Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas INF3470

Størrelse: px
Begynne med side:

Download "Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470"

Transkript

1 Dagens temaer Time 4: z-transformasjonen Andreas INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og implementasjoner 3 domener Tema z-dometet; ett av tre domener Vi kan analysere digitale systemer i tre forskjellige domener: n-domenet eller tidsdomenet Domenet for sekvenser, impulsresponser og differens likninger. Signaler er generert og prosessert i dette domenet. Filtre er implementert i dette domenet. Ω-domain eller frekvensdomenet Domenet for frekvensresponsen & spektrumrepresentasjon, og tolking av disse! Viktig for analyse av f.eks lyd, men sjelden benyttet til implementasjon (i HW). z-domenet Domenet for z-transformasjonen, operatorer, poler & nullpunkter. Eksisterer primært fordi det muliggjør en matematisk analyse & syntese.

2 Hvorfor flere domener??? Vanskelige analyser i et domene kan være enklere i et annet domene... Flere domener kan gi bedre innsikt... Eksempel: Kaskadekombinasjon av LTI-systemer: n-domenet: Introduserte ny (og mindre kjent) teknikk kalt konvolusjon. I z-domentet: Reduseres til polynomsk multiplikasjon. Stabilitet: n-domenet: BIBO. z-domenet: Enhetssirkelen inneholdt i ROC. Kausalitet n-domenet: Kun benytte tidligere og nåtids sampler. z-domenet: Alle poler innenfor ROC. Tema z-transformasjonen; definisjon og egenskaper Definisjon ROC Egenskaper Definisjon av z-transformasjonen X(z) Z{x[n]} = n= x[n]z n, hvor z = Re j2πf = Re jω er en kompleks variabel. En uendelig potensrekke (??); eksisterer kun for de verdiene av z hvor rekken konvergerer Region Of Convergence (ROC); den mengen av argumenter hvor X(z) antar en endelig verdi. Notasjon: x[n] z X(z) x[n] ZT X(z) Definisjon av z-transformasjonen... z-transformasjonen er en funksjon av en kompleks variabel; illustreres i det komplekse z-planet. z = R(z) + ji(z) = Re jnω z-transformasjonen evaluert på enhetssirkelen tilsvarer DTFT (tema for kapittel 5): X(e jω ) = X(z) z=e jω Hvis DTFT en eksisterer, så er enhetssirkelen inneholdt i ROC

3 Example (Drill problem 4.2) ROC % S c r i p t som p l o t t e r X( z ), Y( z ) og G( z ) funnet i D r i l l Problem 4.2, side 141. % S e t t e r opp akser og et " meshgrid " ax = 10:1/100:10; ay = 10:1/100:10; [ xs, ys ] = meshgrid (ax, ay ) ; % Finner verdien t i l z, dvs z = R * exp ( j * Omega), Omega \ i n [ \ p i.. \ p i ) z = s q r t ( xs.^2 + ys. ^ 2 ). * exp ( j * atan2 ( ys, xs ) ) ; %% X(z) f r a 4.2a X = z. / ( z 0.5) ; X ( xs.^2 + ys.^2 <= ^ 2 ) = NaN; f i g u r e ( 1 ) ; meshz ( ax, ay, abs ( X ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% zlim ( [ 0 5 ] ) ; caxis ( [ 0 5 ] ) %% Y(z) f r a 4.2a Y = z. / ( z+0.5) ; Y ( xs.^2 + ys.^2 <= ^ 2 ) = NaN; f i g u r e ( 2 ) ; mesh ( ax, ay, abs ( Y ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% zlim ( [ 0 5 ] ) ; caxis ( [ 0 5 ] ) %% G( z ) f r a 4.2 c G = z. / ( z 0. 5 ) ; G ( xs.^2 + ys.^2 >= ^ 2 ) = NaN; f i g u r e ( 3 ) ; meshz ( ax, ay, abs ( G ) ) ; x l a b e l ( 'Re( z ) ' ) ; y l a b e l ( ' Im ( z ) ' ) ; %% axis ([ ] ) ; caxis ( [ 0 5 ] ) Gitt endelig lengde sekvens x[n]. Da er X(z) et polynom i z eller z 1 (X(z) = N 2 n=n 1 x[n]z n ) som konvergerer for alle z bortsett fra i z = 0, hvis X(z) inneholder ledd på formen z n i z =, hvis X(z) inneholder ledd på formen z n = X(z) endelig for hele planet med mulig untak for z = 0 og z =. Mer generelt, så er X(z) en rasjonell funksjon: X(z) = N(z) D(z) = b 0 + b 1 z b M z M M a 0 + a 1 z a N z N = k=0 b kz k N k=0 a kz k Rasjonell z-transformasjon X(z) = N(z) D(z) = b 0+b 1 z 1 + +b M z M M = a 0 +a 1 z 1 + +a N z N k=0 b k z k. N k=0 a k z k Hvis a 0 0 og b 0 0, så kan vi ungå negative eksponenter av z ved å faktorisere ut leddene b 0 z M og a 0 z N : X(z) = N(z) D(z) = b 0z M a 0 z N z M +(b 1 /b 0 )z M 1 + +b M /b 0 z N +(a 1 /a 0 )z N 1 + +a N /a 0 = b 0z M a 0 z N (z z 1 )(z z 2 ) (z z M ) (z p 1 )(z p 2 ) (z p N ) = b 0 a 0 z N M ΠM k=1 (z z k ) Π N k=1 (z p k ) Rasjonell z-transformasjon... X(z) = b 0 a 0 z N M ΠM k=1 (z z k ) Π N k=1 (z p k ) M endelige nullpkt z = z1, z 2,..., z M. N endelige poler z = p 1, p 2,..., p M. N M nullpkt (hvis N > M) eller poler (hvis N < M) i origo z = 0. Poler og nullpkt kan forekomme i z =. Et nullpkt ekstisterer i z = hvis X( ) = 0 og en pol eksisterer i z = hvis X( ) =. Teller vi med alle poler og nullpunkter i origo og uendelig, finner vi at X(z) har like mange poler som nullpunkter. ROC kan ikke inneholde poler! Hvis alle poler/nullpkt er kjent kan vi bestemme X(z) på en konstant nær ( b 0 a 0 ).

4 ROC... ROC generelt en annulus på formen α < z < β. Hvis α = 0, kan ROC også inneholde punktet z = 0. Hvis β = 0, kan ROC også inneholde punktet z =. Endelig tid signaler Kausal: Hele z-planet untatt z = 0. Anti-kausal: Hele z-planet untatt z =. Tosidig: Hele z-plane untatt z = 0 og z =. Uendelig lengde signaler Kausal: r 1 < z Anti-kausal: z < r 2 Tosidig: r1 < z < r 2 Egenskaper til z-transformasjonen Linearitet: Z {a 1 x 1 [n] + a 2 x 2 [n]} = a 1 X 1 (z) + a 2 X 2 (z); ROC: minst ROC x1 ROC x2. Shifting i tid: Z {x[n n 0 ]} = z n0 X(z); ROC = ROC x, med mulig untak at punktene z = 0 z = kan legges til eller fjernes. Skifting i frekvens: Z {a n x[n]} = X( z a ); ROC = ROC x skalert med a. Egenskaper til z-transformasjonen... Tidsreversering: Hvis Z {x[n]} = X(z); ROC : r 1 < z < r 2, så er Z {x[ n]} = X(z 1 ); ROC : 1/r 2 < z < 1/r 1. Derivering i z-domenet: Z {nx[n]} = z dx(z) dz ; ROC = ROC x. Konvolusjon av to sekvenser: Z {x 1 [n] x 2 [n]} = X 1 (z)x 2 (z); ROC : ROC x1 ROC x2. ROC kan være større hvis det forekommer pol-nullpkt kansellering i produktet X 1 (z)x 2 (z). Egenskaper til z-transformasjonen... Kompleks konjugering: Z {x [n]} = X (z ); ROC = ROC x. The initial value teoremet: Hvis x[n] kausal, så er x[0] = lim z X(z).

5 Tema H(z); systemfunksjonen og implementasjoner System transferfunksjonen Koblede systemer Operator- og blokknotation Blokkdiagramer The transfere function eller systemfunksjonen Y (z) = H(z)X(z). H(z) = n= h[n]z 1 og h[n] er ekvivalente beskrivelse av et system i forskjellige domener. H(z) kalles system transfere function eller bare systemfunksjonen. The transfere function eller systemfunksjonen... Koblede systemer Lineær konstant-koeffisient differanse linkning: y[n] = N k=1 a ky[n k] + M k=0 b kx[n k] gir H(z) = M k=0 b k z k 1+. N k=1 a k z k Hvis a k = 0 for k = 1..N; all-zero system/ FIR system / MA system. If b k = 0 for k = 1..M; all-pole system/ IIR system. Generell form; pole-nullpunkt system/ IIR system.

6 Operatornotation En forsinkelse på ett sampel tilsvarer mult. med z 1 x[n 1] ZT z 1 X(z) Refererer til dette som unit-delay property. Blokknotation av y[n] = b 0 x[n] + b 1 x[n 1] Direkte form I struktur Gitt systemfunksjonen H(z) = b 0+b 1 z 1 1 a 1 z 1. Faktorisering av denne i en FIR og en IIR del gir H(z) = ( b 0 + b 1 z 1) ( ) ( ) a 1 = B(z) z 1 A(z) Kaskadekobling av de to delene gir Direkte form II struktur Ved bytting ( av) rekkefølgen på IIR og FIR delen fås; H(z) = 1 A(z) B(z): Transponert form Med utgangspkt i en Direkte form struktur (vanligvis DF II): 1. Bytt retning på alle piler (og behold multiplikatorer). 2. La alle samlepunkt bli summepunkt og vv. 3. Bytt roller til inngang og utgang.

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

FIE Signalprosessering i instrumentering

FIE Signalprosessering i instrumentering FIE 8 - Signalprosessering i instrumentering Øvelse #4: Z-transform, poler og nullpunkt Av Knut Ingvald Dietel Universitetet i Bergen Fysisk institutt 5 februar Innhold FIE 8 - Signalprosessering i instrumentering

Detaljer

Formelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons,

Detaljer

INF1400 Kap 02 Boolsk Algebra og Logiske Porter

INF1400 Kap 02 Boolsk Algebra og Logiske Porter INF4 Kap 2 Boolsk Algebra og Logiske Porter Hovedpunkter Toverdi Boolsk algebra Huntington s postulater Diverse teorem Boolske funksjoner med sannhetstabell Forenkling av uttrykk (port implementasjon)

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

Rekker, Konvergenstester og Feilestimat

Rekker, Konvergenstester og Feilestimat NTNU December 8, 2012 Oversikt 1 2 3 4 5 6 For å forstå, må vi først forstå potensrekker For å forstå potensrekker, må vi først forstå rekker. For å forstå rekker, må vi først forstå følger. Definisjon

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2016.

ELE610 Prosjekter i robotteknikk, vår 2016. Stavanger, 1. desember 2015 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2016. Lab. 2, Logikk og Notch-filter. Innhold 0 Introduksjon 3 2 Oppgaver 4 2.1 Logisk funksjon...........................

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. For å kunne skrive det komplekse tallet følgende endringer foretas på uttrykket. 3 3, hvor 3 og 3 på formen, hvor og, må For å kunne skrive det komplekse tallet på polarformen, må vi først finne

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

MASTEROPPGAVE. Aktiv støydemping i hodetelefoner

MASTEROPPGAVE. Aktiv støydemping i hodetelefoner Universitetet i Stavanger MASTEROPPGAVE Teknisk-naturvitenskaplig fakultet Institutt for data- og elektroteknikk Av Jon Brandal Aktiv støydemping i hodetelefoner Veileder: Ivar Austvoll Utført ved Universitetet

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

Fakta om fouriertransformasjonen

Fakta om fouriertransformasjonen Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen (finn@techteach.no), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Analyse og metodikk i Calculus 1

Analyse og metodikk i Calculus 1 Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................

Detaljer

0.1 Kort introduksjon til komplekse tall

0.1 Kort introduksjon til komplekse tall Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Løsning til Kompleks Analyse, Øving 5

Løsning til Kompleks Analyse, Øving 5 Løsning til Kompleks Analyse, Øving 5 1. Oppgave For z = R> er z 1 z +1= z +1=R +1. Ved å innføre variabelen u = z får vi at som gir oss faktoriseringen z 4 +5z +4=u +5u +4=(u +1)(u +4) z 4 +5z +4= z +1

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

INF1411 Obligatorisk oppgave nr. 4

INF1411 Obligatorisk oppgave nr. 4 INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 6: Derivasjon Eirik Hoel Høiseth Stipendiat IMF NTNU 22. august, 2012 Stigningstallet i et punkt Stigningstallet i et punkt Vi vender nå tilbake til problemet med å finne

Detaljer

ELE610 Prosjekter i robotteknikk, vår 2016.

ELE610 Prosjekter i robotteknikk, vår 2016. Stavanger, 1. desember 2015 Det teknisknaturvitenskapelige fakultet ELE610 Prosjekter i robotteknikk, vår 2016. Lab. 1, introduksjon og FIR filter. Innhold 0 Introduksjon 3 1 Oppgaver 3 1.1 Noen spørsmål

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Potensrekker. Binomialrekker

Potensrekker. Binomialrekker Potensrekker Potensrekker er rekker på formen: Potensrekker kan brukes på en rekke områder for å finne tilnærmede eller eksakte løsninger på problemer som ellers kanskje må løses numerisk eller krever

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 5 Løsningsforslag Oppgave 1 Hva gjør disse skriptene? a) Skriptet lager plottet vi ser i gur 1. Figur 1: Plott fra oppgave 1 a). b) Om vi endrer skriptet

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang

Matematikk 1000. Øvingeoppgaver i numerikk leksjon 1 Å komme i gang Matematikk 1000 Øvingeoppgaver i numerikk leksjon 1 Å komme i gang I denne øvinga skal vi bli litt kjent med MATLAB. Vi skal ikkje gjøre noen avanserte ting i dette oppgavesettet bare få et visst innblikk

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

n-te røtter av komplekse tall

n-te røtter av komplekse tall . 29. august 2011 Eksponentialform Forrige gang så vi at e iθ = cos θ + i sin θ Dette kan vi bruke til å gjøre polarfremstillingen av komplekse tall mer kompakt: z = a + ib = r(cos θ + i sin θ) = re iθ

Detaljer

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11)

Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Litt om numerisk integrasjon og derivasjon og løsningsforslag til noen ekstraoppgaver MAT-INF 1100 uke 48 (22/11-26/11) Knut Mørken 22. november 2004 Vi har tidligere i kurset sett litt på numerisk derivasjon

Detaljer

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU TE6146 ignalbehandling 6DPOLQJ DY NRQWLQXHUOLJH VLJQDOHU,QWURGXNVMRQ Mest vanlige måte å oppnå diskrete signaler på er ved sampling av kontinuerlige signaler Under gitte forutsetninger kan kontinuerlige

Detaljer

R2-01.09.14 - Løsningsskisser

R2-01.09.14 - Løsningsskisser R - 0.09.4 - Løsningsskisser Algebra Oppgave Finn den eksplisitte formelen for n te ledd i tallfølgene: a), 4, 6, 8, 0,... b),, 5, 7, 9,... c), 4, 9, 6, 5,... d),, 4, 5 4, 6 5,... a) Vi ser at følgen med

Detaljer

MAPLE-LAB La oss utføre en enkel utregning.

MAPLE-LAB La oss utføre en enkel utregning. MAPLE-LAB Denne labøvelsen (og neste) gir en kort opplæring i elementær bruk av programmet Maple. Dere får dermed et lite glimt av mulighetene som finnes i Maple. Interesserte oppfordres til å utforske

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Hovedoppgave. av Jan Jakobsen. Institutt for Fysikk Universitetet i Oslo

Hovedoppgave. av Jan Jakobsen. Institutt for Fysikk Universitetet i Oslo Hovedoppgave av Jan Jakobsen Institutt for Fysikk Universitetet i Oslo Innholdsfortegnelse Innledning... 4 Problemstilling... 4 Nummer representasjon... 4 Filterbeskrivelser... 5 Ulike typer design...

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12

Fasit til utvalgte oppgaver MAT1100, uka 29/11-3/12 Fasit til utvalgte oppgaver MAT1100, uka 9/11-3/1 Øyvind Ryan (oyvindry@ifiuiono December, 010 Oppgave 15 Oppgave 155 a 4A 3B 4 1 3 1 3 1 4 1 8 4 1 4 3 3 1 3 0 9 6 + 6 3 9 0 5 18 14 1 3 4 4 9 1 6 8 + 6

Detaljer

Analysedrypp II: Kompletthet

Analysedrypp II: Kompletthet Analysedrypp II: Kompletthet Kompletthet er et begrep som står sentralt i både MAT1100 og MAT1110, og som vil stå enda mer sentralt i MAT2400. I de tidligere kursene fremstår begrepet på litt forskjellig

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 5 Litt oppsummering undervegs Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon Litt oppsummering undervegs Løsningsforslag Oppgave 1 Et skjæringspunkt f(x) = x e x g(x) = 1 arctan x. a) Vi kan lage plottet slik i kommando-vinduet:

Detaljer

Matematisk morfologi IV

Matematisk morfologi IV Matematisk morfologi IV Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no. desember 3 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag Geodesi-transformasjoner: Geodesi-dilasjon. Geodesi-erosjon. Geodesi-rekonstruksjon.

Detaljer

Matematisk morfologi III

Matematisk morfologi III Matematisk morfologi III Lars Aurdal Norsk regnesentral Lars.Aurdal@nr.no 4. desember 2003 Copyright Lars Aurdal, NTNU/NR Oversikt, kursdag 3 Sammensatte operasjoner: Hit-or-miss-transformen. Skjeletter.

Detaljer

Mål og innhold i Matte 1

Mål og innhold i Matte 1 Mål og innhold i Institutt for matematiske fag 15. november 2013 på Målet med denne oversikten er at vi skal se hvor vi er i pensum, og at du skal kunne finne hva du kan/ikke kan. Jeg vil i tillegg vise

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

LO118D Forelesning 5 (DM)

LO118D Forelesning 5 (DM) LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en

Detaljer

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker

Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Seksjonene 9.6-7: Potensrekker og Taylor/Maclaurinrekker Andreas Leopold Knutsen 15. februar 2010 Funksjonsrekker En rekke på formen f n (x) der f n er en funksjon, kalles en funksjonsrekke. For alle x

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Bojana Gajić Tlf.: 92490623 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. Stavanger, 30. juni 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Komplekse tall og Eulers formel

Komplekse tall og Eulers formel Komplekse tall og Eulers formel Harald Hanche-Olsen 2011-03-24 1. Oppvarming Jeg vil anta at leseren er kjent med komplekse tall, men vil likevel si noen ord om temaet. Naivt kan man starte med bare å

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 Delkapittel 1.8 Algoritmeanalyse Side 1 av 12 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.8 1.8 Algoritmeanalyse 1.8.1 En algoritmes arbeidsmengde I Delkapittel 1.1 ble det definert og diskutert

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Polynomisk interpolasjon

Polynomisk interpolasjon Polynomisk interpolasjon Hans Munthe-Kaas 1. jaunar 2002 Abstract Dette notatet tar for seg interpolasjon med polynomer. Notatet er ment som et tillegg til læreboken i I162, og forsøker å framstille dette

Detaljer

Analyse av Algoritmer

Analyse av Algoritmer Analyse av Algoritmer Lars Vidar Magnusson 10.1.2014 Asymptotisk notasjon (kapittel 3) Kompleksitetsklasser Uløselige problem Asymptotisk Notasjon Asymptotisk analyse innebærer å finne en algoritmes kjøretid

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100

Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Kontinuitet og derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 25. august 2010 2 Dagens pensum I dag vil vi se på følgende: Kontinuerlige funksjoner Den deriverte

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008

Differenslikninger. Inger Christin Borge. Matematisk institutt, UiO. Kompendium 2 i MAT1001 Matematikk 1. Høsten 2008 Differenslikninger Kompendium 2 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Trilogien fortsetter, og du tar nå fatt på Kompendium 2 i MAT1001. Her skal vi ta

Detaljer

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100

Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

Kapittel Flere teknikker

Kapittel Flere teknikker Innhold: Kapittel 6.7 - Flere teknikker H-P Ulven 22.04.09 Innledning Ligninger med potenser av y. ( Lærebok 6.7) Reduksjon av orden med variabelskiftet u y. (Lærebok 6.7) Innføring av u y 2 og u 2yy.

Detaljer