Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas INF3470

Størrelse: px
Begynne med side:

Download "Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470"

Transkript

1 Dagens temaer Time 4: z-transformasjonen Andreas INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og implementasjoner 3 domener Tema z-dometet; ett av tre domener Vi kan analysere digitale systemer i tre forskjellige domener: n-domenet eller tidsdomenet Domenet for sekvenser, impulsresponser og differens likninger. Signaler er generert og prosessert i dette domenet. Filtre er implementert i dette domenet. Ω-domain eller frekvensdomenet Domenet for frekvensresponsen & spektrumrepresentasjon, og tolking av disse! Viktig for analyse av f.eks lyd, men sjelden benyttet til implementasjon (i HW). z-domenet Domenet for z-transformasjonen, operatorer, poler & nullpunkter. Eksisterer primært fordi det muliggjør en matematisk analyse & syntese.

2 Hvorfor flere domener??? Vanskelige analyser i et domene kan være enklere i et annet domene... Flere domener kan gi bedre innsikt... Eksempel: Kaskadekombinasjon av LTI-systemer: n-domenet: Introduserte ny (og mindre kjent) teknikk kalt konvolusjon. I z-domentet: Reduseres til polynomsk multiplikasjon. Stabilitet: n-domenet: BIBO. z-domenet: Enhetssirkelen inneholdt i ROC. Kausalitet n-domenet: Kun benytte tidligere og nåtids sampler. z-domenet: Alle poler innenfor ROC. Tema z-transformasjonen; definisjon og egenskaper Definisjon ROC Egenskaper Definisjon av z-transformasjonen X(z) Z{x[n]} = n= x[n]z n, hvor z = Re j2πf = Re jω er en kompleks variabel. En uendelig potensrekke (??); eksisterer kun for de verdiene av z hvor rekken konvergerer Region Of Convergence (ROC); den mengen av argumenter hvor X(z) antar en endelig verdi. Notasjon: x[n] z X(z) x[n] ZT X(z) Definisjon av z-transformasjonen... z-transformasjonen er en funksjon av en kompleks variabel; illustreres i det komplekse z-planet. z = R(z) + ji(z) = Re jnω z-transformasjonen evaluert på enhetssirkelen tilsvarer DTFT (tema for kapittel 5): X(e jω ) = X(z) z=e jω Hvis DTFT en eksisterer, så er enhetssirkelen inneholdt i ROC

3 Example (Drill problem 4.2) ROC % S c r i p t som p l o t t e r X( z ), Y( z ) og G( z ) funnet i D r i l l Problem 4.2, side 141. % S e t t e r opp akser og et " meshgrid " ax = 10:1/100:10; ay = 10:1/100:10; [ xs, ys ] = meshgrid (ax, ay ) ; % Finner verdien t i l z, dvs z = R * exp ( j * Omega), Omega \ i n [ \ p i.. \ p i ) z = s q r t ( xs.^2 + ys. ^ 2 ). * exp ( j * atan2 ( ys, xs ) ) ; %% X(z) f r a 4.2a X = z. / ( z 0.5) ; X ( xs.^2 + ys.^2 <= ^ 2 ) = NaN; f i g u r e ( 1 ) ; meshz ( ax, ay, abs ( X ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% zlim ( [ 0 5 ] ) ; caxis ( [ 0 5 ] ) %% Y(z) f r a 4.2a Y = z. / ( z+0.5) ; Y ( xs.^2 + ys.^2 <= ^ 2 ) = NaN; f i g u r e ( 2 ) ; mesh ( ax, ay, abs ( Y ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% zlim ( [ 0 5 ] ) ; caxis ( [ 0 5 ] ) %% G( z ) f r a 4.2 c G = z. / ( z 0. 5 ) ; G ( xs.^2 + ys.^2 >= ^ 2 ) = NaN; f i g u r e ( 3 ) ; meshz ( ax, ay, abs ( G ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% axis ([ ] ) ; caxis ( [ 0 5 ] ) Gitt endelig lengde sekvens x[n]. Da er X(z) et polynom i z eller z 1 (X(z) = N 2 n=n 1 x[n]z n ) som konvergerer for alle z bortsett fra i z = 0, hvis X(z) inneholder ledd på formen z n i z =, hvis X(z) inneholder ledd på formen z n = X(z) endelig for hele planet med mulig untak for z = 0 og z =. Mer generelt, så er X(z) en rasjonell funksjon: X(z) = N(z) D(z) = b 0 + b 1 z b M z M M a 0 + a 1 z a N z N = k=0 b kz k N k=0 a kz k Rasjonell z-transformasjon X(z) = N(z) D(z) = b 0+b 1 z 1 + +b M z M M = a 0 +a 1 z 1 + +a N z N k=0 b k z k. N k=0 a k z k Hvis a 0 0 og b 0 0, så kan vi ungå negative eksponenter av z ved å faktorisere ut leddene b 0 z M og a 0 z N : X(z) = N(z) D(z) = b 0z M a 0 z N z M +(b 1 /b 0 )z M 1 + +b M /b 0 z N +(a 1 /a 0 )z N 1 + +a N /a 0 = b 0z M a 0 z N (z z 1 )(z z 2 ) (z z M ) (z p 1 )(z p 2 ) (z p N ) = b 0 a 0 z N M ΠM k=1 (z z k ) Π N k=1 (z p k ) Rasjonell z-transformasjon... X(z) = b 0 a 0 z N M ΠM k=1 (z z k ) Π N k=1 (z p k ) M endelige nullpkt z = z1, z 2,..., z M. N endelige poler z = p 1, p 2,..., p M. N M nullpkt (hvis N > M) eller poler (hvis N < M) i origo z = 0. Poler og nullpkt kan forekomme i z =. Et nullpkt ekstisterer i z = hvis X( ) = 0 og en pol eksisterer i z = hvis X( ) =. Teller vi med alle poler og nullpunkter i origo og uendelig, finner vi at X(z) har like mange poler som nullpunkter. ROC kan ikke inneholde poler! Hvis alle poler/nullpkt er kjent kan vi bestemme X(z) på en konstant nær ( b 0 a 0 ).

4 ROC... ROC generelt en annulus på formen α < z < β. Hvis α = 0, kan ROC også inneholde punktet z = 0. Hvis β = 0, kan ROC også inneholde punktet z =. Endelig tid signaler Kausal: Hele z-planet untatt z = 0. Anti-kausal: Hele z-planet untatt z =. Tosidig: Hele z-plane untatt z = 0 og z =. Uendelig lengde signaler Kausal: r 1 < z Anti-kausal: z < r 2 Tosidig: r1 < z < r 2 Egenskaper til z-transformasjonen Linearitet: Z {a 1 x 1 [n] + a 2 x 2 [n]} = a 1 X 1 (z) + a 2 X 2 (z); ROC: minst ROC x1 ROC x2. Shifting i tid: Z {x[n n 0 ]} = z n0 X(z); ROC = ROC x, med mulig untak at punktene z = 0 z = kan legges til eller fjernes. Skifting i frekvens: Z {a n x[n]} = X( z a ); ROC = ROC x skalert med a. Egenskaper til z-transformasjonen... Tidsreversering: Hvis Z {x[n]} = X(z); ROC : r 1 < z < r 2, så er Z {x[ n]} = X(z 1 ); ROC : 1/r 2 < z < 1/r 1. Derivering i z-domenet: Z {nx[n]} = z dx(z) dz ; ROC = ROC x. Konvolusjon av to sekvenser: Z {x 1 [n] x 2 [n]} = X 1 (z)x 2 (z); ROC : ROC x1 ROC x2. ROC kan være større hvis det forekommer pol-nullpkt kansellering i produktet X 1 (z)x 2 (z). Egenskaper til z-transformasjonen... Kompleks konjugering: Z {x [n]} = X (z ); ROC = ROC x. The initial value teoremet: Hvis x[n] kausal, så er x[0] = lim z X(z).

5 Tema H(z); systemfunksjonen og implementasjoner System transferfunksjonen Koblede systemer Operator- og blokknotation Blokkdiagramer The transfere function eller systemfunksjonen Y (z) = H(z)X(z). H(z) = n= h[n]z 1 og h[n] er ekvivalente beskrivelse av et system i forskjellige domener. H(z) kalles system transfere function eller bare systemfunksjonen. The transfere function eller systemfunksjonen... Koblede systemer Lineær konstant-koeffisient differanse linkning: y[n] = N k=1 a ky[n k] + M k=0 b kx[n k] gir H(z) = M k=0 b k z k 1+. N k=1 a k z k Hvis a k = 0 for k = 1..N; all-zero system/ FIR system / MA system. If b k = 0 for k = 1..M; all-pole system/ IIR system. Generell form; pole-nullpunkt system/ IIR system.

6 Operatornotation En forsinkelse på ett sampel tilsvarer mult. med z 1 x[n 1] ZT z 1 X(z) Refererer til dette som unit-delay property. Blokknotation av y[n] = b 0 x[n] + b 1 x[n 1] Direkte form I struktur Gitt systemfunksjonen H(z) = b 0+b 1 z 1 1 a 1 z 1. Faktorisering av denne i en FIR og en IIR del gir H(z) = ( b 0 + b 1 z 1) ( ) ( ) a 1 = B(z) z 1 A(z) Kaskadekobling av de to delene gir Direkte form II struktur Ved bytting ( av) rekkefølgen på IIR og FIR delen fås; H(z) = 1 A(z) B(z): Transponert form Med utgangspkt i en Direkte form struktur (vanligvis DF II): 1. Bytt retning på alle piler (og behold multiplikatorer). 2. La alle samlepunkt bli summepunkt og vv. 3. Bytt roller til inngang og utgang.

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/29 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Uke 5: Analyse i z- og frekvensdomenet

Uke 5: Analyse i z- og frekvensdomenet Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2 Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

EKSAMEN STE 6219 Digital signalbehandling

EKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte

Detaljer

STE6146 Signalbehandling =-WUDQVIRUPHQ

STE6146 Signalbehandling =-WUDQVIRUPHQ TE6146 ignalbehandling =-WUDQVIRUPHQ,QWURGXNVMRQ Fourier-transformen er et meget nyttig verktøy for diskrete signaler og systemer Fourier-transformen konvergerer ikke for alle følger Trenger mere generelt

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

FIE Signalprosessering i instrumentering

FIE Signalprosessering i instrumentering FIE 8 - Signalprosessering i instrumentering Øvelse #4: Z-transform, poler og nullpunkt Av Knut Ingvald Dietel Universitetet i Bergen Fysisk institutt 5 februar Innhold FIE 8 - Signalprosessering i instrumentering

Detaljer

Formelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons,

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,

Detaljer

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter

Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Boolsk Algebra Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter med bare 2-inputs porter Generelle kompetansemål:

Detaljer

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

y(t) t

y(t) t Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med

Detaljer

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5. Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

IIR filterdesign Sverre Holm

IIR filterdesign Sverre Holm IIR filterdesign IIR filterdesign Sverre Holm Filterspesifikasjon IIR kontra FIR IIR filtre er mer effektive enn FIR færre koeffisienter for samme magnitudespesifikasjon Men bare FIR kan gi eksakt lineær

Detaljer

6WUXNWXUHU IRU GLVNUHWH V\VWHPHU

6WUXNWXUHU IRU GLVNUHWH V\VWHPHU TE6146 ignalbehandling 6WUXNWXUHU IRU GLVNUHWH V\VWHPHU,QWURGXNVMRQ For LTI system med rasjonal systemfunksjon, er sammenhengen mellom inngang og utgang gitt av differensligning med konstante koeffisienter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 14. oktober 2016 Tid for eksamen: 13.00 15.00 Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3

Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Boolsk Algebra Hva gikk vi gjennom forrige uke? Omid Mirmotahari 3 Læringsutbytte Kunnskapsmål: Kunnskap om boolsk algebra Ferdighetsmål: Kunne forenkle boolske uttrykk Kunne implementere flerinputs-porter

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. For å kunne skrive det komplekse tallet følgende endringer foretas på uttrykket. 3 3, hvor 3 og 3 på formen, hvor og, må For å kunne skrive det komplekse tallet på polarformen, må vi først finne

Detaljer

Løsningsforslag til prøveeksamen i fag SIG50 Signalbehandling

Løsningsforslag til prøveeksamen i fag SIG50 Signalbehandling Løsningsforslg til prøveeksmen i fg SIG50 Signlbehndling (Våren-0) Av Finn Hugen (fglærer). 4. februr 00. 1. Det må smples med smplingsfrekvens høyere enn gnger signlfrekvensen for t nedfolding skl unngås,

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2016.

ELE610 Prosjekter i robotteknikk, vår 2016. Stavanger, 1. desember 2015 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2016. Lab. 2, Logikk og Notch-filter. Innhold 0 Introduksjon 3 2 Oppgaver 4 2.1 Logisk funksjon...........................

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark

Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

01 Laplace og Z-transformasjon av en forsinket firkant puls.

01 Laplace og Z-transformasjon av en forsinket firkant puls. Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering

Detaljer

MIK 200 Anvendt signalbehandling, 2012.

MIK 200 Anvendt signalbehandling, 2012. Stavanger, 25. januar 202 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 202. Lab. 6, CIC-filter. Dette er første del av øvinger om CIC-filter. Andre del kommer i øving 7. Før

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

Repetisjon digital-teknikk. teknikk,, INF2270

Repetisjon digital-teknikk. teknikk,, INF2270 Repetisjon digital-teknikk teknikk,, INF227 Grovt sett kan digital-teknikk-delen fordeles i tre: Boolsk algebra og digitale kretser Arkitektur (Von Neuman, etc.) Ytelse (Pipelineling, cache, hukommelse,

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Fakta om fouriertransformasjonen

Fakta om fouriertransformasjonen Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

MASTEROPPGAVE. Aktiv støydemping i hodetelefoner

MASTEROPPGAVE. Aktiv støydemping i hodetelefoner Universitetet i Stavanger MASTEROPPGAVE Teknisk-naturvitenskaplig fakultet Institutt for data- og elektroteknikk Av Jon Brandal Aktiv støydemping i hodetelefoner Veileder: Ivar Austvoll Utført ved Universitetet

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2 Stavanger, 4. august 016 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

Numerisk lineær algebra

Numerisk lineær algebra Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Løsninger til forkursstartoppgaver

Løsninger til forkursstartoppgaver Løsninger til forkursstartoppgaver Prosent: Oppgave 1. Prisforskjell er 20. 20 100 Kylling er da =66 2 prosent dyrere. 30 3 Vi beregner hvor mange prosent 20 er av 30. Kylling er også 20 100 =40 prosent

Detaljer

Løsningsforslag til øving 1

Løsningsforslag til øving 1 Høgskolen i Gjøvik Avd. for tekn., øk. og ledelse Matematikk 5 Løsningsforslag til øving Exercise (a), (c) - j yim() j - - - 0 xre() Merk! I oppgaven skal vi merke av punktene (angitt med ), men de komplekse

Detaljer

Arne B. Sletsjøe. Oppgaver, MAT 1012

Arne B. Sletsjøe. Oppgaver, MAT 1012 Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver 21. november 2010 1 Kontinuerlige signaler og systemer 1.1 Signaler i tidsdomenet 2009M 3 b gitt x(t), sum av DC og to sinussignaler,

Detaljer

Elementære eliminasjonsmatriser

Elementære eliminasjonsmatriser Elementære eliminasjonsmatriser Gitt en vektor a = [a 1,..., a n ] T, en matrise 1 0 0 0.......... M k = 0 1 0 0 0 a k+1 a k 1 0, a k 0,.......... 0 an a k 0 1 kalles elementære eliminasjonsmatriser eller

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2016.

ELE610 Prosjekter i robotteknikk, vår 2016. Stavanger, 1. desember 2015 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2016. Lab. 1, introduksjon og FIR filter. Innhold 0 Introduksjon 3 1 Oppgaver 3 1.1 Noen spørsmål

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Løsning til Kompleks Analyse, Øving 5

Løsning til Kompleks Analyse, Øving 5 Løsning til Kompleks Analyse, Øving 5 1. Oppgave For z = R> er z 1 z +1= z +1=R +1. Ved å innføre variabelen u = z får vi at som gir oss faktoriseringen z 4 +5z +4=u +5u +4=(u +1)(u +4) z 4 +5z +4= z +1

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2810 Eksamensdag: 5. juni, 2014 Tid for eksamen: 14:30 (4 timer) Oppgavesettet er på 4 sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

MAT-INF 2360: Obligatorisk oppgave 2

MAT-INF 2360: Obligatorisk oppgave 2 6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer