Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra

Størrelse: px
Begynne med side:

Download "Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra"

Transkript

1 kompetansemålet: Funksjoner - undersøkje funksjonar som beskriv praktiske situasjonar, ved å fastsetje nullpunkt, ekstremalpunkt og skjeringspunkt og tolke den praktiske verdien av resultata. Oppgave 1 a) Tegn grafene til de tre funksjonene nedenfor i samme koordinatsystem i GeoGebra f(x) = x-1 g(x) = x+2 h(x) = x-3 b) Hvor skjærer disse grafene y-aksen? Oppgave 2 Gitt funksjonene f(x) = x+2 og g(x) = -2x+4 a) Tegn grafene til de to funksjonene i samme koordinatsystem i GeoGebra b) Finn skjæringspunktet mellom grafene c) Finn nullpunkter til funksjonene Oppgave 3 Gitt funksjonen f(x) = -(3/2)x+5 og g(x) = 2x-2 a) Tegn grafene til de to funksjonene i samme koordinatsystem i GeoGebra b) Finn skjæringspunktet mellom grafene c) Finn nullpunkter til funksjonene Oppgave 4 Gitt funksjonen f(x) = x 2 + x 6 for x-verdier fra og med 4 til og med 3 a) Tegn grafene til funksjonen i GeoGebra c) Finn nullpunkter til funksjonen d) Finn hvor grafen skjærer x-aksen Oppgave 5 Gitt funksjonen f(x) = -0,5x 3 + 3x 2-3x +3

2 a) Tegn grafene til funksjonen i GeoGebra c) Finn nullpunkter til funksjonen Oppgave 6 Gitt funksjonen g(x) = 0,20x 3-0,60x a) Tegn grafene til funksjonen i GeoGebra c) Finn nullpunkter til funksjonen Oppgave 7 Gitt funksjonen f(x) = x 2 +4x -1 a) Tegn grafene til funksjonen i GeoGebra Oppgave 8 Gitt funksjonen f(x) = -x 2 +4x -1 a) Tegn grafene til funksjonen i GeoGebra Oppgave 9 Finn nullpunktene til funksjonen f(x)=0,5x^2+3x-8 Oppgave 10 Finn nullpunktene til funksjonen f(x)=-x^2+3x+10 Oppgave 11 Regn ut f(2) hvis f(x)=x^2+2x Oppgave 12 Regn ut f(1/2) hvis f(x)=x^2+2x

3 Oppgave 13 Temperatursvingningene gjennom et romjulsdøgn er gitt ved funksjonen T(x) = -0,005x 3 + 0,12x 2-2 der x er antall timer etter midnatt a) Forklar at x varierer fra og med 0 til og med 24 b) Tegn grafen til funksjonen T i GeoGebra c) Hva er den laveste temperaturen, og hva er den høyeste temperaturen gjennom døgnet? Oppgave 14 Camilla kaster en ball rett opp i lufta. Etter t sekunder er høyden h meter over bakken gitt ved H(t) = 14,1t 4,9t 2 +1,8 a) Tegn grafen til H b) Når er ballen 10 meter over bakken? c) Når treffer ballen bakken? d) Når er ballen 15 meter over bakken? e) Hvor høyt når ballen og når er ballen på sitt høyeste punkt? Oppgave 15 Anette og Bjørnar jobber som telefonselgere i hvert sitt firma. Anette jobber i firma A. Hun har en fast timelønn på 100 kr, og et tillegg på 10 kr per salg. Total timelønn i kroner, A, for Anette kan beskrives med funksjonsuttrykket A(x) = 10x der x er antall salg per time Bjørnar jobber i firma B. Han har en fast timelønn på 90 kr, og et tillegg på 12 kr per salg. Total timelønn i kroner, B, for Bjørnar kan beskrives med funksjonsuttrykket B(x) = 12x + 90 der x er antall salg per time a) Tegn grafene til funksjonene i samme koordinatsystem i GeoGebra b) Finn skjæringspunktet mellom grafene c) Hva forteller skjæringspunktet?

4 Oppgave 16 Anta at antall registrerte elbiler i Norge x år etter 2010 tilnærmet er gitt ved funksjonen G der G(x) = 560x x x <x<8 a) Bruk GeoGebra til å tegne grafen til G. b) Når vil antall registrerte elbiler passere ifølge denne funksjonen? c) Bestem G(4). Hva forteller denne verdien om antall elbiler? Oppgave 17 En bedrift produserer og selger en vare. Kostnadene K(x) kroner og inntektene I(x) kroner ved produksjon og salg av x enheter av varen er gitt ved K(x) = 8,5x x < x < 100 I(x) = 790x 10 < x < 100 a) Bruk GeoGebra til å tegne grafene til funksjonene K og I i samme koordinatsystem. b) For hvilke verdier av x er inntektene og kostnadene like store? c) Hvor mange enheter av varen må bedriften produsere og selge for at overskuddet skal bli størst mulig? Hvor stort blir overskuddet da? Oppgave 18 Funksjonen H er gitt ved H(x) = 3,25x 3-50x x Dette er en god modell for antall hjort i en kommune i perioden Ifølge modellen var det H(x) hjort i kommunen x år etter 1. januar a) Tegn grafen i GeoGebra b) Bestem når hjortebestanden var størst, og hvor mange hjort det var i kommunen da c) Bruk GeoGebra til å løse likningen H(x) = 850. Forklar hva løsningen forteller om hjortebestanden.

5 Oppgave 19 Oppgave 20

6 Oppgave 21 Oppgave 22

7 Oppgave 23 Oppgave 24

8 Oppgave 25 Oppgave 26

9

Kapittel 7. Funksjoner

Kapittel 7. Funksjoner Kapittel 7. Funksjoner Mål for kapittel 7: Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske eksempler,

Detaljer

Oppgaver. Innhold. Funksjoner Vg1P

Oppgaver. Innhold. Funksjoner Vg1P Oppgaver Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 6 Modul 3. Mer om lineær vekst... 10 Modul 4. Andregradsfunksjoner... 13 Modul 5. Andre funksjoner... 16 Polynomfunksjoner...

Detaljer

Løsninger. Innhold. Funksjoner Vg1P

Løsninger. Innhold. Funksjoner Vg1P Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...

Detaljer

a) Tegn grafen til T b) Når på dagen var temperaturen 0 o C c) Når på dagen var temperaturen høyest? Hva var temperaturen da?

a) Tegn grafen til T b) Når på dagen var temperaturen 0 o C c) Når på dagen var temperaturen høyest? Hva var temperaturen da? Oppgaver 1 Geogebra med fasit Oppgave 1 Funksjonen f er gitt ved: f(x) = x 2 2x 3 a) Tegn grafen digitalt b) Finn bunnpunktet til f Oppgave 2 En modell for temperaturen i celsiusgrader x timer etter midnatt

Detaljer

Kapittel 7. Funksjoner

Kapittel 7. Funksjoner Kapittel 7. Funksjoner Mål for kapittel 7, funksjoner. Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske

Detaljer

Oppgaver. Innhold. Funksjoner i praksis Vg2P

Oppgaver. Innhold. Funksjoner i praksis Vg2P Oppgaver Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 10 Modul 3: Tredjegradsfunksjoner... 1 Modul 4: Potensfunksjoner og rotfunksjoner... 14 Modul 5: Eksponentialfunksjoner...

Detaljer

Løsningsforslag. Innhold. Funksjoner i praksis Vg2P

Løsningsforslag. Innhold. Funksjoner i praksis Vg2P Løsningsforslag Innhold Modul 1: Lineære funksjoner... Modul : Andregradsfunksjoner... 1 Modul 3: Tredjegradsfunksjoner... 6 Modul 4: Potensfunksjoner og rotfunksjoner... 3 Modul 5: Eksponentialfunksjoner...

Detaljer

1P, Funksjoner løsning

1P, Funksjoner løsning 1P, Funksjoner løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene. j : y

Detaljer

Fasit. Funksjoner Vg1T. Innhold

Fasit. Funksjoner Vg1T. Innhold Fasit Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjoner... 15 Andregradsfunksjoner... 15 Polynomfunksjoner... 18 Rasjonale funksjoner... 19 Potensfunksjoner og eksponentialfunksjoner...

Detaljer

Oppgaver. Innhold. Funksjoner Vg1T. Innhold

Oppgaver. Innhold. Funksjoner Vg1T. Innhold Oppgaver Innhold Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 10 4.3 Andre funksjoner... 18 Polynomfunksjoner... 1 Rasjonale funksjoner... Potensfunksjoner og eksponentialfunksjoner... 3 4.4

Detaljer

Basisoppgaver til 1P kap. 5 Funksjoner

Basisoppgaver til 1P kap. 5 Funksjoner Basisoppgaver til 1P kap. 5 Funksjoner 5.1 Funksjoner og grafer 5.2 Førstegradsfunksjoner 5.3 Lineær vekst 5.4 Proporsjonalitet 5.5 Andregradsfunksjoner 5.6 Mer om funksjoner Basisoppgaver 5.1 Funksjoner

Detaljer

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen.

P(x, y) ) x. Dette er sirkellikningen. Et punkt P(x, y) ligger på denne sirkelen hvis og bare hvis koordinatene passer i likningen. 5.9 Sirkellikningen Fra kapittel 4.3 vet vi at sirkelen er det geometriske stedet for de punktene som har en bestemt avstand r fra et fast punkt S. Avstanden r kaller vi radien, og punktet S kaller vi

Detaljer

Oppgavesamling. Innhold. Funksjoner Vg1T Y

Oppgavesamling. Innhold. Funksjoner Vg1T Y Oppgavesamling Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 8 4.3 Andre funksjoner... 17 4.4 Vekstfart... 0 4.5 Eksamensoppgaver... 4 Noen av oppgavene er merket med symbolet Disse oppgavene

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Funksjoner løsninger. Innhold. Funksjoner S1

Funksjoner løsninger. Innhold. Funksjoner S1 Funksjoner løsninger Innhold.1 Funksjoner.... Lineære funksjoner... 9 Ettpunktsformelen... 18 Skjæringspunkt mellom rette linjer. Nullpunkt for en funksjon... 3.3 Andregradsfunksjon... 8.4 Tredjegradsfunksjon...

Detaljer

Funksjoner oppgaver. Innhold. Funksjoner S1

Funksjoner oppgaver. Innhold. Funksjoner S1 Funksjoner oppgaver Innhold.1 Funksjoner.... Lineære funksjoner... 5 Ettpunktsformelen.... 9 Skjæringspunkt mellom rette linjer. Nullpunkt for en funksjon... 11.3 Andregradsfunksjon... 1.4 Tredjegradsfunksjon...

Detaljer

Stigningstall og konstantledd, løsningsforslag

Stigningstall og konstantledd, løsningsforslag Stigningstall og konstantledd, løsningsforslag Oppgave: Løsningsforslag Listen [1] Oppgave Oppgave 1 a) Skriv ned stigningstallet og konstantleddet i de tre funksjonene under. 1. f(x) = x + Stigningstall

Detaljer

2P kapittel 2 Modellering Utvalgte løsninger oppgavesamlingen

2P kapittel 2 Modellering Utvalgte løsninger oppgavesamlingen P kapittel Modellering Utvalgte løsninger oppgavesamlingen 01 a Av tabellen ser vi at y minker like mye hver gang x øker med 1. Tallene passer derfor med en lineær funksjon. b Hver gang x øker med 1, minker

Detaljer

Løsningsforslag. Funksjoner Vg1T-Y. Innhold

Løsningsforslag. Funksjoner Vg1T-Y. Innhold Løsningsforslag Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 0 4.3 Andre funksjoner... 48 4.4 Vekstfart og derivasjon... 60 4.5 Eksamensoppgaver... 7 Noen av oppgavene er merket med symbolet

Detaljer

Løsningsforslag. Funksjoner Vg1T

Løsningsforslag. Funksjoner Vg1T Løsningsforslag Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 19 4.3 Andre funksjoner... 44 Andregradsfunksjoner... 44 Polynomfunksjoner... 53 Rasjonale funksjoner... 57 Potensfunksjoner og

Detaljer

Løsningsforslag matematikk S1 V14

Løsningsforslag matematikk S1 V14 Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2

Detaljer

Løsning 1P, funksjoner

Løsning 1P, funksjoner Løsning 1P, funksjoner Del 1 Tid: 50 min Hjelpemidler: Skrivesaker Oppgave 1 En funksjon er gitt ved f x 3x 6. a) Bestem funksjonens stigningstall og skjæring med koordinataksene. Stigningstallet er -3.

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

S1 eksamen våren 2017 løsningsforslag

S1 eksamen våren 2017 løsningsforslag S1 eksamen våren 017 løsningsforslag Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 xx ( 5) 0 x 0 x 5 0

Detaljer

Ny, GeoGebra til forkurset ved HiOA sommeren 2016

Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Ny, GeoGebra til forkurset ved HiOA sommeren 2016 Fra Prøveveiledning, Matematikk 1P + 2P, Sentralt gitt skriftlig prøve etter forkurs i lærerutdanningene, 2016 1.6.2.1 Graftegner (programvare på datamaskin).

Detaljer

Funksjoner 1T, Prøve 1 løsning

Funksjoner 1T, Prøve 1 løsning Funksjoner 1T, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 Figuren viser utviklingen i en populasjon av harer på en øy fra 1880 til 000. a) Hvor mange harer var det på øya i 1880?

Detaljer

Kapittel 3. Funksjoner

Kapittel 3. Funksjoner Kapittel 3. Funksjoner Mål for kapittel 3, funksjoner. Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor.

DEL 1. Uten hjelpemidler. a) Sett opp et likningssystem som svarer til opplysningene ovenfor. DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg7 Oppgave (4 poeng) Skriv uttrykkene så enkelt som mulig a) b) (x 3) 3( x ) ( x 1)( x 1) 3 a b ( a b) 3 Oppgave 3 (3 poeng)

Detaljer

S1 eksamen våren 2016

S1 eksamen våren 2016 S1 eksamen våren 016 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg 7 Oppgave (4 poeng)

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

S1 eksamen våren 2016 løsningsforslag

S1 eksamen våren 2016 løsningsforslag S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori med oppgaver. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning. Dag 2: 09.00-11.45

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Kapittel 1. Funksjoner

Kapittel 1. Funksjoner Kapittel 1. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet skal vi se nærmere på to typer funksjoner, lineære

Detaljer

Funksjoner S2 Oppgaver

Funksjoner S2 Oppgaver Funksjoner S Funksjoner S Oppgaver. Derivasjon... Den deriverte til en konstant funksjon... Den deriverte til en potensfunksjon... Den deriverte til et produkt av to funksjoner... 4 Den deriverte til en

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Brukopplysningenenedenfortilåfinneuthvaénballkoster,oghvaén hockeykølle koster. 500 kroner 100kroner b) Figuren viser grafene til tre andregradsfunksjoner f, g og h.

Detaljer

Hjelpehefte til eksamen

Hjelpehefte til eksamen Hjelpehefte til eksamen side 1 Innhold Formler som forventes kjent Vg1P-Y:... 3 Formler som forventes kjent: 1P... 4 Formler som forventes kjent: 2P... 5 Formler som forventes kjent: 2P-Y... 6 Formler

Detaljer

Eksamen REA3026 S1, Våren 2013

Eksamen REA3026 S1, Våren 2013 Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold Funksjonstegner... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 3 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 4 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

NY Eksamen 1T, Høsten 2011

NY Eksamen 1T, Høsten 2011 NY Eksamen 1T, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) Skriv så enkelt som mulig x x 5 10x5 b)

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Funksjoner 1T, Prøve 2 løsning

Funksjoner 1T, Prøve 2 løsning Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.

Detaljer

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.01 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Eksamen S1 vår 2011 DEL 1. Uten hjelpemidler. Oppgave f x x. f x x. x x. S1 Eksamen våren 2011, Løsning MATEMATIKK

Eksamen S1 vår 2011 DEL 1. Uten hjelpemidler. Oppgave f x x. f x x. x x. S1 Eksamen våren 2011, Løsning MATEMATIKK S Eksamen våren 0, Løsning Eksamen S vår 0 DEL Uten hjelpemidler Oppgave a) Vi har funksjonen f x x 3 x 5 ) Deriver funksjonen. f x x 3 3 5 f x x 6 5 ) Bestem f. Hva forteller svaret deg om grafen til

Detaljer

Eksamen MAT1015 Matematikk 2P Va ren 2015

Eksamen MAT1015 Matematikk 2P Va ren 2015 Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

10 Funksjoner. Lineære funksjoner

10 Funksjoner. Lineære funksjoner 10 Funksjoner Lineære funksjoner 1 En bedrift skal produsere postkasser og kalkulerer med faste kostnader på 15 000 kroner og variable kostnader på 50 kroner per kasse. a) Hva koster det totalt å produsere

Detaljer

x + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1)

x + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1) Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 17. september 2017 Kommentar: Dette er en innskriving av S2 eksamen, basert på scan av dokumentet lastet opp av matematikk.net-bruker Viks. Det

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 750 000 0,005 5 7,510 7,5 5 3 8 3 10 1,5 10 510 5 Oppgave (1 poeng) Løs likningssystemet x3y7 5xy8 Velger å løse likningen

Detaljer

Eksamen 2P MAT1015 Høsten 2012 Løsning

Eksamen 2P MAT1015 Høsten 2012 Løsning Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg

Detaljer

Eksamen S2, Høsten 2013

Eksamen S2, Høsten 2013 Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x

Detaljer

Kapittel 2. Funksjoner

Kapittel 2. Funksjoner Kapittel 2. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet skal vi se nærmere på to typer funksjoner, lineære

Detaljer

DEL 1. Uten hjelpemidler. Avgjør om de geometriske rekkene er konvergente. Bestem i så fall summen.

DEL 1. Uten hjelpemidler. Avgjør om de geometriske rekkene er konvergente. Bestem i så fall summen. DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) e x 4 x 1 g( x) x h( x) x 3 ln x Oppgave (3 poeng) Avgjør om de geometriske rekkene er konvergente. Bestem i så fall summen.

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2013

Eksamen MAT1013 Matematikk 1T Våren 2013 Eksamen MAT1013 Matematikk 1T Våren 2013 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform DEL 1 Uten hjelpemidler 750 000 0,005 Oppgave 2 (1 poeng) Løs likningssystemet 2x3y7 5x2y8 Oppgave 3

Detaljer

Eksamen 1T våren 2016 løsning

Eksamen 1T våren 2016 løsning Eksamen T våren 06 løsning Oppgave ( poeng) Regn ut og skriv svaret på standardform,8 0 0,0005,8 0,8 0 3,6 0 0,5 0 0,5 3 3 5 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Funksjoner oppgaver. Innhold. Funksjoner R1

Funksjoner oppgaver. Innhold. Funksjoner R1 Funksjoner oppgaver Innhold 3.1 Funksjoner... 3. Kontinuitet, grenseverdier og asymptoter til funksjoner... 3 Grenseverdier... 3 Rasjonale funksjoner og asymptoter... 6 Kontinuitet... 8 Funksjoner med

Detaljer

Kapittel 5. Funksjoner

Kapittel 5. Funksjoner Kapittel 5. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. I dette kapitlet skal vi se nærmere på to typer funksjoner, lineære

Detaljer

Eksamen REA3026 Matematikk S1

Eksamen REA3026 Matematikk S1 Eksamen REA306 Matematikk S1 Oppgave 1 (3 poeng) Løs likningene a) x 6x 4 0 b) lg xlg lg4 x Oppgave (3 poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC x og CB

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Flytt inntastingsfeltet

Detaljer

S1 eksamen våren 2017

S1 eksamen våren 2017 S1 eksamen våren 017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 5x 0 x b) 310 3000 c) 4lg( x 15) 8 Oppgave

Detaljer

Funksjonsregler.notebook. January 04, jun 7-12:55 jun 7-12:57. jun 7-12:58 jun 7-13:00

Funksjonsregler.notebook. January 04, jun 7-12:55 jun 7-12:57. jun 7-12:58 jun 7-13:00 3. februar 2018 FUNKSJONER Samledokument med materiell brukt i undervisningen i 10A Vormedal ungdomsskole januar 2018 www.solanum-kompetanse.no/10a ALF HARRY ØYGARDEN SOLANUM KOMPETANSE Funksjonsregler.notebook

Detaljer

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p

Karakter 2: 10p Karakter 3: 16p Karakter 4: 22p Karakter 5: 28p Karakter 6: 34p 13.03.2017 MATEMATIKK (MAT1005) Funksjoner og vekst DEL 1 (UTEN HJELPEMIDLER) 40 minutter DEL 2 (MED HJELPEMIDLER) 50 minutter (Del 1 leveres inn etter nøyaktig 40 minutter og før hjelpemidlene kan benyttes)

Detaljer

3 Funksjoner R2 Oppgaver

3 Funksjoner R2 Oppgaver 3 Funksjoner R Oppgaver 3.1 Trigonometriske definisjoner... 3. Trigonometriske sammenhenger... 6 3.3 Trigonometriske likninger... 1 3.4 Trigonometriske funksjoner og funksjonsdrøfting... 14 3.5 Omforming

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

S1 Eksamen høst 2009 Løsning

S1 Eksamen høst 2009 Løsning S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)

Detaljer

Eksamen REA3026 S1, Våren 2012

Eksamen REA3026 S1, Våren 2012 Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b

Detaljer

Undervisningsopplegg. Kapittel 2. Bokmål

Undervisningsopplegg. Kapittel 2. Bokmål Undervisningsopplegg 9 Kapittel 2 Bokmål 1 av 10 Bruk av GeoGebra i eksamensoppgaver I dette undervisningsopplegget skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner i eksamensoppgaver

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold FUNKSJONSTEGNER... 3 Skjermbildet i GeoGebra... 3 Verktøylinja... 4 Verktøyet Flytt eller velg objekt... 4 Oppsett av skjermbildet... 5 Flytte tegneflaten, endre enheter på aksene... 5 Mer øving

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne Funksjoner i praksis Innhold Kompetansemål Funksjoner i praksis, Vg2P... 1 Modul 1: Lineære funksjoner... 2 Modul 2: Andregradsfunksjoner... 8 Modul 3 Tredjegradsfunksjoner... 12 Modul 4: Potensfunksjoner...

Detaljer

Funksjoner S1, Prøve 1 løsning

Funksjoner S1, Prøve 1 løsning Funksjoner S1, Prøve 1 løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker, passer og linjal. Oppgave 1 Gitt funksjonen 3 f 3. a) Bestem koordinatene til skjæringspunktet mellom grafen til f og y-aksen.

Detaljer

R1 eksamen høsten 2015

R1 eksamen høsten 2015 R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)

Detaljer

S1 eksamen våren 2017 løysingsforslag

S1 eksamen våren 2017 løysingsforslag S1 eksamen våren 017 løysingsforslag Tid: 3 timar Hjelpemiddel: Vanlege skrivesaker, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 (5 poeng) Løys likningane a) x 5x 0 xx ( 5) 0 x 0 x 5

Detaljer

Eksamen S2 va ren 2015 løsning

Eksamen S2 va ren 2015 løsning Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x

Detaljer

Lineære funksjoner - Elevark

Lineære funksjoner - Elevark Lineære funksjoner - Elevark -Navn: Oppgave 1 a) Hva koster det å reise for to personer? b) Hvor mange kan reise for 160 kr? c) Hva koster en billett? d) Vi kaller antall personer for x, og utgiftene for

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Dag Temperatur Mandag 4 ºC Tirsdag 10 ºC Onsdag 1 ºC Torsdag 5 ºC Fredag 6 ºC Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet av noen dager.

Detaljer

1T eksamen våren 2017 løsningsforslag

1T eksamen våren 2017 løsningsforslag 1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010

Detaljer

Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering

Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering Basisoppgaver til Tall i arbeid Påbygging kap. 4 Modellering 4.1 Mer om lineær vekst 4.2 En lineær modell på øyemål 4.3 Lineær regresjon 4.4 Modellering med polynomfunksjoner 4.5 Modellering med eksponentialfunksjoner

Detaljer

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2

eksamensoppgaver.org 4 2e x = 7 e x = 7 2 ln e x = ln 2 x = ln 7 ln 2 ln x 2 ln x = 2 2 ln x ln x = 2 ln x = 2 x = e 2 eksamensoppgaver.org 4 oppgave a..i) e x = 7 e x = 7 ( ) 7 ln e x = ln x = ln 7 ln a..ii) ln x ln x = ln x ln x = ln x = x = e a..i) cos x =.8 x [, 6 ] x = arccos(.8) x 6.9 x 6 6.9 x 6.9 x. a..ii) Løserdennemedabc-formelen

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) S( x) 1 e e e. Deriver funksjonene. Bestem integralene

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) S( x) 1 e e e. Deriver funksjonene. Bestem integralene DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 6cos(x 1) b) g( x) cos x sin x Oppgave (5 poeng) Bestem integralene a) (x 3 x) dx b) x cos( x ) dx c) x d x Oppgave 3 ( poeng) En

Detaljer

Eksamen MAT 1011 Matematikk 1P Våren 2013

Eksamen MAT 1011 Matematikk 1P Våren 2013 Eksamen MAT 1011 Matematikk 1P Våren 2013 Oppgave 1 (2 poeng) Hilde skal kjøpe 2 L melk 2,5 kg poteter 0,5 kg ost 200 g kokt skinke Gjør et overslag og finn ut omtrent hvor mye hun må betale. Eksamen MAT1011

Detaljer

Kapittel 9. Funksjoner

Kapittel 9. Funksjoner Kapittel 9. Funksjoner Funksjon er et av de viktigste begrepene i matematikken. Funksjoner handler om sammenhengen mellom to størrelser. Dette kapitlet handler blant annet om: Hva en funksjon er. Lineære

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013

Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 Eksamen MAT1005 Matematikk 2P-Y Høsten 2013 DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av et

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Lineær optimering oppgaver

Lineær optimering oppgaver Lineær optimering oppgaver Innhold 4.1 Lineær optimering... 1 4.2 Eksamensoppgaver... 8 4.1 Lineær optimering 4.1.1 Gitt den generelle likningen y ax b for en rett linje. Forklar hva koeffisientene a og

Detaljer

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.11.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Faktor REGNEARK & GRAFTEGNER ØVINGSOPPGAVER FOR. Bokmål. Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte.

Faktor REGNEARK & GRAFTEGNER ØVINGSOPPGAVER FOR. Bokmål. Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte. Bokmål Faktor ØVINGSOPPGAVER FOR REGNEARK & GRAFTEGNER Flere oppgaver finns i Faktor Fordypningshefte og Faktor Eksamensforberedende hefte. Cappelen Damm AS 1 Oppgaver for REGNEARK Oppgavene er hentet

Detaljer