Å løyse kvadratiske likningar

Størrelse: px
Begynne med side:

Download "Å løyse kvadratiske likningar"

Transkript

1 Å løyse kvadratiske likningar Me vil no sjå på korleis me kan løyse kvadratiske likningar, og me tek utgangspunkt i ei geometrisk tolking der det kvadrerte leddet i likninga blir tolka geometrisk som eit kvadrat 1. Det å løyse denne typen likningar kan i starten verke uoversiktleg, sidan me nokre gongar får ei enkelt løysing, medan me andre gongar får to løysingar. Det hender også at me ikkje får ei løysing i det heile. Me vil likevel sjå at sjølv om me ikkje alltid klarar å representere løysingane til ei kvadratisk likning ved hjelp av ein geometrisk figur, så vil me alltid kunne finne algebraiske løysingar som tilfredsstiller ei kvadratisk likning. Reint matematisk ville det vere utilfredsstillande å ikkje vere i stand til løyse alle kvadratiske likningar. Av den grunn tek me oss tid til å studere kva som må til for at me alltid skal kunne løyse ei kvadratisk likning. Det viser seg at me må utvide talomgrepet vårt for at me skal få dette til. Den enklaste forma for kvadratiske likningar er dei me kan me skrive som:, der er eit positivt tal. Denne likninga kan me tolke geometrisk som eit kvadrat som har arealet, men kor me ikkje kjenner sida i kvadratet. Sidan me veit at eit kvadrat har to sider som er like lange, får me at arealet til kvadratet er gjeve som, og at sidene i kvadratet dermed må vere gjeve som. Lar me tid dømes, vil sidene i kvadratet vere lik. Men allereie her ser me at den geometriske tolkinga vår ikkje er heilt god nok, sidan også er ei løysing som tilfredsstiller likninga vår, samtidig som me ikkje kan sjå for oss eit kvadrat som har sider lik. Me skal likevel bruke denne geometriske tolkinga av kvadratiske likningar sidan den kan hjelpe oss langt på veg mot ei djupare forståing av kvadratiske likningar. Den geometriske tolkinga av denne enkle likninga er altså eit kvadrat som vist her. Sidene til kvadratet er ukjent, men arealet er kjent. Oppgåve 1: Kva vil sida i eit kvadrat med areal lik 25 vere? Formuler den kvadratiske likninga som tilhøyrer dette kvadratet. Klarar du å formulere ei likning som tilhøyrer denne figuren som har areal lik 40? Når me finn løysinga av den første likninga, tek me i bruk kunnskapar om motsette operasjonar. Den motsette operasjonen til det å kvadrere eit tal, det er å ta kvadratrota. Dette ser 1 Merk at me kjem attende til kvadratiske likningar når me skal arbeide med funksjonar seinare i kurset. Me vil ikkje behandle likningane som funksjonar i denne omgang, sjølv om det kunne ha vore ein naturleg ting å gjere.

2 me enklast dersom me representerer kvadratrota av eit tal på potens-form:. For eksempel har me at, og Dette er sjølvsagt analogt til at den motsette operasjonen til addisjon er subtraksjon, og den motsette operasjonen til divisjon er multiplikasjon. Den eine operasjonen «opphevar» den andre. Det som gjer denne spesifikke operasjonen (altså det å ta kvadratrot av eit tal) litt spesiell i høve til dei andre nemnde operasjonane, er at denne operasjonen ikkje er eintydig. Når me opphevar «x i andre» ved hjelp av kvadratrota, har me eigentleg to val: me kan velje den positive eller negative «løysinga». I somme høve treng me ikkje tenkje på den negative løysinga (til dømes dersom den ikkje korresponderer til noko geometrisk, noko fysisk) og me kan sjå bort i frå henne. I andre høve vil me trenge begge løysingane. Når me arbeider geometrisk med kvadratiske likningar vil me typisk berre vere interesserte i den positive løysinga. Men den algebraiske representasjonen av likningane gjev oss begge løysingane. Me kan bruke akkurat den same løysingsmetoden for å finne løysingar av likningar på forma Me ser at dersom me «tar kvadratrota på begge sider», står me att med Dette betyr at me har to løysingar, nemleg og. I figur 2 ser me eit døme som illustrerer denne problemstillinga, med og. Igjen viser figuren berre den eine løysinga, altså løysinga. Den negative løysinga kjem ikkje fram av figuren. Dersom me skriv ut likninga vår på meir eksplisitt form, ved å multiplisere ut parentesen 2, får me. Dette er eit spesialtilfelle av den generelle forma for kvadratiske likningar: kor og er vilkårlege tal., Oppgåve 2: Samanlikne likninga med den generelle forma for kvadratiske likningar. Kva er verdien for og i denne likninga? Kva med likningane, og? Klarar du å lage figurar som korresponderer til desse likningane? Me skal ta tak i denne generelle forma, og bruke denne til å finne ei generell løysing av andregradslikninga. Merk at sjølv om framgangsmåten er meir algebraisk «avansert» enn før, så innfører me ingen nye konsept i den generelle løysinga. Prøv å heile tida illustrere det du les i teksten med geometriske figurar. Det kan hjelpe deg på vegen mot å forstå kva det er me gjer. Me startar med den generelle kvadratiske likninga Målet er å ende opp med den såkalla -formelen for løysing av kvadratiske likningar. La oss først skrive om likninga slik at dei to ledda som inneheld står på den eine sida, og konstantleddet på høgre sida, altså (Overbevis deg sjølv om kvifor me har lov til å gjere denne operasjonen.) Neste steg er å bli dividere likninga med, slik at det kvadrerte leddet står åleine:. Merk her at 2 Hugs tilbake til første modul der me arbeida med uttrykk på forma

3 me ikkje risikerer å dividere likninga med. (Kan du forklare kvifor?) Neste steg på vegen er å prøve å gjere om venstre side av likninga til eit kvadrat, altså eit uttrykk som er på forma. Dersom me lukkast i dette, kan me jo bruke den same framgangsmåten som me brukte for spesialtilfellet tidlegare i teksten. Men korleis skal me gjere om venstresida til eit kvadrat? Stikkordet her er første kvadratsetning. Me innfører ein hjelpeparameter, og ønskjer å få venstresida vår over på forma Men for å få det til, må me bestemme verdien til. Framgangsmåten er eigentleg veldig enkel. Me veit at kan skrivast som. Me kan stille denne samanhengen opp saman med uttrykket me har på venstresida i den likninga me starta ut med. Merk at er ein parameter, altså eit vilkårleg tal. Kvadratsetninga er ei såkalla matematisk identitet, og den er sann for alle verdiar for. Venstresida i likninga er identisk med høgresida i likninga. Me kan no sjå at venstresida er lik i begge likningane, og dermed må også høgresida vere lik i begge likningane. Det betyr at må ha same verdi som, altså må. Og når me har funne dette, så veit me også at, og me får me følgjande samanheng. Går me no attende til den kvadratiske likninga vår og samanliknar venstre side i likninga med høgresida i denne siste likninga, ser me at dei er like, bortsett frå konstantleddet. Trikset her er å leggje til dette siste leddet også på høgresida av likninga vår, slik at me igjen får likskap:. Ser du at me no har ei likning som er på eksakt same form som den «enklare» likninga vår A? Og den veit me jo korleis me kan løyse. Det einaste som no gjenstår før me endar opp med den såkalla -formelen er rein algebraisk manipulasjon. Me startar med å finne fellesnemnar for høgresida i likninga vår, og får Dermed får me eller Og dette er den såkalla -formelen for løysing av kvadratiske likningar.

4 Oppgåve 3: Lag illustrasjonar som viser denne løysingsmetoden for kvadratiske likningar trinn for trinn. Denne formelen er i seg sjølv nyttig for å finne nullpunkt i andregradslikningar. Men formelen gjev oss også innsikt i kvalitative eigenskapar til andregradslikningar. Me kan skilje mellom tre ulike «løysingsregime» der verdien til «diskriminanten» avgjer kva for eit regime me havnar i. Dei tre ulike regima er, og. Dei to første tilfella er mest intutitive. Dersom diskriminanten er større enn null, vil kvadratrota av diskriminanten eksistere, og me får to ulike løysingar av likninga vår. Dei to løysingane ligg like langt ut til kvar side av symmetrilinja som har - verdi lik. I tilfellet kor diskriminanten er lik null, vil me berre ha ei løysing som tilfredsstiller likninga vår. Denne løysinga har -verdi som tilfredstiller. Men kva skjer i tilfellet der diskriminanten er negativ, altså? La oss sjå nærare på eit enkelt tilfelle der me får ein negativ diskriminant:, altså, med og. Set me dette inn i -formelen får me. Me veit at me ikkje kan finne eit «vanleg» tal som multiplisert med seg sjølv gjev talet. Dersom denne løysinga skal gje ei meining i det heile, er me nødt til å prøve ut om løysinga tilfredsstiller likninga vår Dersom likninga skal vere tilfredsstilt, må me ha at ( ). Vidare må me anta at våre vanlege reknereglar skal gjelde, som for eksempel at me kan faktorisere ut ein positiv faktor frå rotutrykket:. Og dette hjelper oss på veg, fordi dersom dette er tilfellet, så må me jo også ha at ( ) ( ). Men me veit ut i frå likninga vår at ( ), og då må også. Det betyr at sjølv om me ikkje klarar å teikne inn på ei tallinje, så veit me at me kan bruke dette spesielle talet i algebraiske berekningar på linje med andre tal. I og med at me ikkje klarar å løyse opp til eit tal, kan me like gjerne gje denne eininga eit nytt, kortare namn:. Med denne notasjonen får me. Dersom me «respekterer» denne eine rekneregelen, kan me arbeide med denne typen tal på akkurat same måte som våre vanlege tal på tallinja. Oppgåve 4: Du har kanskje arbeida med andregradsfunksjonar ved eit tidlegare høve. I så fall kjenner du til at om me teiknar opp ein andregradsfunksjon i eit koordinatsystem, så vil den alltid ha parabelform. Løysinga av ei kvadratisk likning vil vere der kor parabelen kryssar x-aksen. Klarar du å

5 tenkje deg korleis parabelen vil vere plassert i koordinatsystemet i dei tilfella der me har to positive, to negative, ei positiv og ei negativ, og inga (vanleg) løysing? 3 3 Dersom dette verkar «gresk» for deg, oppfordrar eg deg til å heller gjere denne oppgåva etter at du har arbeida med funksjonar i ein seinare modul av kurset.

Matematikk, barnetrinn 1-2

Matematikk, barnetrinn 1-2 Matematikk, barnetrinn 1-2 Matematikk, barnetrinn 1-2 Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper opp til 100 og dele tosifra tal i tiarar og einarar bruke

Detaljer

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE.

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper opp til 100 og dele tosifra tal i tiarar og einarar. bruke tallinja til

Detaljer

Årsplan Matematikk 8. trinn

Årsplan Matematikk 8. trinn Årsplan Matematikk 8. trinn Innhold Vurdering...1 Årsplan/vekeplan...4 Vurdering Matematikk: Rettleiande nasjonale kjenneteikn på måloppnåing for standpunkt etter 10. trinn Kjenneteikna på måloppnåing

Detaljer

ÅRSPLAN HORDABØ SKULE 2015/2016

ÅRSPLAN HORDABØ SKULE 2015/2016 Fag: Matematikk Klassetrinn: 7 Lærar: Kristin Helland ÅRSPLAN HORDABØ SKULE 2015/2016 Veke Kompetansemål Tema Læringsmål Låg måloppnåing Middels måloppnåing Høg måloppnåing 35 KAPITTEL 1 -beskrive plassverdisystemet

Detaljer

Revidert veiledning til matematikk fellesfag. May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.

Revidert veiledning til matematikk fellesfag. May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14. Revidert veiledning til matematikk fellesfag May Renate Settemsdal Nasjonalt Senter for Matematikk i Opplæringen Lillestrøm 14.oktober 2013 Hvorfor ny veiledning Revidert læreplan matematikk fellesfag

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge Fall 2009 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære og å lese Det kan vere litt vanskelegare

Detaljer

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s.

Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 1 Multiplikasjon s. 3 Multiplikasjon med desimaltal s. 4 Divisjon s. 5 Divisjon med desimaltal s. 6 Omkrins s. 7 Areal s. 8 Utvide og forkorta brøk s. 9 Addisjon og subtraksjon med brøk s. 10 Multiplikasjon

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1010 Objektorientert programmering Eksamensdag: Tysdag 12. juni 2012 Tid for eksamen: 9:00 15:00 Oppgåvesettet er på

Detaljer

KRITERIUM FOR VURDERING I MATEMATIKK

KRITERIUM FOR VURDERING I MATEMATIKK KRITERIUM FOR VURDERING I MATEMATIKK Gjengi Forståing Bruke Analysere Syntese Vurdere Verb som beskriv kompetansenivået Gjenkjenne og gjengi faguttrykk, beskrive fakta, namngi Beskrive og angi likskapar

Detaljer

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45

[2016] FAG - OG VURDERINGSRAPPORT. FAG: Matematikk KLASSE/GRUPPE: 10. For kommunane: Gjesdal Hå Klepp Sola Time TALET PÅ ELEVAR: 45 Nynorsk utgåve FAG - OG VURDERINGSRAPPORT [2016] FAG: Matematikk KLASSE/GRUPPE: 10. TALET PÅ ELEVAR: 45 SKULE: Lye ungdomsskule FAGLÆRAR: Jørn Serigstad For kommunane: Gjesdal Hå Klepp Sola Time Tema 1

Detaljer

Innhald/Lærestoff Elevane skal arbeide med:

Innhald/Lærestoff Elevane skal arbeide med: Tid Kompetansemål Elevane skal kunne: 34-35 lese av, plassere og beskrive posisjonar i rutenett, på kart og i koordinatsystem, både med og utan digitale verktøy 36-39 beskrive og bruke plassverdisystemet

Detaljer

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra

Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra FAGPLANER Breidablikk ungdomsskole FAG: Matte TRINN: 9.trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Tall og algebra Eleven skal kunne -

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149 Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +

Detaljer

RAUMA KOMMUNE Kultur- og oppvekstetaten

RAUMA KOMMUNE Kultur- og oppvekstetaten RAUMA KOMMUNE Kultur- og oppvekstetaten Instruks for munnleg eksamen for lærar Frå forskrift til opplæringslova 3-18. Lokalt gitt eksamen Kommunen har ansvaret for gjennomføringa av alle lokale eksamenar.

Detaljer

ÅRSPLAN I MATEMATIKK KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle. Kjelde: DELMÅL ARBEIDSMÅTAR/ VURDERING KJELDER

ÅRSPLAN I MATEMATIKK KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle. Kjelde:  DELMÅL ARBEIDSMÅTAR/ VURDERING KJELDER Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Faks 56375055 VEK E 34-38 TEMA Geometri ÅRSPLAN I MATEMATIKK 2015-2016 KLASSE: 10a og 10b FAGLÆRAR: Yngve Hopen og Hanne Vatshelle KOMPETANSEMÅL I LÆREPLANEN

Detaljer

Språk og skrift som er brukt i SOS3003

Språk og skrift som er brukt i SOS3003 Språk og skrift som er brukt i SOS3003 Erling Berge Erling Berge 2010 1 Ei typisk setning i regresjonsspråket: Y i = β 0 + β 1 x 1i + ε i, i=1,...,n Det vi må lære først er rett å slett å lese ei setning

Detaljer

- Positive negative tal - Titallsystemet - Standardalgoritmen. addisjon og subtraksjon - Automatisere dei ulike rekneartane

- Positive negative tal - Titallsystemet - Standardalgoritmen. addisjon og subtraksjon - Automatisere dei ulike rekneartane ÅRSPLAN I MATEMATIKK FOR 5. TRINN 2016 2017 Hovudlæreverk: Multi Veke TEMA MÅL (K06) LÆRINGSMÅL INNHALD (Lærebøker..) 3440 Haustferie v.41 Heile tal Beskriva plassverdisystemet for desimaltal, rekna med

Detaljer

Årsplan i matematikk for 10. trinn

Årsplan i matematikk for 10. trinn Årsplan i matematikk for 10. trinn Uke 34-40 Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar og bruke eigenskapane i samband med konstruksjonar og berekningar Begreper. Utregning

Detaljer

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet

Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet Fag : MATEMATIKK Trinn 7. klasse Tidsperiode: Uke 1-2 Tema: Måleenheter og måleusikkerhet -Kunne lese og tolke en Mål for opplæringa er at eleven skal kunne rutetabell Måling: -velje høvelege målereiskapar

Detaljer

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7

FY1006/TFY Løysing øving 7 1 LØYSING ØVING 7 FY1006/TFY415 - Løysing øving 7 1 Løysing oppgåve 1 LØYSING ØVING 7 Numerisk løysing av den tidsuavhengige Schrödingerlikninga a) Alle ledda i (1) har sjølvsagt same dimensjon. Ved å dividere likninga

Detaljer

Litt enkel matematikk for SOS3003

Litt enkel matematikk for SOS3003 Litt enkel matematikk for SOS3003 Erling Berge 24 Aug 2004 Erling Berge 1 Om matematikk Matematikk er ikkje vanskeleg Det er eit språk for logikken. Det er lett å lære å lese Litt vanskelegare å forstå

Detaljer

ORDINÆR EKSAMEN FOR 1R BOKMÅL Sensur faller innen

ORDINÆR EKSAMEN FOR 1R BOKMÅL Sensur faller innen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Skriftlig eksamen i MATEMATIKK, MX30SKR-C 0 studiepoeng ORDINÆR EKSAMEN FOR R 03.06.09. BOKMÅL Sensur faller innen 4.06.09. Resultatet blir

Detaljer

Matematikk, ungdomstrinn 8-10

Matematikk, ungdomstrinn 8-10 Matematikk, ungdomstrinn 8-10 Tal og algebra samanlikne og rekne om mellom heile tal, desimaltal, brøkar, prosent, promille og tal på standardform, uttrykkje slike tal på varierte måtar og vurdere i kva

Detaljer

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.

Detaljer

ØRSTA UNGDOMSSKULE MATEMATIKK

ØRSTA UNGDOMSSKULE MATEMATIKK ØRSTA UNGDOMSSKULE MATEMATIKK Årsplan for : 8. trinn Revidert Våren 2014 LÆRINGSGRUNNLAG - Kompetansemål Tal og algebra samanlikne og rekne om mellom heile tal, desimaltal, brøkar, prosent, promille og

Detaljer

Læreplan i matematikk fellesfag - kompetansemål

Læreplan i matematikk fellesfag - kompetansemål Læreplan i matematikk fellesfag - kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system

Detaljer

REVIDERT Årsplan i matematikk, 8. klasse,

REVIDERT Årsplan i matematikk, 8. klasse, Elevane Innhald/Lære v. 34-38 Tal og algebra Samanlikne og rekne om mellom heile tal, desimaltal, og uttrykkje slike tal på varierte måtar. Bruke faktorar, potensar og primtal i berekningar Utvikle, bruke

Detaljer

Årsplan i matematikk for 9. trinn

Årsplan i matematikk for 9. trinn Årsplan i matematikk for 9. trinn Uke 34-40 Geometri undersøkje og beskrive eigenskapar ved to- og tredimensjonale figurar og bruke eigenskapane i samband med konstruksjonar og berekningar Begreper. Utregning

Detaljer

Åkra ungdomsskole- Helårsplan matematikk 2016

Åkra ungdomsskole- Helårsplan matematikk 2016 Åkra ungdomsskole- Helårsplan matematikk 2016 Halvårsplan i matematikk Klasse: 10F Semester: Haust + vår Lærebok : Grunntal 10 Hovedområde Kompetansemål Antall uker. Arbeidsmetode (Forslag) Vurdering Grunntal

Detaljer

Årsplan i matematikk, 8. klasse, 2015-2016

Årsplan i matematikk, 8. klasse, 2015-2016 Innhald/Lære v. 34-38 Samanlikne og rekne om mellom heile tal, desimaltal, og uttrykkje slike tal på varierte måtar. Bruke faktorar, potensar og primtal i berekningar Utvikle, bruke og gjere greie for

Detaljer

ÅRSPLAN FOR 9. TRINN 2015-2016

ÅRSPLAN FOR 9. TRINN 2015-2016 ÅRSPLAN FOR 9. TRINN 2015-2016 Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Klasse: 9.trinn Fag: Matematikk Faglærar: Turid Åsebø Angelskår, Hanne Vatshelle og Anne Britt Svendsen Hovudkjelder: Nye Mega

Detaljer

Brukarrettleiing E-post lesar www.kvam.no/epost

Brukarrettleiing E-post lesar www.kvam.no/epost Brukarrettleiing E-post lesar www.kvam.no/epost Kvam herad Bruka e-post lesaren til Kvam herad Alle ansatte i Kvam herad har gratis e-post via heradet sine nettsider. LOGGE INN OG UT AV E-POSTLESAREN TIL

Detaljer

ehandel og lokalt næringsliv

ehandel og lokalt næringsliv ehandel og lokalt næringsliv Kvifor ehandel? Del av regjeringas digitaliseringsarbeid det offentlege skal tilby digitale løysingar både til enkeltpersonar og næringsliv Næringslivet sjølve ønskjer ehandel

Detaljer

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn

Læreplan i matematikk fellesfag kompetansemål Kompetansemål etter 4. årstrinn Læreplan i matematikk fellesfag kompetansemål etter 4. årstrinn Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med

Detaljer

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere

Detaljer

Fagplan Matte, 3. trinn, 2010/2011

Fagplan Matte, 3. trinn, 2010/2011 Fagplan Matte, 3. trinn, 2010/2011 Måned Kompetansemål K06 Læringsmål / Delmål Kjennetegn på måloppnåelse / kriterier August 34-35 Mål for opplæringen er at eleven skal kunne: samle, sortere, notere og

Detaljer

ÅRSPLAN Hordabø skule 2015/2016

ÅRSPLAN Hordabø skule 2015/2016 ÅRSPLAN Hordabø skule 2015/2016 Fag: Matematikk Klassetrinn: 5 Lærar: Jannicke Blommedal Bauge Veke Veke Kompetansemål Tema Læringsmål Vurderingskriterier Forslag I startgropa Undervegs Eigenvurd. I mål

Detaljer

Årsplan i matematikk 2015/16

Årsplan i matematikk 2015/16 Årsplan i matematikk 2015/16 Kompetansemål etter 7. årssteget Tal og algebra Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster.

Detaljer

Årsplan i matematikk for 2.årssteg

Årsplan i matematikk for 2.årssteg Årsplan i matematikk for 2.årssteg Læreverk: Abakus Grunnbok 2A, grunnbok 2B, Oppgåvebok 2B. I stadenfor oppgåvebok 2A har vi brukt Tusen millionar oppgåvebok 2. Klassen nyttar nettsida til dette læreverket,

Detaljer

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning.

Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE. Naturlige tall. Primtall. Faktorisering. Hoderegning. Desimaltall. Overslagsregning. MATEMATIKK 8. KLASSE ÅRSPLAN Skoleåret 2015/16 UKE KAPITTEL EMNER HOVEDOMRÅDE 34 35 36 Kapittel 1 Naturlige tall Primtall Faktorisering Hoderegning Tall og algebra punkt: 1, 2, 3 og 4 37 38 Tall og tallforståelse

Detaljer

Læringsressurser Arbeidsmåter og tilpasset opplæring egnet til å nå kompetansemålene

Læringsressurser Arbeidsmåter og tilpasset opplæring egnet til å nå kompetansemålene Fag: Matematikk Faglærere: Bjørn Helge Søvde og Simen Håland Trinn: 10. trinn Skoleår: 2016/2017 Periode Kompetansemål Grunnleggende ferdigheter Læringsressurser Arbeidsmåter og tilpasset opplæring egnet

Detaljer

Fag: Matematikk. Periode Kompetansemål Grunnleggende ferdigheter. emner

Fag: Matematikk. Periode Kompetansemål Grunnleggende ferdigheter. emner Fag: Matematikk Faglærere: Solveig og Tore Trinn: 10. trinn Skoleår: 2015/2016 Periode Kompetansemål Grunnleggende ferdigheter 1. lage funksjonar som beskriv numeriske samanhengar og praktiske situasjonar,

Detaljer

Bilete og figurar i Word

Bilete og figurar i Word Bilete og figurar i Word av Kjell Skjeldestad Ofte har me behov for å setje inn ulike illustrasjonar i teksten vår. Det kan vere bilete, teikningar, diagram osv. Me skal sjå på nokre av dei mulegheitene

Detaljer

Informasjon og brukarrettleiing

Informasjon og brukarrettleiing Informasjon og brukarrettleiing Om kartløysinga Kartløysinga er tenarbasert. Alle operasjonar blir utførde av ein sentralt plassert tenar (server). Dette inneber at du som brukar berre treng å ha ein pc

Detaljer

Lokal læreplan i Matematikk Trinn 9

Lokal læreplan i Matematikk Trinn 9 Lokal læreplan i Matematikk Trinn 9 1 9. trinn Hovedtema 1 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06)

Matematikk i skulen 5. - 7. årssteget Tal og algebra Kompetansemål etter 7. steg (etter LK06) Matematikk i skulen 5. - 7. årssteget Tal og algebra etter 7. steg Beskrive plassverdisystemet for desimaltal, rekne med positive og negative heile tal, desimaltal, og prosent, og plassere dei på tallinja

Detaljer

6-åringar på skuleveg

6-åringar på skuleveg 6-åringar på skuleveg Rettleiing til foreldre med barn som skal begynne på skulen Førsteklassingane som trafikantar Det er store forskjellar i modning og erfaring hos barn på same alder. Vi ser likevel

Detaljer

Læreplan i matematikk fellesfag kompetansemål

Læreplan i matematikk fellesfag kompetansemål ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 1. TRINN Årstimetallet i faget: 152 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innet i planen

Detaljer

Årsplan i matematikk, 8. klasse,

Årsplan i matematikk, 8. klasse, v. 34-38 Samanlikne og rekne om mellom heile tal, desimaltal, og uttrykkje slike tal på varierte måtar. Bruke faktorar, potensar og primtal i berekningar Kap.1 Tal og talforståing Rekne med Tital-systemet

Detaljer

Lokal læreplan for matematikk, 6. & 7trinn, Vartdal skule, 2015-2016

Lokal læreplan for matematikk, 6. & 7trinn, Vartdal skule, 2015-2016 36 Sjå læreplanen for 37 38 39 40 41 43 Sjå læreplanen for 44 45 Tal Heile tal, titalssystemet. Addisjon og subtraksjon, negative tal. Rekning med parentesar Desimaltal, tal og siffer. Avrunde og overslag.

Detaljer

Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 28.11.2013. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 8.11.013 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Farnes skule Læreverk: FAKTOR 1 Årsplan i MATEMATIKK. Innhald/Lærestoff Elevane skal arbeide med:

Farnes skule Læreverk: FAKTOR 1 Årsplan i MATEMATIKK. Innhald/Lærestoff Elevane skal arbeide med: Farnes skule Læreverk: FAKTOR 1 Årsplan i MATEMATIKK Klasse/steg: 8A Skuleår: 2016 2017 Lærar: Anne Ølnes Hestethun, Bjarne Søvde, Tatjana Hestethun Tid/veker Gjeld heile året analysere samansette problemstillingar,

Detaljer

Årsplan MATTE 4.klasse 2016/2017 VEKE KOMPETANSEMÅL DELMÅL VURDERING ARBEIDSMÅTAR

Årsplan MATTE 4.klasse 2016/2017 VEKE KOMPETANSEMÅL DELMÅL VURDERING ARBEIDSMÅTAR ÅRSPLAN I MATEMATIKK 4. KLASSE 2016/2017 LÆRAR: Lena Bøgwald LÆRAVERK: MATEMAGISK GRUNNBOK 4A OG 4B, OPPGÅVEBOK 4A OG 4B, nettressurs http://www.lokus.no/licensed/matemagisk4 ARBEIDSMÅTAR I MATEMATIKK

Detaljer

ORDINÆR EKSAMEN Sensur faller innen

ORDINÆR EKSAMEN Sensur faller innen Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Skriftlig eksamen i Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K 15 studiepoeng ORDINÆR EKSAMEN 11.12.09. Sensur faller innen

Detaljer

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn)

Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Lokal læreplan i matematikk (8. trinn, 9. trinn og 10. trinn) Hoved- områder Tall og Algebra Fokus (læringsmål) Tall Addere, subtrahere, multiplisere og dividere med heltall, flersifrete tall og desimaltall

Detaljer

MATEMATIKK 1 for 1R, 4MX130SR09-E

MATEMATIKK 1 for 1R, 4MX130SR09-E Skriftlig eksamen i MATEMATIKK 1 for 1R, 4MX130SR09-E 20 studiepoeng ORDINÆR EKSAMEN 7. juni 2010. Sensur faller innen 28.juni. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,

Detaljer

Brukarrettleiing. epolitiker

Brukarrettleiing. epolitiker Brukarrettleiing epolitiker 1 Kom i gang Du må laste ned appen i AppStore Opne Appstore på ipaden og skriv «epolitiker» i søkjefeltet øvst til høgre. Trykk på dette ikonet og deretter på «hent» og til

Detaljer

Undervisningsopplegg for ungdomstrinnet om koordinatsystem og rette linjer

Undervisningsopplegg for ungdomstrinnet om koordinatsystem og rette linjer Undervisningsopplegg for ungdomstrinnet om koordinatsystem og rette linjer Kjelde: www.clipart.com 1 Funksjoner. Læraren sitt ark Kva seier læreplanen? Funksjonar Mål for opplæringa er at eleven skal kunne

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: 8A og 8B Grunnleggende ferdigheter i faget: Munnlege ferdigheiter i matematikk inneber

Detaljer

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 31.05.01 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Fag matematikk Trinn 3.klasse

Fag matematikk Trinn 3.klasse Fag matematikk Trinn 3.klasse Veke Emne Kompetansemål Delmål Arbeidsmåte Vurdering 34-36 STATISTIKK Tabellar og diagrammar samle, sortere, notere og illustrere data på formålstenlege måtar med teljestrekar,

Detaljer

Årsplan i matematikk 9.klasse

Årsplan i matematikk 9.klasse Heile året Tal og algebra Mål for opplæringa er at eleven skal kunne: analysere samansette problemstillingar, identifisere faste og variable storleikar, kople samansette problemstillingar tilkjende løysingsmetodar,

Detaljer

FAG: Matematikk TRINN: 10

FAG: Matematikk TRINN: 10 FAG: Matematikk TRINN: 10 Områder Kompetansemål Fra Udir Operasjonaliserte læringsmål - Breidablikk Vurderingskriteri er Tall og algebra *kunne samanlikne og rekne om heile tal, desimaltal, brøkar, prosent,

Detaljer

Alle barn har rett til å seie meininga si, og meininga deira skal bli tatt på alvor

Alle barn har rett til å seie meininga si, og meininga deira skal bli tatt på alvor Eit undervisningsopplegg om BARNERETTANE MÅL frå læreplanen DELTAKING Artikkel 12: DISKRIMINERING Artikkel 2: Alle barn har rett til vern mot diskriminering PRIVATLIV Artikkel 16: Alle barn har rett til

Detaljer

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett 34 behandle, faktorisere og forenkle algebrauttrykk, knyte uttrykka til praktiske situasjonar, rekne med formlar, parentesar og brøkuttrykk og bruke kvadratsetningane samanlikne og rekne om mellom heile

Detaljer

FAGPLAN i matematikk 6. trinn. Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål. 35 Grunnboka 6A s.

FAGPLAN i matematikk 6. trinn. Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål. 35 Grunnboka 6A s. FAGPLAN i matematikk 6. trinn Mål: Vi skal ha fokus på en praktisk tilnærming til temaene. Uke Tema Læringsmål Kompetansemål 34 Tall Vise forståelse for Tal og algebra. 35 Grunnboka 6A s. 6-31 tallene

Detaljer

Fagplan, 4. trinn, Matematikk

Fagplan, 4. trinn, Matematikk Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39

Detaljer

Matematikk 1, MX130SKR-B

Matematikk 1, MX130SKR-B Skriftlig eksamen i Matematikk 1, MX130SKR-B 20 studiepoeng ORDINÆR/UTSATT EKSAMEN 4.juni 2010. Sensur faller innen 25.juni. BOKMÅL Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist,

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk

Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Spørsmål og svar om GeoGebra, versjon 2.7 nynorsk Eg har lasta ned ei installasjonsfil frå www.geogebra.org og installert programmet, men får det ikkje til å fungere. Kva kan dette skuldast? Den mest vanlege

Detaljer

Framflyt. Modellverktøy for flytteprognosar

Framflyt. Modellverktøy for flytteprognosar Framflyt Modellverktøy for flytteprognosar Disposisjon Del 1: Generelt om Framflyt bakgrunn, logikk, oversyn Del 2: Rettleiing i bruk av Framflyt Problem i fjor Ved målstyring etter nettoflytting kan PANDA

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016

ÅRSPLAN I MATEMATIKK 9. TRINN 2015/ 2016 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 20.08.2015 Faglærere:

Detaljer

ÅRSPLAN Øyslebø oppvekstsenter. Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland. Tidsr om (Dato er/ ukenr, perio der.

ÅRSPLAN Øyslebø oppvekstsenter. Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland. Tidsr om (Dato er/ ukenr, perio der. Øyslebø oppvekstsenter ÅRSPLAN 2016-2017 Fag: Matematikk Trinn: 10. Lærer: Tove Mørkesdal og Tore Neerland Tidsr om (Dato er/ ukenr, perio der. Tema Lærestoff / læremidler (lærebok kap./ s, bøker, filmer,

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Hausten 2008 nynorsk Namn: Gruppe: Informasjon Oppgåvesettet består av to delar der du skal svare på alle oppgåvene. Del 1 og del 2 blir delte ut samtidig,

Detaljer

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE

ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE ÅRSPLANAR FOR 8.TRINN 9.TRINN 10.TRINN ÅRSPLAN MATEMATIKK 8. TRINN STRANDA UNGDOMSSKULE HOVUDEMNE UNDEREMNE MÅL KAP 1 Tal (s.9-62) Kap 2 Brøk (s.63-86) Kap 3 Prosent og promille (s.87-102) Kap 4 Teikning

Detaljer

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett

Anna lærestoff: Fagbøker, aviser, video, Excel,Geogebra, internett 34 Tal og algebra behandle, faktorisere og forenkle algebrauttrykk, knyte uttrykka til praktiske situasjonar, rekne med formlar, parentesar og brøkuttrykk og bruke kvadratsetningane samanlikne og rekne

Detaljer

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015

ÅRSPLAN I MATEMATIKK 9. TRINN 2014/ 2015 Læreverk: Faktor 2 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 18.08.2014 Faglærere:

Detaljer

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016

ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016 ÅRSPLAN I MATEMATIKK FOR 5. KLASSE, SKULEÅRET 2015/2016 FAGLÆRAR: LÆREBØKER: Grete Eiken Abakus av B.B. Pedersen, P. I. Pedersen og L. Skoogh. Grunnbok 5A og 5B og oppgåvebok 5A og 5B Veke Kompetansemål

Detaljer

ÅRSPLAN MATEMATIKK 7. KLASSE

ÅRSPLAN MATEMATIKK 7. KLASSE ÅRSPLAN MATEMATIKK 7. KLASSE 2016-2017 Læreverk: Tusen millionar 7A og 7B Lærar: Anne Grethe Nerheim I matematikktimane blir teorien sett i samanheng med praktisk arbeid så langt det let seg gjere. Elevane

Detaljer

Til deg som bur i fosterheim. 13-18 år

Til deg som bur i fosterheim. 13-18 år Til deg som bur i fosterheim 13-18 år Forord Om du les denne brosjyren, er det sikkert fordi du skal bu i ein fosterheim i ein periode eller allereie har flytta til ein fosterheim. Det er omtrent 7500

Detaljer

Morfologioppgåva om Kongo-swahili

Morfologioppgåva om Kongo-swahili Morfologioppgåva om Kongo-swahili Aronoff & Fudeman: What is Morphology? Ch. 1, oppgåve 14. Merknader skrivne av Rolf Theil. 1. Subjektsprefiks m.m. Sjå fyrst på dei 6 orda i (1), dvs. alle orda som tyder

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Våren 2011 nynorsk Namn: Gruppe: Informasjon Oppgåvesettet består av to delar der du skal svare på alle oppgåvene. Del 1 og del 2 blir delte ut samtidig, men

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 28.11.2014 REA3024 Matematikk R2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 26.11.2012. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 6.11.01 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

Til bruk i utviklingssamtale på 8. trinnet. Samtaleguide om lesing

Til bruk i utviklingssamtale på 8. trinnet. Samtaleguide om lesing Til bruk i utviklingssamtale på 8. trinnet Samtaleguide om lesing Innleiing Samtaleguiden er meint som ei støtte for opne samtalar mellom lærar, elev og foreldre. Merksemda blir retta mot lesevanar, lesaridentitet

Detaljer

Rettleiing. Nasjonale prøver i rekning for 5. trinn. Versjon: juli 2010, nynorsk

Rettleiing. Nasjonale prøver i rekning for 5. trinn. Versjon: juli 2010, nynorsk Rettleiing Nasjonale prøver i rekning for 5. trinn Versjon: juli 2010, nynorsk Nasjonale prøver i rekning for 5. steget Her får du informasjon om nasjonale prøver i rekning og kva prøva måler. Vidare er

Detaljer

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Bryne ungdomsskule ÅRSPLAN. FAG: Matematikk. Trinn: 9. trinn

Bryne ungdomsskule ÅRSPLAN. FAG: Matematikk. Trinn: 9. trinn ÅRSPLAN Bryne ungdomsskule FAG: Matematikk Trinn: 9. trinn Veke: Tal 34-40 Tema: Tal og algebra Formål med faget: Grunnleggjande ferdigheit Kompetansemål Læringsmål Lesing: Forstå matematisk symbolspråk,

Detaljer

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn

FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn FAGPLANER Breidablikk ungdomsskole FAG: Matematikk 8. trinn Områder Kompetansemål Operasjonaliserte læringsmål Tema/opplegg (eksempler, forslag), ikke obligatorisk Vurderingskriterier vedleggsnummer Samanlikne

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande

Detaljer

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN Årstimetallet i faget: 133 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innarbeidet i

Detaljer

ÅRSPLAN I MATEMATIKK 10. TRINN 2014 / 2015

ÅRSPLAN I MATEMATIKK 10. TRINN 2014 / 2015 Læreverk: : Faktor 3 matematikk for ungdomstrinnet, Hjardar og Pedersen, Cappelen Vi gjør oppmerksom på at det kan bli forandringer i årsplanen, men emnene vil bli de samme. Frosta skole, 08.09.2014 Faglærer:

Detaljer

Kjenneteikn på måloppnåing. Framlegg til aktivitetar

Kjenneteikn på måloppnåing. Framlegg til aktivitetar Matematikk i skulen 3. årssteget Kompetansemål etter 4. klasse TAL Skildre plassverdisystemet for dei heile tala, bruke positive og negative heile tal, enkle brøkar og desimaltal i praktiske samanhengar,

Detaljer

Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn

Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn Ti delt på atten; korleis blir det, og kvifor blir det slik? Gunvor Sønnesyn Korleis møter vi born som spør og vil vita kvifor vi gjer det slik eller slik i matematikken? Korleis går det med elevane sine

Detaljer

arbeidsinnsats i timene og hjemme negative hele tall(...)" Naturlige tall innføring muntlig aktivitet i "beskrive referansesystemet og

arbeidsinnsats i timene og hjemme negative hele tall(...) Naturlige tall innføring muntlig aktivitet i beskrive referansesystemet og Uke 34-38 Uke 39-40 ÅRSPLAN I MATEMATIKK FOR 7. TRINN 2015/2016 Læreverk: Grunntall Lærer: Carl Petter Tresselt "Beskrive og bruke plassverdisystemet for Tall individuell og felles gjennomgang arbeidsinnsats

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

Sirdal kommune - Sinnes skule - Årsplan /2017

Sirdal kommune - Sinnes skule - Årsplan /2017 Veke Kompetansemål Delmål Vurdering Arbeidsmåtar 33 34 telja til 100, dele opp og byggje telja og skriva tala til 5. Eignevurdering undervergs, med Introduksjon til læreverket GB: 6 Omgrep: telja, teljastrekar

Detaljer