Objekter og referanser

Størrelse: px
Begynne med side:

Download "Objekter og referanser"

Transkript

1 Objekter og referanser Datasegmentet heap Vi har sett at verdier i Java blir kopiert ved prosedyrekall. I programmering, ønsker man imidlertid ikke å kopiere objekter ved prosedyrekall. Dette er fordi objekter kan ha en virkårlig størrelse (i antall bytes), fordi størrelsen til objektet er avhengig av hvor mange variabler objekter inneholder. Desto flere variabler, desto større blir objektet i minne. I situasjoner der prosedyrekall gjøres ofte (f.eks. kall i en løkke), og objekter er en del av parameterlisten, kan kopiering av objekter være en stor staff for ytelse. For å unngå slik kopiering av objekter, bruker Java et annet dynamisk datasegment enn stabelen. Datamaskinen (eller rettere sagt operativsystemet) tilbyr et dynamisk datasegment for lagring av data utenfor stabelen (som også er et dynamisk datasegment). Dette segmentet refereres til som heap. Generelt, kan programmerer plassere virkårlige variabler på heap segmentet. Det programmerer må gjøre, er å spørre operativsystemet om å få tilgang til et gitt antall bytes på minne (f.eks. 500 bytes). Hvis operativsystemet godtar dette, vil den allokere nøyaktig 500 bytes til programmet. Programmereren kan da bruke disse 500 bytene til hva som helst. Når programmerer er ferdig med å bruke de 500 bytene, må han/hun gi beskjed til operativsystemet at de 500 bytene kan frigjøres. Slik frigjøring kalles deallokering av minne. Slik håndtering av minne, der vi i løpet av utføringen til programmet, allokerer og deallokerer data på dette heap datasegmentet kalles dynamisk minnehåndtering. I Java, gjøres minnehåndteringen automatisk, mens i andre språk, som C og C++, gjøres dette manuelt. Eksempel i C (ikke pensum) Programmeringsspråket C tilbyr flere prosedyrer for minnehåndtering, blant annet malloc, for allokering, og free, for deallokering. Eksempel, der vi plasserer en int variabel på heapen: int main(void) { // alloker 4 bytes på heapen (lengden til int) // malloc returnerer en peker til den første byten 1: int* minne = malloc(4); // sett verdien til bytene på heapen til 5: 2: *minne = 5; // skriv verdien ut til konsollen: 3: printf("%i", *minne); // dealloker de 4 bytene. Vi har ikke tilgang til disse // etter dette. 4: free(minne); Etter at instruksjonen i linje 1 er utført, kan minne til programmet se slik at (heapen angitt i grå, stabelen i rød):

2 Adresse Verdi (i desimaltall) 5000 (*minne) Ikke spesifisert 5001 Ikke spesifisert 5002 Ikke spesifisert 5003 Ikke spesifisert (minne) 5000 Legg merke til at adressene til stabel- og heap-variabler ikke ligger "nærme" hverandre i minne. Dette er fordi begge minnesegmentene er dynamiske og vi ønsker litt "rom" imellom dem. Ved linje 2, endres verdiene på heapen til tallet 5: Adresse Verdi (i desimaltall) 5000 (*minne) (minne) 5000 Ved linje 4, mister vi tilgangen til de 4 bytene på heapen. Minne for programmet ser nå slik ut: Adresse Verdi (i desimaltall) (minne) 5000 Plassering av objekter I Java, plasseres alle objekter på heapen. Dette gjøres via new-operatoren. Regelen i Java er at utelukkende objekter kan plasseres på heapen. Andre typer variabler, som int og char (kjent som primitive datatyper i Java), kan ikke plasseres manuelt på heapen av programmerer disse variablene blir plassert på stabelen istedenfor. Eksempel: // her blir et objekt av typen MinKlasse opprettet på heapen MinKlasse obj = new MinKlasse(); I programmeringsspråket C++ kan programmereren selv velge om objektet skal plasseres på stabelen eller heapen. Fordelen med å plassere objektet på stabelen er at objektet blir automatisk slettet etter at prosedyren objektet har blir opprettet i er ferdigkjørt (husk: alle variabler på stack framen blir slettet når stack framen flyttes av stabelen). Eksempel i C++: // I C++ oppretter man objekter på heapen med new-operatoren, // slik som i Java. Som i C, får man en peker som peker på første // byte til objektet på heapen MinKlasse* obj = new MinKlasse(); // I C++ opprettes objektet på stabelen hvis new ikke // brukes i deklarasjonen: MinKlasse obj(); // I C++ kan man også plassere andre typer på heapen, som int: int* i = new int; Objekter som er plassert på heapen må manuelt fjernes, da de ikke fjernes automatisk når man er ferdig å bruke dem, slik som med variabler plassert på stabelen. Eksempel på dette i C++:

3 void p() { 1: string* str = new string("noe data på heapen"); 2: int a = 5; int main() { 3: p(); 4: int a = 5; Etter at prosedyren p har utført instruksjonene sine, men fortsatt ligger på stabelen, kan minne til programmet se slik ut: variabel (adresse) Verdi *str (adresse 100) "noe data på heapen" a 5 str 100 a 5 Etter at prosedyren p har blitt fjernet fra stabelen, holder programmet på følgende data: variabel (adresse) Verdi *str (adresse 100) "noe data på heapen" a 5 Vi ser at stack framen til p (i blå) har blitt (automatisk) fjernet, mens string-dataene fortsatt ligger på heapen. Dette er et problem fordi dette er data som vi ikke kan få tak i! Dataene starter på minneadresse 100. Pekeren til denne adressen har imidlertid blitt fjernet, så programmet kan derfor ikke få tak i disse dataene (programmet vet ikke hvor de ligger). Dette kalles minnelekasje og er noe som ikke skal skje! Programmer som lekker minne bruker unødvendige ressurser. Dette er spesielt viktig for programmer som kjører over lang tid (f.eks. på servere, der programmer kjører over flere år). En løsning på dette problemet er å påse at man alltid tar vare på pekerene til heap-segmentet, slik at man aldri mister tilgangen til dataene. Dette kan oppnås i eksempelet over ved å returnere verdien til pekeren str: string* p() { string* str = new string("noe data på heapen"); int a = 5; return str; int main() { string* str_peker = p(); // vi har nå fortsatt tilgang til string dataene på heapen int a = 5; Denne fremgangsmåten krever at vi hele tiden påser at vi ivaretar peker-verdien slik at vi vet hvilken adresse vi skal gå til for å få tar i de aktuelle dataene på heapen. Hva hvis vi imidlertid ikke lenger trenger heap-dataene? Da blir det unødvendig mye arbeid for programmerer å ivareta peker-verdien.

4 I denne situasjonen er det bedre å frigjøre heap-dataene. I C++, kan man bruke delete operatoren for dette: void p() { string* str = new string("noe data på heapen"); int a = 5; // la oss si at vi ikke trenger heap-dataene mer: delete str; // fungerer på samme måte som free i C int main() { p(); int a = 5; Som vi ser, tilbyr C++ programmerer ulike valg for hvordan objekter håndteres i minne. I Java, automatiseres dette og minnehåndtering gjøres automatisk. Som nevnt, så plasserer Java alle objekter på heapen og vi får den samme problemstillingen med minnelekasje som over. Java utfører følgende løsning for å automatisk håndtere minnelekasje: for hvert objekt på heapen, assosier en teller til objektet. Telleren angir hvor mange pekere som peker på objektet. Når telleren er 0, er det umulig å nå objektet på heapen, og heap-dataene kan dermed frigjøres. Java abstraherer pekere med referanser. Før vi tar et konkret eksempel, så må vi definere denne datatypen. Datatypen referanse og Javas bruk av referanser Referanser er pekere med noen restriksjoner, som sjekkes av kompilatoren, for å gjøre bruken av peker-variabeler sikrere. Verdien til en peker kan være tre typer "adresser": en gyldig adresse (pekeren peker på en verdi av den gitte typen), en ugyldig adresse (adressen lagrer data vi enten ikke har tilgang til eller holder på data av en annen type), eller adressen 0. Eksempler i C: int a = 5; // la oss si verdien til variabelen ligger på adresse 50 int* p = &a; // verdien til p er 50: dette er en gyldig adresse int* p2 = p + 15; // verdien til p2 er 65: dette er en ugyldig adresse int* p3 = NULL; // verdien til p3 er 0: dette er en null-adresse Pekeren p peker på en gyldig adresse fordi vi vet at int-verdien 5 ligger der. Pekeren p2 er en ugyldig adresse fordi vi ikke har noen int-verdier på adresse 65. Pekeren p3 er en såkalt null-peker, med verdien 0. I programmering er konvensjonen slik at hvis verdien til en peker er null (0), så betyr det at pekeren ikke peker på noen verdier. Referanser kan referere (peke) til følgende typer adresser: noe gyldig eller null. Referanser kan dermed ikke referere til noe ugyldig, slik pekere kan. Dette fører til noen restriksjoner for referanser: man kan ikke angi verdier til referanser direkte og man kan ikke gjøre aritmetiske operasjoner, som addisjon (pekeren p2 i eksempelet over). Eksempel i C: int a = 5; // la oss si verdien til variabelen ligger på adresse 50 int& r = a;// referanser angis med & etter typen. Verdien til r er 50 int* nullp = NULL; // verdien til nullp er 0 int& r2 = *nullp; // verdien til r2 er også 0

5 I C ønsker man at referanser alltid refererer til en gyldig verdi, selv om det teknisk sett er mulig å sette referansen til 0, som over. I Java, kan referanser enten referere til noe gyldig eller null. I motsetning til C, er det OK å referere til 0, så lenge programmerer håndterer null-referansen korrekt. Eksempel i Java: String str = new String(); // str er en referansevariabel String str2 = null; // str2 er en nullreferanse Referansen str refererer til et gyldig string-objekt på heapen. Verdien til str er start-adressen til objektet på heapen. Referansen str2 er en nullreferanse verdien til str2 er 0. Programmerer på være forsiktig med håndteringen av null-referanser. Man må ikke prøve å aksessere metoder for en null-referanse fordi referansen ikke refererer til noe! (Det finnes ingen metode fordi det finnes ingen objekt). Eksempel: String str2 = null; str2.isempty(); Denne koden vil krasje programmet fordi Java finner ikke metoden isempty for objektet str refererer til (som ikke finnes). Merk at tabeller er objekter og javas tabell-variabler er referanser på samme måte som andre referanser: int[] tab = new int[10]; // tab refererer til et tabell-objekt på heap int[] tab2 = null; // tab2 er en null-referanse Ut ifra forelesningen om tabeller, der vi håndterte tabell-variabler som pekere, får vi samme oppførsel for parameteroverføring med referanser som med pekere. Se eksempelet fra forrige forelesning (immutability diskusjonen) for et konkret eksempel. Eksempel Java garbage collection Som nevnt tidligere håndterer Java automatisk minnehåndtering og minnelekasje. Siden Java ikke tilbyr programmerer å manuelt slette objekter fra heapen, vil javaprogrammer "lekke" minne. Minne som er lekket (dvs. objekter som ikke kan nås) slettes av javas garbage collector (GC), som er et eget program som kjører samtidig med ditt javaprogram. Dette GC-programmet vil spontant iterere gjennom alle objektene på heapen, sjekke dens referanseteller, og slette objekter som ikke refereres til lenger. Eksempel 1: 1: String str1 = new String("heap objekt 1"); // objekt 1 blir opprettet 2: String str2 = str1; // objekt 1 har to referanser mot seg 3: str1 = new String("heap objekt 2"); // objekt 1 "mister" en referanse 4: str2 = null; // objekt 1 har ingen referanser mot seg (kan slettes) 5: str1 = null; // objekt 2 har ingen referanser mot seg (kan slettes) Ved linje 2, kopieres referanseverdien fra str1 over til str2. Objektet str2 refererer til øker nå sin referanseteller med 1. Ved linje 3, refererer str1 til det nye objektet på heapen og refererer ikke lengre til objekt 1, som får sin referanseteller minket med 1. Begge objektene på heapen har nå en referanse mot seg. Når verdiene til referansene, str1 og str2, blir satt til null, har vi ingen referansevariabler som refererer til de to string objektene på heapen. Disse kan nå slettes av GC. Eksempel 2 parameteroverføring:

6 1: public static void p(string str) { 2: System.out.println(str); 3: str = new String("Nytt heap objekt"); 4: public static void main(string args[]) { 5: String str = new String("Objekt 1"); 6: p(str); 7: str = new String("Nytt heap objekt"); Ved parameteroverføring av referansevariabler, blir referansetellere økt med 1, siden parametere overføres via kopiering. Etter linje 5, har objekt 1 en referanse mot seg (str-variabelen). Ved linje 2 (etter at p har blitt kalt på linje 6), har objekt 1 to referanser mot seg (str i main og str i p). Når str refererer til et nytt objekt i linje 3, vil objekt 1 ha en referanse mot seg (str i main). Merk at stringobjektet som opprettes i linje 3 i p kan slettes umiddelbart etter at p er ferdig utført fordi strvariabelen i p blir slettet fra p sitt stack frame. Objekt 1 kan slettes ved linje 7, etter at str-variabelen refererer til et nytt string objekt. Objekter, referanser, metoder, og konstruktører La oss se på hvordan håndteringen av objekter og metoder fungerer 'under the hood'. For et konkret eksempel, la oss si vi ønsker å opprette objekter av typen Date (se Date.java for definisjon av klassen). C-syntaks er ikke pensum. Opprettelse av objekter For å opprette et objekt, må Java utføre følgende operasjoner: kalkulere størrelsen til objektet, i antall bytes X (gjøres ved kompilering) allokere X antall bytes på heapen overføre variablene til objektet til heapen Vi kan tenke oss følgende C prosedyre som oppnår dette: Date* create_dateobj() { // alloker data på heapen. sizeof prosedyren finner størrelsen // til et Date objekt. Date* date_ptr = malloc(sizeof(date)); // C kan håndtere variabler til Date automatisk // variabler aksesseres slik: date_ptr->day // returner pekeren: return date_ptr; Her antar vi at vi har allerede definert en datastruktur Date i C, som kan gjøres slik:

7 struct Date { int year; enum Month month; int day; string name; ; Kall på konstruktør En konstruktør er en void prosedyre som utføres automatisk etter opprettelse. Korrekt prosedyre blir kalt avhengig av hvilken parametere som har blitt angitt: void do_date_constructor(date* date_ptr, string name) { date_ptr->day = 1; date_ptr->month = January; date_ptr->year = 2015; date_ptr->name = name; Med følgende Java instruksjon: Date Christmas = new Date("Christmas"); Kan vi tenke oss at denne blir konvertert til følgende C instruksjoner: // opprett objektet: Date* christmas = create_dateobj(); // kall på konstruktør do_date_constructor(christmas, "Christmas"); Vi ser at vi må sende med en peker til date objektet til konstruktøren, slik at den opererer på korrekt date objekt. Dette trengs også når vi kaller på metoder Opprettelse av metoder (forskjellen mellom metoder og prosedyrer) En metode er en prosedyre som utføres relativ til et objekt. Hvis du ikke har et objekt, kan du ikke utføre en metode. En prosedyre, på den andre siden, kan utføres uavhengig av objekter; du trenger ikke å opprette et objekt for å utføre en prosedyre. Metoder er teknisk sett prosedyrer, med en ekstra 'feature': metoden har alltid en referanse til sitt objekt. I Java, brukes nøkkelordet this til å henvise til denne referansen. Når Java konverterer en metode til en prosedyre (i C), vil denne referansen legges til parameterlisten. For eksempel, konverteres setyear-metoden (i Date.java) til følgende C prosedyre: void setyear(date* date_ptr, int year) { if(year >= 0) { date_ptr->year = year; else { // print error message here Tilsvarende Java metode, med bruk av this-referansen:

8 void setyear(int year) { if(year >= 0) { this.year = year; else { // error message Kall på Java metoden: christmas.setyear(2016); Tilsvarende C kall: setyear(christmas, 2016); Deallokering av objekter Når man er ferdig med å bruke objektet, burde det slettes fra heapen. C prosedyre for dette: void delete_date(date* date_ptr) { free(date); I Java, kalles denne prosedyren av GC, som beskrevet over. I C++, blir destruktøren til klassen kalt når objektet slettes, på samme måte som konstruktøren blir kalt når objektet opprettes. Jeg har vedlagt den korresponderende C++ klassen for Date for referanse (ikke pensum).

OPPGAVESETT 7 OBJEKTER OG REFERANSER

OPPGAVESETT 7 OBJEKTER OG REFERANSER OPPGAVESETT 7 OBJEKTER OG REFERANSER Oppgavesett 7 i Programmering: objekter og referanser. I dette oppgavesettet blir du introdusert til objekter og referanser i Java. Dette er del 2 av introduksjonen

Detaljer

public static <returtype> navn_til_prosedyre(<parameter liste>) { // implementasjon av prosedyren

public static <returtype> navn_til_prosedyre(<parameter liste>) { // implementasjon av prosedyren Prosedyrer Hensikten med en prosedyre Hensikten med en prosedyre er, logisk sett, å representere en jobb eller en funksjonalitet i et eller flere programmer. Bruk av entall er viktig: vi har generelt en

Detaljer

public static <returtype> navn_til_prosedyre(<parameter liste>) { // implementasjon av prosedyren

public static <returtype> navn_til_prosedyre(<parameter liste>) { // implementasjon av prosedyren Prosedyrer Hensikten med en prosedyre Hensikten med en prosedyre er, logisk sett, å representere en jobb eller en funksjonalitet i et eller flere programmer. Bruk av entall er viktig: vi har generelt en

Detaljer

OPPGAVE 1 OBLIGATORISKE OPPGAVER (OBLIG 1) (1) Uten å selv implementere og kjøre koden under, hva skriver koden ut til konsollen?

OPPGAVE 1 OBLIGATORISKE OPPGAVER (OBLIG 1) (1) Uten å selv implementere og kjøre koden under, hva skriver koden ut til konsollen? OPPGAVESETT 4 PROSEDYRER Oppgavesett 4 i Programmering: prosedyrer. I dette oppgavesettet blir du introdusert til programmering av prosedyrer i Java. Prosedyrer er også kjent som funksjoner eller subrutiner.

Detaljer

Del 4 Noen spesielle C-elementer

Del 4 Noen spesielle C-elementer Del 4 Noen spesielle C-elementer 1 RR 2016 Header-filer inneholder Prototypene til funksjonene i standard biblioteket Verdier og definisjoner som disse funksjonene bruker #include #include

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

Oversikt. INF1000 Uke 1 time 2. Repetisjon - Introduksjon. Repetisjon - Program

Oversikt. INF1000 Uke 1 time 2. Repetisjon - Introduksjon. Repetisjon - Program Oversikt INF1000 Uke 1 time 2 Variable, enkle datatyper og tilordning Litt repetisjon Datamaskinen Programmeringsspråk Kompilering og kjøring av programmer Variabler, deklarasjoner og typer Tilordning

Detaljer

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering Dagens tema Vektorer (array er) Tekster (string er) Adresser og pekere Dynamisk allokering Dag Langmyhr,Ifi,UiO: Forelesning 23. januar 2006 Ark 1 av 23 Vektorer Alle programmeringsspråk har mulighet til

Detaljer

Vektorer. Dagens tema. Deklarasjon. Bruk

Vektorer. Dagens tema. Deklarasjon. Bruk Dagens tema Dagens tema Deklarasjon Vektorer Vektorer (array-er) Tekster (string-er) Adresser og pekere Dynamisk allokering Alle programmeringsspråk har mulighet til å definere en såkalte vektor (også

Detaljer

INF1000: Forelesning 7

INF1000: Forelesning 7 INF1000: Forelesning 7 Klasser og objekter del 2 Konstruktører Static UML REPETISJON 2 Repetisjon Repetisjon forts. Verden består av objekter av ulike typer (klasser). Ofte er det mange objekter av en

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Del 1 En oversikt over C-programmering

Del 1 En oversikt over C-programmering Del 1 En oversikt over C-programmering 1 RR 2016 Starten C ble utviklet mellom 1969 og 1973 for å re-implementere Unix operativsystemet. Er et strukturert programmeringsspråk, hvor program bygges opp av

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Bakgrunn Implementasjon av Unix ved AT&Ts laboratorium i Palo Alto 1960 75. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI standard i 1988; omtrent alle følger

Detaljer

Kort om meg. INF1000 Uke 2. Oversikt. Repetisjon - Introduksjon

Kort om meg. INF1000 Uke 2. Oversikt. Repetisjon - Introduksjon Kort om meg INF1000 Uke 2 Variable, enkle datatyper og tilordning Fredrik Sørensen Kontor: Rom 4311-NR, Informatikkbygget Brukernavn/e-post: fredrso@ifi.uio.no Utdanning: Dataingeniør, 2000 Cand.Scient,

Detaljer

Repetisjon: Statiske språk uten rekursive metoder (C1 og C2) Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7)

Repetisjon: Statiske språk uten rekursive metoder (C1 og C2) Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7) Dagens tema Kjøresystemer (Ghezzi&Jazayeri.6,.7) Repetisjon Språk med rekursjon (C3) og blokker (C4) Statisk link Dynamisk allokering (C5) Parameteroverføring 1/5 Repetisjon: Statiske språk uten rekursive

Detaljer

Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7)

Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7) Dagens tema Kjøresystemer (Ghezzi&Jazayeri 2.6, 2.7) Repetisjon Språk med rekursjon (C3) og blokker (C4) Statisk link Dynamisk allokering (C5) Parameteroverføring 1/25 Forelesning 11 5.11.2003 Repetisjon:

Detaljer

INF1000: Forelesning 7. Konstruktører Static

INF1000: Forelesning 7. Konstruktører Static INF1000: Forelesning 7 Klasser og objekter del 2 Konstruktører Static UML REPETISJON 2 Repetisjon Verden består av objekter av ulike typer (klasser). Ofte er det mange objekter av en bestemt type. Objekter

Detaljer

Oversikt. Introduksjon Kildekode Kompilering Hello world Hello world med argumenter. 1 C programmering. 2 Funksjoner. 3 Datatyper. 4 Pekere og arrays

Oversikt. Introduksjon Kildekode Kompilering Hello world Hello world med argumenter. 1 C programmering. 2 Funksjoner. 3 Datatyper. 4 Pekere og arrays Oversikt C programmering 1 C programmering Introduksjon Kildekode Kompilering Hello world Hello world med argumenter 2 Funksjoner 3 Datatyper 4 Pekere og arrays 5 Kontrollstrukturer Lars Vidar Magnusson

Detaljer

Runtimesystemer Kap 7 - I

Runtimesystemer Kap 7 - I Runtimesystemer Kap 7 - I Generell lagerorganisering (7.1) Språk som bare trenger statisk allokering (7.2) Språk som trenger stakk-orientert allokering (7.3) Språk som trenger mer generell allokering (7.4)

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no 9/1/2005 inf1060 V05 1 Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Gaustadbekkdalen, januar 22 Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Innledning Dette notatet beskriver noe av det som foregår i primærlageret når

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Michael Welzl E-mail: michawe@ifi.uio.no 29.08.13 inf1060 1 Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen

Detaljer

IN 147 Program og maskinvare

IN 147 Program og maskinvare Dagens tema Basistyper i C Typekonvertering Formater i printf Pekere i C En kort repetisjon om pekere Hva er egentlig en peker? Pekere til alt og ingenting Pekere som parametre Pekere og vektorer Ark 1

Detaljer

INF våren 2017

INF våren 2017 INF1010 - våren 2017 Om Java Objekter og klasser Både for deg som kan og for deg som ikke kan Java Stein Gjessing Universitetet i Oslo Ny versjon etter forlesningen der tre meningsløse private modifikatorer

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen malloc

Detaljer

Programmeringsspråket C Del 3

Programmeringsspråket C Del 3 Programmeringsspråket C Del 3 Michael Welzl E-mail: michawe@ifi.uio.no 8/25/10 inf1060 1 Dynamisk allokering Ofte trenger man å opprette objekter under kjøringen i tillegg til variablene. Standardfunksjonen

Detaljer

Programmeringsspråket C Del 3. Hans Petter Taugbøl Kragset

Programmeringsspråket C Del 3. Hans Petter Taugbøl Kragset Programmeringsspråket C Del 3 Hans Petter Taugbøl Kragset Repetisjon I C er ikke array en egen type, men variabler kan være arrayer! Pekere C-strenger Veldig likt Java på mange måter Programmering er fortsatt

Detaljer

IN våren 2018 Tirsdag 16. januar

IN våren 2018 Tirsdag 16. januar IN1010 - våren 2018 Tirsdag 16. januar Java Objekter og klasser Stein Gjessing Universitetet i Oslo 1 1 IN1010: Objektorientert programmering Hva er et objekt? Hva er en klasse? Aller enkleste eksempel

Detaljer

IN våren 2019 Onsdag 16. januar

IN våren 2019 Onsdag 16. januar IN1010 - våren 2019 Onsdag 16. januar Java Objekter og klasser Stein Gjessing Universitetet i Oslo 1 1 IN1010: Objektorientert programmering Hva er et objekt? Hva er en klasse? Aller enkleste eksempel

Detaljer

Kapittel 1 En oversikt over C-språket

Kapittel 1 En oversikt over C-språket Kapittel 1 En oversikt over C-språket RR 2015 1 Skal se på hvordan man En innføring i C Skriver data til skjermen Lese data fra tastaturet Benytter de grunnleggende datatypene Foretar enkle matematiske

Detaljer

Innhold uke 4. INF 1000 høsten 2011 Uke 4: 13. september. Deklarasjon av peker og opprettelse av arrayobjektet. Representasjon av array i Java

Innhold uke 4. INF 1000 høsten 2011 Uke 4: 13. september. Deklarasjon av peker og opprettelse av arrayobjektet. Representasjon av array i Java INF høsten 2 Uke 4: 3. september Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Siri Moe Jensen og Arne Maus Mål for uke 4: Innhold uke 4 Repetisjon m/ utvidelser:

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Programmeringsspråket C Implementasjon av Unix ved AT&Ts laboratorium i Palo Alto 1960 75. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI-standard i 1988;

Detaljer

IN 147 Program og maskinvare

IN 147 Program og maskinvare Dagens tema Mer om C Cs preprosessor Allokering av variable Separat kompilering Programmet make Pekere i C Operasjoner på pekere Pekere og vektorer Referanseparametre Pekere til «alt» og «ingenting» Dynamisk

Detaljer

Oversikt. INF1000 Uke 2. Repetisjon - Program. Repetisjon - Introduksjon

Oversikt. INF1000 Uke 2. Repetisjon - Program. Repetisjon - Introduksjon Oversikt INF1000 Uke 2 Variable, enkle datatyper og tilordning Litt repetisjon Datamaskinen Programmeringsspråk Kompilering og kjøring av programmer Variabler, deklarasjoner og typer Tilordning Uttrykk

Detaljer

LC191D Videregående programmering Høgskolen i Sør-Trøndelag, Avdeling for informatikk og e-læring. Else Lervik, januar 2012.

LC191D Videregående programmering Høgskolen i Sør-Trøndelag, Avdeling for informatikk og e-læring. Else Lervik, januar 2012. Repetisjon innkapsling static tabell av primitiv datatype LC191D Videregående programmering Høgskolen i Sør-Trøndelag, Avdeling for informatikk og e-læring. Else Lervik, januar 2012. Objektorientert modellering

Detaljer

Programmeringsspråket C

Programmeringsspråket C Programmeringsspråket C Programmeringsspråket C Laget til implementasjon av Unix ved AT&Ts Bell labs i Palo Alto 1969 73. Navnet kommer fra BCPL B C. Opphavsmannnen heter Dennis Ritchie. ANSI-standard

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet ut? Variabler,

Detaljer

Dagens tema INF1070. Vektorer (array-er) Tekster (string-er) Adresser og pekere. Dynamisk allokering

Dagens tema INF1070. Vektorer (array-er) Tekster (string-er) Adresser og pekere. Dynamisk allokering Dagens tema Vektorer (array-er) Tekster (string-er) Adresser og pekere Dynamisk allokering Dag Langmyhr,Ifi,UiO: Forelesning 17. januar 2005 Ark 1 av 23 Vektorer Alle programmeringsspråk har mulighet til

Detaljer

Anatomien til en kompilator - I

Anatomien til en kompilator - I Anatomien til en kompilator - I 5/22/2006 1 Framgangsmåte for automatisk å lage en scanner Beskriv de forskjellige token-klassene som regulære uttrykk Eller litt mer fleksibelt, som regulære definisjoner

Detaljer

Programmering i C++ Løsningsforslag Eksamen høsten 2005

Programmering i C++ Løsningsforslag Eksamen høsten 2005 Programmering i C++ Eksamen høsten 2005 Simen Hagen Høgskolen i Oslo, Avdeling for Ingeniørutdanning 7. desember 2005 Generelt Denne eksamensoppgaven består av tre oppgaver, pluss en ekstraoppgave. Det

Detaljer

Runtimesystemer Kap 7 - I

Runtimesystemer Kap 7 - I Runtimesystemer Kap 7 - I Språk som bare trenger statisk allokering Språk som trenger stakk-orientert allokering Språk som trenger mer generell allokering Forskjellige slags begreper i et gitt språk krever

Detaljer

Forkurs INF1010. Dag 2. Andreas Færøvig Olsen Tuva Kristine Thoresen

Forkurs INF1010. Dag 2. Andreas Færøvig Olsen Tuva Kristine Thoresen Forkurs INF1010 Dag 2 Andreas Færøvig Olsen (andrefol@ifi.uio.no) Tuva Kristine Thoresen (tuvakt@ifi.uio.no) Institutt for Informatikk, 7. januar 2014 Forkurs INF1010 - dag 2 Klasser og pekere Klasser

Detaljer

Løsningsforslag for eksamensoppgave, våren 2004

Løsningsforslag for eksamensoppgave, våren 2004 Løsningsforslag for eksamensoppgave, våren 2004 Simen Hagen Høgskolen i Oslo, Avdeling for Ingeniørutdanning Oppgave 1 Node.h // I oppgaven i n d i k e r e s d e t a t en s k a l kunne l a g r e t a l

Detaljer

Del 3. Pekere RR 2016

Del 3. Pekere RR 2016 Del 3 Pekere 1 RR 2016 Peker/pointer En peker er en variabel som kan holde adressen (peke til) til en annen variabel. Pekere vil gi oss muligheten for å gå direkte til en adresse i minne, og lese/skrive

Detaljer

INF1000: noen avsluttende ord

INF1000: noen avsluttende ord Pensum Det som er gjennomgått på forelesningene INF1000: noen avsluttende ord Arne og Fredrik Stoff som er behandlet i oppgaver/obliger Notat om Informasjonsteknologi, vitenskap og samfunnsmessige virkninger

Detaljer

Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; }

Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; } Hva er verdien til variabelen j etter at følgende kode er utført? int i, j; i = 5; j = 10; while ( i < j ) { i = i + 2; j = j - 1; Hva skrives ut på skjermen når følgende kode utføres? int [] tallene =

Detaljer

Runtime-omgivelser Kap 7 - I

Runtime-omgivelser Kap 7 - I Runtime-omgivelser Kap 7 - I Generelt Språk som bare trenger statiske omgivelser Språk som trenger stakk-orienterte omgivelser Språk som trenger mer generelle omgivelser Vel så riktig å si at forskjellige

Detaljer

Dagens tema C, adresser og pekere

Dagens tema C, adresser og pekere Dagens tema C, adresser og pekere (Kapittel 17 i Patt&Patel-boken) Variable og adresser Pekervariable Parametre Dynamisk allokering Stakker og ringbuffere Ark 1 av 26 Adresser Som nevnt tidligere ligger

Detaljer

Ark 3 av 26. printf("i adresse %08x ligger b med verdien %d.\n", &b, b); printf("i adresse %08x ligger a med verdien %d.

Ark 3 av 26. printf(i adresse %08x ligger b med verdien %d.\n, &b, b); printf(i adresse %08x ligger a med verdien %d. Dagens tema C, adresser og pekere (Kapittel 17 i Patt&Patel-boken) Variable og adresser Pekervariable Parametre Dynamisk allokering Stakker og ringbuffere Adresser Som nevnt tidligere ligger data og programkode

Detaljer

INF1000 EKSTRATILBUD. Stoff fra uke 1-5 (6) 3. oktober 2012 Siri Moe Jensen

INF1000 EKSTRATILBUD. Stoff fra uke 1-5 (6) 3. oktober 2012 Siri Moe Jensen INF1000 EKSTRATILBUD Stoff fra uke 1-5 (6) 3. oktober 2012 Siri Moe Jensen PLAN FOR DAGEN gjennomgå stoff fra uke 1-5(6), men med en litt annen tilnærming kun gjennomgått stoff, men vekt på konsepter og

Detaljer

Programmeringsspråket C Del 2

Programmeringsspråket C Del 2 Programmeringsspråket C Del 2 Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no 30.08.2005 inf1060 H05 1 Et eksempel Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. 30.08.2005

Detaljer

Introduksjon til objektorientert programmering

Introduksjon til objektorientert programmering Introduksjon til objektorientert programmering Samt litt mer om strenger og variable INF1000, uke6 Ragnhild Kobro Runde Grunnkurs i objektorientert programmering Strategi: Splitt og hersk Metoder kan brukes

Detaljer

Forkurs INF1010. Dag 2. Andreas Færøvig Olsen Gard Inge Rosvold Institutt for Informatikk, 14.

Forkurs INF1010. Dag 2. Andreas Færøvig Olsen Gard Inge Rosvold Institutt for Informatikk, 14. Forkurs INF1010 Dag 2 Andreas Færøvig Olsen (andrefol@ifi.uio.no) Gard Inge Rosvold (gardir@ifi.uio.no) Institutt for Informatikk, 14. januar 2016 Forkurs INF1010 - dag 2 Feilmeldinger 2 Forkurs INF1010

Detaljer

Anatomien til en kompilator - I

Anatomien til en kompilator - I Anatomien til en kompilator - I program Symboltabell tekst tokens syntaks-tre beriket syntaks-tre Finne struktur i programmet OK i henhold til grammatikk? Preprocessor Makroer Betinget kompilering Filer

Detaljer

Dagens tema. Hva er kompilering? Anta at vi lager dette lille programmet doble.rusc (kalt kildekoden): Hva er kompilering?

Dagens tema. Hva er kompilering? Anta at vi lager dette lille programmet doble.rusc (kalt kildekoden): Hva er kompilering? Dagens tema Dagens tema Kildekode Hva er kompilering? Hva er kompilering? Hvordan foreta syntaksanalyse av et program? Hvordan programmere dette i Java? Hvordan oppdage feil? Anta at vi lager dette lille

Detaljer

Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo

Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Gaustadbekkdalen, januar 27 Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Innledning Dette notatet beskriver noe av det som foregår inne i primærlageret

Detaljer

Dagens tema INF1070. Signaturer. Typekonvertering. Pekere og vektorer. struct-er. Definisjon av nye typenavn. Lister

Dagens tema INF1070. Signaturer. Typekonvertering. Pekere og vektorer. struct-er. Definisjon av nye typenavn. Lister Dagens tema Signaturer Typekonvertering Pekere og vektorer struct-er Definisjon av nye typenavn Lister Dag Langmyhr,Ifi,UiO: Forelesning 24. januar 2005 Ark 1 av 20 Signaturer I C gjelder alle deklarasjoner

Detaljer

Data. Dette refereres til som objektets tilstander. Funksjonalitet. Dette refereres til som objektets metoder.

Data. Dette refereres til som objektets tilstander. Funksjonalitet. Dette refereres til som objektets metoder. Objekter og klasser Introduksjon til objekter I prosedyre-basert programmering, deles programmet inn i prosedyrer. Slik oppdeling gjøres for å håndtere kompleksitet. Objekt-orientert programmering er en

Detaljer

Programmeringsspråket C Del 2

Programmeringsspråket C Del 2 Programmeringsspråket C Del 2 Michael Welzl E-mail: michawe@ifi.uio.no 8/25/10 inf1060 1 Et eksempel Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. 8/25/10 inf1060

Detaljer

Programmeringsspråket C Del 2

Programmeringsspråket C Del 2 Et eksempel Programmeringsspråket C Del 2 Dette er lite eksempel som ber om et tall, leser det og så teller fra det ned til 0. Kjell Åge Bringsrud E-mail: kjellb@ifi.uio.no inf1060 1 inf1060 2 Forklaring:

Detaljer

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert.

23.09.2015. Introduksjon til objektorientert. programmering. Hva skjedde ~1967? Lokale (og globale) helter. Grunnkurs i objektorientert. Grunnkurs i objektorientert programmering Introduksjon til objektorientert programmering INF1000 Høst 2015 Siri Moe Jensen INF1000 - Høst 2015 uke 5 1 Siri Moe Jensen INF1000 - Høst 2015 uke 5 2 Kristen

Detaljer

Beskrivelse av programmeringsspråket Compila15 INF Kompilatorteknikk Våren 2015

Beskrivelse av programmeringsspråket Compila15 INF Kompilatorteknikk Våren 2015 Beskrivelse av programmeringsspråket Compila15 INF5110 - Kompilatorteknikk Våren 2015 Her beskrives syntaksen og den statiske semantikken (hva som skal sjekkes av kompilatoren) til språket Compila15. Den

Detaljer

INF1010 våren 2008 Uke 4, 22. januar Arv og subklasser

INF1010 våren 2008 Uke 4, 22. januar Arv og subklasser Emneoversikt subklasser INF1010 våren 2008 Uke 4, 22. januar Arv og subklasser Stein Gjessing Institutt for informatikk Mange flere eksempler på fellesøvelsene og neste forelesning 1 Generalisering - spesialisering

Detaljer

Signaturer. Dagens tema. En vanlig feil int-funksjon. Dette kan noen ganger gi rare feilmeldinger: INF1070 INF1070 INF1070 INF1070

Signaturer. Dagens tema. En vanlig feil int-funksjon. Dette kan noen ganger gi rare feilmeldinger: INF1070 INF1070 INF1070 INF1070 Dagens tema Signaturer Tyekonvertering Pekere og vektorer struct-er Definisjon av nye tyenavn Lister Dag Langmyhr,Ifi,UiO: Forelesning 24. januar 25 Ark 1 av 2 Dag Langmyhr,Ifi,UiO: Forelesning 24. januar

Detaljer

Endret litt som ukeoppgave i INF1010 våren 2004

Endret litt som ukeoppgave i INF1010 våren 2004 Endret litt som ukeoppgave i INF1010 våren 2004!!!" # # $# ##!!%# # &##!'! Kontroller at oppgavesettet er komplett før du begynner å besvare det. Les gjerne gjennom hele oppgavesettet før du begynner med

Detaljer

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk

Eks 1: Binærtre Binærtretraversering Eks 2: Binærtre og stakk Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

Jentetreff INF1000 Debugging i Java

Jentetreff INF1000 Debugging i Java Jentetreff INF1000 Debugging i Java Ingrid Grønlie Guren ingridgg@student.matnat.uio.no 11. november 2013 Kort om feilmeldinger i Java Java har to ulike type feilmeldinger som man kan få når man skriver

Detaljer

Generiske mekanismer i statisk typede programmeringsspråk

Generiske mekanismer i statisk typede programmeringsspråk Generiske mekanismer i statisk typede programmeringsspråk Dette stoffet er Pensum, og det er bare beskrevet her Mye her er nok kjent stoff for mange INF5110 7. mai 2013 Stein Krogdahl 1 Hvordan kunne skrive

Detaljer

Velkommen til. INF våren 2016

Velkommen til. INF våren 2016 Velkommen til INF1010 - våren 2016 Denne uken (onsdag og torsdag): Om INF1010 Java datastrukturer Klasser med parametre i Java Stein Gjessing Institutt for informatikk Universitetet i Oslo 1 1 INF1010

Detaljer

Oppsummering. Kort gjennomgang av klasser etc ved å løse halvparten av eksamen Klasser. Datastrukturer. Interface Subklasser Klasseparametre

Oppsummering. Kort gjennomgang av klasser etc ved å løse halvparten av eksamen Klasser. Datastrukturer. Interface Subklasser Klasseparametre Oppsummering Kort gjennomgang av klasser etc ved å løse halvparten av eksamen 2012. Klasser Interface Subklasser Klasseparametre Datastrukturer Hva er problemet? Oppgaven Emballasjefabrikken Renpakk skal

Detaljer

6108 Programmering i Java. Leksjon 5. Tabeller. Roy M. Istad 2015

6108 Programmering i Java. Leksjon 5. Tabeller. Roy M. Istad 2015 6108 Programmering i Java Leksjon 5 Tabeller Roy M. Istad 2015 Hva er tabeller? Tabell (evt. array): Sammensetning av verdier i den samme datatypen, under ett navn i hurtigminnet. Gir rask og effektiv

Detaljer

Ark 1 av 18. programmeringsspråkenes. Velkommen til IN 211. verden. IN 211 Programmeringsspråk

Ark 1 av 18. programmeringsspråkenes. Velkommen til IN 211. verden. IN 211 Programmeringsspråk Ark 1 av 18 IN 211 Programmeringsspråk Velkommen til programmeringsspråkenes verden IN 211 Forelesning 20.8.2001 Foreleser Ragnhild Kobro Runde E-post: ragnhilk@ifi.uio.no Kontor: 3345 Treffetid: torsdager

Detaljer

Dagens tema. Adresser som parametre Dynamisk allokering Signaturer Definisjon av nye typenavn Typekonvertering Pekere og vektorer

Dagens tema. Adresser som parametre Dynamisk allokering Signaturer Definisjon av nye typenavn Typekonvertering Pekere og vektorer Dagens tema Dagens tema Adresser som parametre Dynamisk allokering Signaturer Definisjon av nye typenavn Typekonvertering Pekere og vektorer Adresser som parametre Et eksempel La oss lage en funksjon som

Detaljer

Klasser, objekter, pekere og UML. INF1000 - gruppe 13

Klasser, objekter, pekere og UML. INF1000 - gruppe 13 Klasser, objekter, pekere og UML INF1000 - gruppe 13 Klasse Beskriver ofte ting fra den virkelige verden Veldig ofte et substantiv (Person, Bok, Bil osv.) class Person { String navn; int alder; } class

Detaljer

INF225 høsten 2003 Prosjekt del 4: kodegenerering

INF225 høsten 2003 Prosjekt del 4: kodegenerering INF225 høsten 2003 Prosjekt del 4: kodegenerering Thomas Ågotnes 19. november 2003 1 Introduksjon I denne delen av prosjektet skal C- -parseren fra del 3 utvides til å generere maskinkode. Maskinkoden

Detaljer

Array&ArrayList Lagring Liste Klasseparametre Arrayliste Testing Lenkelister

Array&ArrayList Lagring Liste Klasseparametre Arrayliste Testing Lenkelister Dagens tema Lister og generiske klasser, del I Array-er og ArrayList (Big Java 6.1 & 6.8) Ulike lagringsformer (Collection) i Java (Big Java 15.1) Klasser med typeparametre («generiske klasser») (Big Java

Detaljer

i=0 Repetisjon: arrayer Forelesning inf Java 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker 0*0 0*2 0*3 0*1 0*4

i=0 Repetisjon: arrayer Forelesning inf Java 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker 0*0 0*2 0*3 0*1 0*4 Forelesning inf - Java 4 Repetisjon: arrayer Tema: Løkker Arrayer Metoder Ole Christian Lingjærde,. september Deklarere og opprette array - eksempler: int[] a = new int[]; String[] a = new String[]; I

Detaljer

Forelesning inf Java 4

Forelesning inf Java 4 Forelesning inf1000 - Java 4 Tema: Løkker Arrayer Metoder Ole Christian Lingjærde, 12. september 2012 Ole Chr. Lingjærde Institutt for informatikk, 29. august 2012 1 Repetisjon: arrayer Deklarere og opprette

Detaljer

INF1000 (Uke 5) Mer om løkker, arrayer og metoder

INF1000 (Uke 5) Mer om løkker, arrayer og metoder INF1000 (Uke 5) Mer om løkker, arrayer og metoder Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset Praktisk informasjon Når disse

Detaljer

INF1000 : Forelesning 4

INF1000 : Forelesning 4 INF1000 : Forelesning 4 Kort repetisjon av doble (nestede) løkker Mer om 1D-arrayer Introduksjon til 2D-arrayer Metoder Ole Christian Lingjærde Biomedisinsk forskningsgruppe Institutt for informatikk Universitetet

Detaljer

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011)

Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag ukeoppg. 6: 28. sep - 4. okt (INF1000 - Høst 2011) Løsningsforslag til oppgave 7, 8, og 9 mangler Klasser og objekter (kap. 8.1-8.14 i "Rett på Java" 3. utg.) NB! Legg merke til at disse

Detaljer

INF 1000 høsten 2011 Uke september

INF 1000 høsten 2011 Uke september INF 1000 høsten 2011 Uke 2 30. september Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Siri Moe Jensen og Arne Maus 1 INF1000 undervisningen Forelesningene: Første

Detaljer

Gjøre noe i hele treet = kalle på samme metode i alle objekten. Java datastruktur Klassestruktur

Gjøre noe i hele treet = kalle på samme metode i alle objekten. Java datastruktur Klassestruktur Godkjent oblig 1? Les e-post til din UiO-adresse Svar på e-post fra lablærer Ingen godkjenning før avholdt møte med lablærer Godkjentlistene brukes ikke til å informere om status for obligene Ta vare på

Detaljer

Forkurs INF1010. Dag 1. Andreas Færøvig Olsen Tuva Kristine Thoresen

Forkurs INF1010. Dag 1. Andreas Færøvig Olsen Tuva Kristine Thoresen Forkurs INF1010 Dag 1 Andreas Færøvig Olsen (andrefol@ifi.uio.no) Tuva Kristine Thoresen (tuvakt@ifi.uio.no) Institutt for Informatikk, 6. januar 2014 Forkurs INF1010 - dag 1 Hello, World! Typer Input/output

Detaljer

i=0 i=1 Repetisjon: nesting av løkker INF1000 : Forelesning 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker j=0 j=1 j=2 j=3 j=4

i=0 i=1 Repetisjon: nesting av løkker INF1000 : Forelesning 4 Repetisjon: nesting av løkker Repetisjon: nesting av løkker j=0 j=1 j=2 j=3 j=4 Repetisjon: nesting av løkker Kort repetisjon av doble (nestede) løkker Mer om D-arrayer Introduksjon til D-arrayer Metoder Ole Christian Lingjærde Biomedisinsk forskningsgruppe Institutt for informatikk

Detaljer

Informasjon Eksamen i IN1000 høsten 2017

Informasjon Eksamen i IN1000 høsten 2017 Informasjon Eksamen i IN000 høsten 207 Tid 8. desember kl. 09.00 (4 timer) Faglærerne vil besøke lokalet ca kl 0. Oppgavene Oppgave 2b og 2c er flervalgsoppgaver. Her får man det angitte antall poeng om

Detaljer

Mer om C programmering og cuncurrency

Mer om C programmering og cuncurrency Mer om C programmering og cuncurrency Lars Vidar Magnusson September 23, 2011 Lars Vidar Magnusson () Forelesning i Operativsystemer 20.09.2011 September 23, 2011 1 / 19 Oversikt Mer om C programmering

Detaljer

INF1000 undervisningen INF 1000 høsten 2011 Uke september

INF1000 undervisningen INF 1000 høsten 2011 Uke september INF1000 undervisningen INF 1000 høsten 2011 Uke 2 30. september Grunnkurs i Objektorientert Programmering Institutt for Informatikk Universitetet i Oslo Siri Moe Jensen og Arne Maus Forelesningene: Første

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3110/4110 Programmeringsspråk Eksamensdag: 3. desember 2004 Tid for eksamen: 9.00 12.00 Oppgavesettet er på 8 sider. Vedlegg:

Detaljer

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster

3 emner i dag! INF1000 Uke 5. Objekter og pekere. null. Litt om objekter, pekere og null Filer og easyio Litt mer om tekster 3 emner i dag! INF1000 Uke 5 Litt om objekter, pekere og null Filer og easyio Litt mer om tekster Litt om objekter, filer med easyio, tekst 1 2 Objekter og pekere Vi lager pekere og objekter når vi bruker

Detaljer

Object interaction. Innhold. Abstraksjon 03.09.2007. Grunnleggende programmering i Java Monica Strand 3. september 2007.

Object interaction. Innhold. Abstraksjon 03.09.2007. Grunnleggende programmering i Java Monica Strand 3. september 2007. Object interaction Grunnleggende programmering i Java Monica Strand 3. september 2007 1 Innhold Til nå: Hva objekter er og hvordan de implementeres I klassedefinisjonene: klassevariable (fields), konstruktører

Detaljer

OBJEKTER SOM EN PROGRAMMERINGS-TEKNIKK

OBJEKTER SOM EN PROGRAMMERINGS-TEKNIKK INF1000: Forelesning 6 Klasser og objekter del 1 OBJEKTER SOM EN PROGRAMMERINGS-TEKNIKK Motivasjon Anta at vi ønsker å lage et studentregister hvor vi for hver student lagrer, bruker og telefonnummer Med

Detaljer

Litt om Javas class-filer og byte-kode

Litt om Javas class-filer og byte-kode Litt om Javas class-filer og byte-kode INF 5110, 11/5-2010, Stein Krogdahl (Dessverre litt få figurer) Disse formatene ble planlagt fra start som en del av hele Java-ideen Bt Byte-koden gir portabilitet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO BOKMÅL Det matematisk-naturvitenskapelige fakultet Eksamen i : Eksamensdag : Torsdag 2. desember 2004 Tid for eksamen : 09.00 12.00 Oppgavesettet er på : Vedlegg : Tillatte hjelpemidler

Detaljer

GUI («Graphical User Interface») del 2

GUI («Graphical User Interface») del 2 GUI («Graphical User Interface») del 2 Interaksjon med brukeren Hendelsesdrevet programmering Tråder i GUI Se også på Infoskrivet https://www.uio.no/studier/emner/matnat/ ifi/in1010/v18/gui/fx-intro-in1010.pdf

Detaljer

Enkle generiske klasser i Java

Enkle generiske klasser i Java Enkle generiske klasser i Java Oslo, 7/1-13 Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo Del 1: Enkle pekere Før vi tar fatt på det som er nytt i dette notatet, skal vi repetere litt

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer

INF1000 (Uke 15) Eksamen V 04

INF1000 (Uke 15) Eksamen V 04 INF1000 (Uke 15) Eksamen V 04 Grunnkurs i programmering Institutt for Informatikk Universitetet i Oslo Anja Bråthen Kristoffersen og Are Magnus Bruaset 22-05-2006 2 22-05-2006 3 22-05-2006 4 Oppgave 1a

Detaljer