med. a) 1) Kor mange elevar må bli med på klassefesten dersom kvar elev ikkje skal måtte betale meir enn 300 kroner? 2) Set opp ein matematisk modell som Håkon kan bruke for å rekne ut kor mykje kvar elev må betale dersom dei deler utgiftene likt og x elevar deltek på festen. Eg set inn kroner på ein høgrentekonto. Eg reknar med å få 4 % rente per år. b) 1) Kor mykje vil Mette ha på kontoen etter eitt år? 2) Set opp ein matematisk modell som Mette kan bruke for å rekne ut kor mykje pengar ho har på kontoen etter x år. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 5 av 24
6 DEL 2 Med hjelpemiddel Oppgåve 4 (6 poeng) Aud arbeider ved eit laboratorium. Ein dag samlar ho fluger i ein kasse. Ho matar flugene og held dei isolerte i to månader. Ho finn ut at ei god tilnærming for talet på fluger i kassen etter t dagar er gitt ved 3 2 f( t) 0,007t 0,5t 3t 20 a) Bruk opplysningane i teksten ovanfor til å avgjere kva for t - verdiar du bør bruke når du teiknar grafen til f. Teikn grafen for desse verdiane av t. b) Finn grafisk og ved rekning kor mange fluger det var i kassen ved starten og ved slutten av eksperimentet. c) 1) I kva tidsrom auka talet på fluger i kassen? 2) Finn den gjennomsnittlege auken per dag i dette tidsrommet. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 6 av 24
7 Oppgåve 5 (6 poeng) Verdien av aksjane i eit firma har stige med 5 % per månad det siste året. Berit kjøper derfor aksjar for kroner i dette firmaet. Berit håper at verdien av aksjane vil halde fram med å stige med 5 % per månad det neste året. a) 1) Kor mykje vil aksjane til Berit vere verdt etter éin månad dersom det går som ho håper? 2) Kor mykje vil aksjane til Berit vere verdt etter eitt år dersom det går som ho håper? I ettertid viste det seg at verdien av aksjane til Berit steig med 5 % per månad i fire månader. Deretter steig verdien med 3 % per månad i tre månader. Så sokk verdien med 3 % per månad dei neste fem månadene. b) Finn ut kor mykje verdien av aksjane steig, både i kroner og prosent, i løpet av dette året. Verdien av aksjane heldt fram med å søkke med 3 % per månad det neste året. c) Kor mange månader gjekk det før aksjane til Berit igjen var verdt kroner? Kjelde: Utdanningsdirektoratet Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 7 av 24
8 Oppgåve 6 (8 poeng) Fotballgruppa i eit idrettslag ønskjer seg ein ny ballbinge. Dei gjennomfører ei spørjeundersøking for å finne ut kva medlemmene i idrettslaget meiner om dette. Alle dei 240 medlemmene i idrettslaget blir spurde. 45 % av medlemmene er kvinner. 63 av mennene ønskjer ballbinge. Til saman 110 av medlemmene ønskjer ikkje ballbinge. a) Teikn av tabellen nedanfor i svaret ditt. Bruk opplysningane ovanfor og fyll inn tala som skal stå i dei kvite felta. Ønskjer ballbinge Ønskjer ikkje ballbinge Totalt Mann Kvinne Totalt b) Finn sannsynet for at ein tilfeldig vald medlem i idrettslaget ønskjer ballbinge. Ein medlem blir vald tilfeldig. Det viser seg at denne medlemmen ønskjer ballbinge. c) Finn sannsynet for at denne medlemmen er ein mann. Styret i idrettslaget set som krav at minst 75 % av medlemmene må ønskje ballbinge dersom dei skal godkjenne planane. Fotballgruppa prøver å verve nye medlemmer som ønskjer ballbinge. d) Kor mange slike medlemmer må fotballgruppa verve for at kravet frå styret skal innfriast? Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 8 av 24
9 Oppgåve 7 (8 poeng) Jon har i fleire år målt høgda på eit tre. Sjå tabellen nedanfor. Første gongen han målte, var treet 1,00 m høgt. År etter første måling Høgda på treet (målt i meter) ,00 1,25 1,55 1,94 2,46 3,04 3,83 a) Framstill datamaterialet frå tabellen ovanfor i eit koordinatsystem. Jon vil finne ein matematisk modell som viser høgda på treet. Han er usikker på kva type modell som passar best. Han legg til ei ekstra rad i tabellen. Sjå nedanfor. År etter første måling Høgda på treet (målt i meter) ,00 1,25 1,55 1,94 2,46 3,04 3,83 Prosentvis endring frå året før b) Teikn av denne tabellen i svaret ditt. Fyll inn tala som skal stå i dei kvite felta. Bruk desse tala til å grunngi kva type modell Jon bør velje. c) Bruk for eksempel regresjon til å finne modellen. Teikn grafen til modellen i same koordinatsystem som du brukte i a). d) Denne modellen er laga på grunnlag av data frå ein periode på seks år. Vurder om modellen kan brukast til å seie noko om kor mykje treet har vakse før og etter denne perioden. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 9 av 24
10 Oppgåve 8 (4 poeng) I klasse 1A er det 12 jenter og 12 gutar. Nedanfor ser du kor mange timar dei bruker på lekser kvar veke. Jentene: 7, 5, 5, 7, 7, 6, 8, 8, 5, 4, 6, 10 Gutane: 2, 5, 6, 7, 9, 6, 4, 9, 12, 2, 13, 3 Bruk ulike sentral- og spreiingsmål og gjer greie for kva dette datamaterialet viser om arbeidsvanane til jentene og gutane i denne klassen. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 10 av 24
11 Oppgåve 9 (4 poeng) I denne oppgåva skal du velje anten alternativ I eller alternativ II. Dei to alternativa tel like mykje ved sensuren. Alternativ I Tabellen nedanfor viser kostnader per månad ved tre ulike telefonabonnement, A, B og C. Abonnement Fast månadspris Pris per minutt du ringjer A 0 kroner 1,59 kroner per minutt B 100 kroner Dei første 100 minutta er gratis, deretter 1,19 kroner per minutt C 250 kroner 0,49 kroner per minutt a) Teikn grafar som viser dei månadlege kostnadene ved kvart av dei tre telefonabonnementa. Dei tre grafane skal teiknast i same koordinatsystem. La x - aksen vise kor mange minutt du ringjer, og y - aksen kostnader per månad. Vel x - verdiar frå og med 0 minutt til og med 500 minutt. b) Kor mykje må du ringje for at det skal lønne seg å bruke kvart av dei tre abonnementa A, B og C? Kjelde: ( ) Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 11 av 24
12 Alternativ II Vindtype Vindhastigheit i meter per sekund Svak vind 0, 3,4 Bris 3,4, 10,8 Kuling 10,8, 20,8 Storm 20,8, 32,6 Orkan 32,6, 50 Kjelde: Meteorologisk institutt Ovanfor ser du ein litt forenkla vindskala. Diagrammet nedanfor viser resultatet av vindmålingar i Stormby gjennom ein månad på 30 dagar. Vindstyrken er målt i meter per sekund. a) Lag ein tabell der du grupperer datamaterialet frå diagrammet etter vindtype. b) Ta utgangspunkt i det grupperte datamaterialet og finn gjennomsnitt og median. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 12 av 24
13 Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Om oppgaven krever en bestemt løsningsmetode, vil også en alternativ metode kunne gi noe uttelling. Veiledning om vurderingen: Poeng i Del 1 og Del 2 er bare veiledende i vurderingen. Karakteren blir fastsatt etter en samlet vurdering. Det betyr at sensor vurderer i hvilken grad du viser regneferdigheter og matematisk forståelse gjennomfører logiske resonnementer ser sammenhenger i faget, er oppfinnsom og kan ta i bruk fagkunnskap i nye situasjoner kan bruke hensiktsmessige hjelpemidler vurderer om svar er rimelige forklarer framgangsmåter og begrunner svar skriver oversiktlig og er nøyaktig med utregninger, benevninger, tabeller og grafiske framstillinger Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 13 av 24
14 DEL 1 Uten hjelpemidler Oppgave 1 (15 poeng) a) En gruppe ungdommer blir spurt om hvor mange søsken de har. Her er resultatene: 1, 3, 0, 3, 1, 2, 1, 0, 4, 2 Finn medianen og gjennomsnittet. b) Regn ut 1) ) 3 4 a b a b c) Regn ut og skriv svaret på standardform 7 3 6,0 10 2,5 10 d) I en twistpose er det 30 twistbiter. Per liker 18 av disse. Vi trekker tilfeldig én twistbit fra posen. 1) Finn sannsynligheten for at Per liker denne twistbiten. Sannsynligheten for at Ola liker en tilfeldig valgt twistbit fra posen, er 0,4. 2) Hvor mange av twistbitene i posen liker Ola? Kilde: Utdanningsdirektoratet Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 14 av 24
15 e) Jens og far har løpt 100-meteren. Far fikk starte tre sekunder før Jens. Ovenfor ser du en forenklet grafisk framstilling av løpet til Jens og av løpet til far. Hva kan du si om de to løpene ut fra den grafiske framstillingen ovenfor? f) De tre funksjonene f, g og h er gitt ved 2 f x 5x 100 g x x h x x Hvilken av de tre funksjonene beskriver lineær vekst? Lag et eksempel der du bruker denne lineære funksjonen til å beskrive en praktisk situasjon. g) Jorunn har aksjer i et firma. Først stiger verdien av aksjene én gang. Senere stiger verdien igjen. Jorunn kan regne ut den nye verdien slik: Ny verdi Gammel verdi 1,1 1,2 Hvor mange prosent har verdien av aksjene til sammen steget med? Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 15 av 24
16 Oppgave 2 (5 poeng) I tallsystemet som vi vanligvis bruker, er grunntallet 10. I totallsystemet er grunntallet 2. Det finnes også tallsystemer med andre grunntall. Tegn av tabellen nedenfor i besvarelsen din, gjør beregninger og fyll inn det som mangler. Tallsystem med grunntall 10 Tallsystem med grunntall 2 Tallsystem med grunntall Oppgave 3 (4 poeng) Vi skal arrangere klassefest. Det vil koste kroner. Utgiftene skal deles likt mellom elevene som blir med. a) 1) Hvor mange elever må bli med på klassefesten dersom hver elev ikke skal måtte betale mer enn 300 kroner? 2) Sett opp en matematisk modell som Håkon kan bruke for å regne ut hvor mye hver elev må betale dersom utgiftene deles likt og x elever deltar på festen. Jeg setter inn kroner på en høyrentekonto. Jeg regner med å få 4 % rente per år. b) 1) Hvor mye vil Mette ha på kontoen etter ett år? 2) Sett opp en matematisk modell som Mette kan bruke for å regne ut hvor mye penger hun har på kontoen etter x år. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 16 av 24
17 DEL 2 Med hjelpemidler Oppgave 4 (6 poeng) Aud arbeider ved et laboratorium. En dag samler hun fluer i en kasse. Hun mater fluene og holder dem isolert i to måneder. Hun finner ut at en god tilnærming for antall fluer i kassen etter t dager er gitt ved 3 2 f ( t ) 0,007t 0,5t 3t 20 a) Bruk opplysningene i teksten ovenfor til å avgjøre hvilke t - verdier du bør bruke når du tegner grafen til f. Tegn grafen for disse verdiene av t. b) Finn grafisk og ved regning hvor mange fluer det var i kassen ved starten og ved slutten av eksperimentet. c) 1) I hvilket tidsrom økte antall fluer i kassen? 2) Finn den gjennomsnittlige økningen per dag i dette tidsrommet. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 17 av 24
18 Oppgave 5 (6 poeng) Verdien av aksjene i et firma har steget med 5 % per måned det siste året. Berit kjøper derfor aksjer for kroner i dette firmaet. Berit håper at verdien av aksjene vil fortsette å stige med 5 % per måned det neste året. a) 1) Hvor mye vil aksjene til Berit være verdt etter én måned hvis det går som hun håper? 2) Hvor mye vil aksjene til Berit være verdt etter ett år hvis det går som hun håper? I ettertid viste det seg at verdien av aksjene til Berit steg med 5 % per måned i fire måneder. Deretter steg verdien med 3 % per måned i tre måneder. Så sank verdien med 3 % per måned de neste fem månedene. b) Finn ut hvor mye verdien av aksjene steg, både i kroner og prosent, i løpet av dette året. Verdien av aksjene fortsatte å synke med 3 % per måned det neste året. c) Hvor mange måneder gikk det før Berits aksjer igjen var verdt kroner? Kilde: Utdanningsdirektoratet Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 18 av 24
19 Oppgave 6 (8 poeng) Fotballgruppa i et idrettslag ønsker seg en ny ballbinge. De gjennomfører en spørreundersøkelse for å finne ut hva medlemmene i idrettslaget mener om dette. Alle de 240 medlemmene i idrettslaget blir spurt. 45 % av medlemmene er kvinner. 63 av mennene ønsker ballbinge. Til sammen 110 av medlemmene ønsker ikke ballbinge. a) Tegn av tabellen nedenfor i besvarelsen din. Bruk opplysningene ovenfor og fyll inn tallene som skal stå i de hvite feltene. Ønsker ballbinge Ønsker ikke ballbinge Totalt Mann Kvinne Totalt b) Finn sannsynligheten for at et tilfeldig valgt medlem i idrettslaget ønsker ballbinge. Et medlem blir valgt tilfeldig. Det viser seg at dette medlemmet ønsker ballbinge. c) Finn sannsynligheten for at dette medlemmet er en mann. Styret i idrettslaget setter som krav at minst 75 % av medlemmene må ønske ballbinge dersom de skal godkjenne planene. Fotballgruppa prøver å verve nye medlemmer som ønsker ballbinge. d) Hvor mange slike medlemmer må fotballgruppa verve for at kravet fra styret skal innfris? Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 19 av 24
20 Oppgave 7 (8 poeng) Jon har i flere år målt høyden til et tre. Se tabellen nedenfor. Første gang han målte, var treet 1,00 m høyt. Antall år etter første måling Treets høyde (målt i meter) ,00 1,25 1,55 1,94 2,46 3,04 3,83 a) Framstill datamaterialet fra tabellen ovenfor i et koordinatsystem. Jon vil finne en matematisk modell som viser treets høyde. Han er usikker på hvilken type modell som passer best. Han legger til en ekstra rad i tabellen. Se nedenfor. Antall år etter første måling Treets høyde (målt i meter) ,00 1,25 1,55 1,94 2,46 3,04 3,83 Prosentvis endring fra året før b) Tegn av denne tabellen i besvarelsen din. Fyll inn tallene som skal stå i de hvite feltene. Bruk disse tallene til å begrunne hvilken type modell Jon bør velge. c) Bruk for eksempel regresjon til å finne modellen. Tegn grafen til modellen i samme koordinatsystem som du brukte i a). d) Denne modellen er laget på grunnlag av data fra en periode på seks år. Vurder om modellen kan brukes til å si noe om treets vekst før og etter denne perioden. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 20 av 24
21 Oppgave 8 (4 poeng) I klasse 1A er det 12 jenter og 12 gutter. Nedenfor ser du hvor mange timer de bruker på lekser hver uke. Jentene: 7, 5, 5, 7, 7, 6, 8, 8, 5, 4, 6, 10 Guttene: 2, 5, 6, 7, 9, 6, 4, 9, 12, 2, 13, 3 Bruk ulike sentral- og spredningsmål og gjør rede for hva dette datamaterialet viser om jentenes og guttenes arbeidsvaner i denne klassen. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 21 av 24
22 Oppgave 9 (4 poeng) I denne oppgaven skal du velge enten alternativ I eller alternativ II. De to alternativene teller like mye ved sensuren. Alternativ I Tabellen nedenfor viser kostnader per måned ved tre ulike telefonabonnementer, A, B og C. Abonnement Fast månedspris Pris per minutt du ringer A 0 kroner 1,59 kroner per minutt B 100 kroner De første 100 minuttene er gratis, deretter 1,19 kroner per minutt C 250 kroner 0,49 kroner per minutt a) Tegn grafer som viser de månedlige kostnadene ved hvert av de tre telefonabonnementene. De tre grafene skal tegnes i samme koordinatsystem. La x - aksen vise antall minutter du ringer, og y - aksen kostnader per måned. Velg x - verdier fra og med 0 minutter til og med 500 minutter. b) Hvor mye må du ringe for at det skal lønne seg å bruke hvert av de tre abonnementene A, B og C? Kilde: ( ) Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 22 av 24
23 Alternativ II Vindtype Vindhastighet i meter per sekund Svak vind 0, 3,4 Bris 3,4, 10,8 Kuling 10,8, 20,8 Storm 20,8, 32,6 Orkan 32,6, 50 Kilde: Meteorologisk institutt Ovenfor ser du en litt forenklet vindskala. Diagrammet nedenfor viser resultatet av vindmålinger i Stormby gjennom en måned på 30 dager. Vindstyrken er målt i meter per sekund. a) Lag en tabell der du grupperer datamaterialet fra diagrammet etter vindtype. b) Ta utgangspunkt i det grupperte datamaterialet og finn gjennomsnitt og median. Eksamen MAT1005 Matematikk 2P-Y Haust/Høst 2010 Side 23 av 24
24 Schweigaards gate 15 Postboks 9359 Grønland 0135 OSLO Telefon
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Eksamen 24.11.2010. MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 24.11.2010. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
DEL1 Uten hjelpemidler
DEL1 Uten hjelpemidler Oppgave 1(15 poeng) a) Engruppeungdommerblirspurtomhvormangesøskendehar. Her er resultatene: 1, 3, 0, 3,1, 2, 1,0, 4, 2 Finn medianen og gjennomsnittet. b) Regnut 1) 3 2 3 3 3 4
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 24.11.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 24.11.2010. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1011 Matematikk 1P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen. MAT1013 Matematikk 1T. Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 23.11.2015 MAT1013 Matematikk 1T Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del 2: 2 timar (med hjelpemiddel) / 2 timer (med hjelpemidler) Minstekrav til
Eksamen 24.11.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 24.11.2010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Eksamen 27.11.2013. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 5.05.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 9.11.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen. MAT1017 Matematikk 2T Nynorsk/Bokmål
Eksamen 27.05.2016 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 3 timar. Del 2 skal
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 8.05.018 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.05.014 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.
Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 20.11.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Kjelder: 5 timar:
Eksamen 29.11.2011. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA302 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 29.11.2011 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3022 Matematikk R1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 19.05.015 REA30 Matematikk R1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen 25.05.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 5.05.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen 26.11.2015. REA3026 Matematikk S1. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 6.11.015 REA306 Matematikk S1 Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksamen 04.06.2012. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 04.06.01 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 28.11.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 26.05.2017 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 23.11.2011. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 7.11.015 REA04 Matematikk R Ny eksamensordning Del 1: timar (utan hjelpemiddel) / timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale verktøy
Eksamen 28.11.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.011 REA06 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 30.05.014 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 25.11.2013. MAT1011 Matematikk 1P. Nynorsk/Bokmål
Eksamen 25.11.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 25.05.2012. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 23.11.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen. MAT1013 Matematikk 1T Nynorsk/Bokmål
Eksamen 1.11.016 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter 3 timar. Del skal leverast
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
Eksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål
Eksamen 31.05.2017 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 19.05.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 3.11.017 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.
Eksamen REA3024 Matematikk R2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA304 Matematikk R Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
Eksempeloppgåve/ Eksempeloppgave 2009
Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:
Eksamen. 14. november MAT1006 Matematikk 1T-Y. Programområde: Alle programområde / programområder. Nynorsk/Bokmål
Eksamen 14. november 017 MAT1006 Matematikk 1T-Y Programområde: Alle programområde / programområder Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid 4 timar Del 1 skal leverast inn etter,5 timar.
Eksamen 19.05.2010. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1
Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 29.11.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9..03 REA304 Matematikk R Nnorsk/Bokmål Nnorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn seinast
Eksempeloppgåve/ Eksempeloppgave Desember 2007
Eksempeloppgåve/ Eksempeloppgave Desember 007 REA306 Matematikk S1 Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del 1 Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast
Eksamen 27.11.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn
Eksamen 31.05.2011. REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.011 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 9.05.204 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del 2: 5 timar: Del skal leverast inn etter 2 timar. Del 2 skal leverast
Eksamen 25.05.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål
Eksamen 31.05.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen 23.11.2011. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1008 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 25.05.2011. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen. MAT1015 Matematikk 2P Nynorsk/Bokmål
Eksamen 31.05.2017 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 23.11.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 23.11.2011. MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 23.11.2011 MAT1003 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Fylkeskommunenes landssamarbeid. Eksamen MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Fylkeskommunenes landssamarbeid Eksamen 28.05.2019 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Eksamen varar i 4 timar. Del 1 skal leverast inn etter
Eksamen. 30. mai MAT1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 30. mai 018 MAT1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
Eksamen 28.11.2012. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 28.11.2012 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 27.05.2013. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 27.05.2013 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen 19.05.2010. MAT1003 Matematikk 2P. Nynorsk/Bokmål
Eksamen 19.05.2010 MAT1003 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 22.11.2017 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del 1 skal
Eksamen 30.11.2009. MAT1008 Matematikk 2T. Nynorsk/Bokmål
Eksamen 30.11.009 MAT1008 Matematikk T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen. 1. juni MAT 1006 Matematikk 1T-Y. Programområde: Alle. Nynorsk/Bokmål
Eksamen 1. juni 017 MAT 1006 Matematikk 1T-Y Programområde: Alle Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: 4 timar Del 1 skal leverast inn etter,5 timar. Del skal leverast inn seinast etter
Eksamen 30.11.2009. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 30.11.2009 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 25.05.2012. MAT1017 Matematikk 2T. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1017 Matematikk 2T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål
Eksamen 27.05.2016 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1
Eksamen 26.05.2014. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 26.05.2014 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 24.05.2013. MAT1011 Matematikk 1P. http://eksamensarkiv.net/ Nynorsk/Bokmål
Eksamen 24.05.2013 MAT1011 Matematikk 1P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksempeloppgåve/ Eksempeloppgave September 2010
Eksempeloppgåve/ Eksempeloppgave September 2010 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om
Eksamen. MAT1015 Matematikk 2P Nynorsk/Bokmål
Eksamen 23.11.2016 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksempeloppgave 2014. MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015. Ny eksamensordning. Del 1: 2 timer (uten hjelpemidler)
Eksempeloppgave 2014 MAT1005 Matematikk 2P-Y Ny eksamensordning våren 2015 Ny eksamensordning Del 1: 2 timer (uten hjelpemidler) Del 2: 3 timer (med hjelpemidler) Minstekrav til digitale verktøy på datamaskin:
Eksamen. MAT1005 Matematikk 2P-Y Nynorsk/Bokmål
Eksamen 22.05.2018 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
Eksamen MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 25.05.2012 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2
Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 2 timar.
Eksamen 26.05.2014. MAT1015 Matematikk 2P. Nynorsk/Bokmål
Eksamen 26.05.2014 MAT1015 Matematikk 2P Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål
Eksamen 27.11.2013 MAT1010 Matematikk 2T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:
Eksamen 02.12.2008. MAT1005 Matematikk 2P-Y. Nynorsk/Bokmål
Eksamen 02.12.2008 MAT1005 Matematikk 2P-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del 2: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: