AST1010 Eksamensoppgaver

Størrelse: px
Begynne med side:

Download "AST1010 Eksamensoppgaver"

Transkript

1 AST1010 Eksamensoppgaver 26. september 2016 Oppgave 1: Koordinatsystem og tall a) Hvor mange buesekunder er det i ett bueminutt, og hvor mange bueminutter er det i én grad? Det er 60 buesekunder i ett bueminutt og 60 bueminutter i én grad. b) Beskriv de to mest brukte koordinatsystemene i astronomien, der man i det ene bruker rektascensjon og deklinasjon, og i det andre asimut og høyde. Det ene koordinatsystemet (det ekvatoriale) har polene rett over jordens poler og ekvator rett over jordens ekvator. Tilsvarende breddegrader på jorden har vi deklinasjon, nord og sør for ekvator (+90 grader for nordpolen og -90 grader for sydpolen). Det som tilsvarer lengdegrader på jorden er rektascensjon, som måles østover fra vårjevndøgnspunktet, det punktet der ekliptikken krysser ekvator ved vårjevndøgn. Dette koordinatsystemet er svært hensiktsmessig å bruke fordi en stjerne vil ha konstante koordinater (bortsett fra egenbevegelse etc.) som er uavhengige av hvor observatøren beveger seg. Når man står et bestemt sted på jorda, kaller man punktet rett opp for senit. På et bestemt tidspunkt vil et himmellegeme ha en posisjon bestemt av høyde over horisonten i grader (høyde) og vinkel langs horisonten målt fra nord med klokken (asimut). Høyde og asimut vil på grunn av jordens rotasjon hele tidenendre seg, og vil til samme tid være forskjellig for observatører på forskjellige steder. Oppgave 2: Verdensbilder gjennom tiden a) 1. Forklar hva som menes med retrograd planetbevegelse. Retrograd bevegelse har vi når en planet (som for eksempel Mars) ser ut til å stoppe opp i banen sin, beveger seg i motsatt retning, for så igjen å snu og bevege seg i den opprinnelige retningen. 2. Hvordan ble slik bevegelse forklart i det ptolemeiske verdensbildet? I det ptolemeiske verdensbildet, som var geosentrisk, trengte man episykler for å forklare dette 3. Hvordan blir den forklart i det kopernikanske verdensbildet? I det kopernikanske, heliosentriske verdensbildet er retrograd en naturlig konsekvens av at jorda i sin bane av og til tar igjen (eller blir tatt igjen av) og går forbi (eller blir forbigått av) andre planeter. Da vil det for en observatør på jorda se ut som om den andre planeten stopper opp og snur i banen sin 1

2 4. Og i det Tycobariske? Månen og Solen går rundt jorden mens resten av planetene går rundt solen, for å forene de geometriske fordelene med det heliosentriske med de filosofiske fordelene av det geosentriske. b) Hva menes med begrepet å redde fenomenet? Å redde fenomenet betød at man brukte en modell av virkeligheten utelukkende som et verktøy - det trengte ikke nødvendigvis være absolutt sannhet, bare gjøre fenomenene forutsigbare. Dermed kunne slike modeller eksistere sammen med religiøse dogmer ( som absolutt gjorde krav på å være sanne ) uten at disse kom i konflikt med hverandre. c) Nevn to oppdagelser, gjort av Galileo Galilei, som var problematiske for det ptolemeiske verdensbildet, og forklar hvorfor de var det Galilei observerte at Venus har faser på samme måte som Månen. Det lot seg ikke forklare i det ptolemeiske verdensbildet der Venus gikk i bane rundt Jorda. Galilei oppdaget også de fire største månene til Jupiter, og viste slik at ikke alle objekter i solsystemet går i bane rundt Jorda. Dette var også i strid med det ptolemeiske verdensbildet. Oppgave 3: Keppler og Newton a) Skriv ned Keplers tre lover for planetenes bevegelser. b) 1. Planetenes baner er ellipser med sola i det ene brennpunktet. 2. En linje fra sola til en planet sveiper ut like store arealer i løpet av like lange tidsrom. 3. Kvadratet av omløpstiden til en planet er proporsjonal med banens store halvakse (planetens gjennomsnittsavstand fra sola) opphøyd i tredje. Dvs. hvis vi måler omløpstiden (P ) i år og store halvakse (a) i astronomiske enheter er a 3 = P Skriv ned Newtons tre bevegelseslover. Et legeme som ikke er påvirket av noen krefter, vil enten forbli i ro eller fortsette å bevege seg i rett linje med konstant fart. Virker en kraft F på et legeme med masse m, vil legemet få en akselerasjon a gitt ved a = F/m. Hvis et legeme A virker på er legeme B med en kraft F, vil legemet B virke på A med en like stor, men motsatt rettet, kraft. 2. Basert på disse (og Newtons tyngdelov) kunne Keplers lover forklares, med en korreksjon. Hva var den? Fra Newtons tre bevegelseslover og gravitasjonsloven kunne Newton utlede Keplers lover med noen meget små modifikasjoner: Sola er ikke eksakt i det ene brennpunktet, det er det felles tyngdepunktet mellom sola og planeten som er i brennpunktet (men for de fleste planetene er det inne i sola). Newton viste at proporsjonalitetskonstanten i Keplers 3. lov inneholder summen av massen til sola og massen til planeten, slik at den ikke blir helt lik for de forskjellige planetene (men planetens masser er så mye mindre enn solas masse at summene er nesten like): a 3 = (G/4π 2 )(M sol + M planet )P 2, eller hvis vi bruker år og AU som enheter: a 3 = (1 + M planet /M sol )P 2 2

3 Oppgave 4: Det elektromagnetiske spektrum og sort stråling a) 1. Beskriv det elektromagnetiske spektrum fra radiobølger til gammastråling. 2. Hva er forskjellen på synlig lys og røntgenstråling? Hvorfor kan ikke røntgenstråling fra verdensrommet observeres ved Jordens overflate? 3. I hvilke deler av spekteret kan vi observere himmellegemer fra jordoverflaten? Fra de lengste bølgelengder (laveste frekvenser) mot kortere bølgelengder (høye frekvenser) har vi radiobølger, mikrobølger, infrarødt lys, synlig lys, ultrafiolett lys, røntgenstråling og gammastråling. Bare radiobølger og synlig lys, samt mikrobølger og infrarødt lys av enkelte bølgelengder når jordoverflaten. b) Skriv ned Wiens forskyvningslov og forklar hvordan vi kan bruke den til å anslå temperaturen til en stjerne. Wiens lov sier at λ maks T = konstant, der λ m athrmmaks er bølgelengden er et sort legeme stråler sterkest, og T er temperaturen. Vi kan bruke den til å bestemme temperaturen til en stjerne (dersom den stråler tilnærmet som et sort legeme) ved å måle spekteret, finne λ maks, sette inn i Wiens lov og løse den med hensyn på temperaturen. c) Skriv ned Kirchhoffs tre lover. Hvilken sammenheng har disse med energinivåene i atomer som kvanteteorien gir oss (Bohrs atommodell for hydrogenatomet)? 1. En varm tett gass (eller væske eller fast stoff) sender ut stråling i et kontinuerlig spektrum. 2. En tynn varm gass sender bare ut stråling i spektrallinjer på spesielle bølgelengder (emisjonsspektrum). 3. Hvis vi ser en kontinuumskilde (varm tett gass eller fast stoff) gjennom en tynn kjøligere gass, ser vi det kontinuerlige spekteret med mørke spektrallinjer (absorbsjonslinjer). Disse er på samme bølgelengder som emisjonslinjene i annen lov. I følge kvanteteorien kan atomer bare være i diskrete energinivåer (elektronbaner i Bohrs atommodell), og kan kun sende ut eller motta stråling som har energi lik differansen mellom to energinivåer. En tynn varm gass vil sende ut stråling på bølgelengder som tilsvarer disse differensene, mens en tynn kjøligere gass foran en varm kontinuumskilde vil absorbere stråling med bølgelengde som tilsvarer de samme energidifferensene (de vil igjen stråle ut på de samme bølgelengdene, men i alle retninger, slik at det blir mindre i retning mot observatøren). I en tett gass vil atomene kollidere, elektroner rives løs og fanges inn med vilkårlige energier, og energinivåene blir utbredd og går over i hverandre. d) Hva menes med et sort legeme? Skisser strålingen fra et sort legeme (sort stråling) som funksjon av bølgelengde for to forskjellige temperaturer (angi hvilken som er ved høyest temperatur og hvilken fra lavest). Oppgave 5: Måner og planeter a) Forklar årsaken til at vi har årstider på jorda. 3

4 Årsaken er at jordas rotasjonsakse heller omtrent 23 grader med normalen til baneplanet. Når den nordlige halvkule heller mot solen, øker antall soltimer i døgnet, og energien i solstrålene konsentreres på et mindre areal. Det fører til økt oppvarming, og da er det sommer i nord (og vinter på den sørlige halvkule.) Når den nordlige halvkule heller vekk fra solen, avtar antall soltimer i døgnet, og energien i solstrålene spres over et større areal. Da blir oppvarmingen mindre, og det er vinter i nord (og sommer på den sørlige halvkule.) b) Hva er nymåne og hva er fullmåne? Hvordan står sola og månen i forhold til jorda ved disse to månefasene? Forklar gjerne ved hjelp av en figur. Nymåne har vi når den opplyste siden av månen vender vekk fra jorden, fullmåne når den opplyste siden vender mot jorden. Ved nymåne står månen mellom jorden og solen, ved fullmåne står jorden mellom solen og månen. Det er også ved fullmåne av vi kan ha totale måneformørkelser, dersom månen blir helt dekket av jordens skygge. c) Ved hvilken månefase kan vi få total solformørkelse? Forklar hvorfor vi ikke får solformørkelse hver gang denne månefasen inntreffer. Vi kan bare få total solformørkelse ved nymåne. Månebanen heller omtrent 5 grader med jordas bane omkring sola, derfor blir det bare solformørkelse når det er nymåne samtidig som månen passerer jordas baneplan (månebanens knuter) slik at sola, månen og jorda står helt på linje. Og selv når sola, månen og jorda står helt på linje kan vi få ringformet solformørkelse i stedet for total. Det er fordi månens avstand varierer, og hvis månene er langt fra jorda er dens størrelse på himmelen mindre enn solas. d) Hva er den viktigste grunnen til at jordskorpa har mange færre meteorkratre enn månens overflate? Jordskorpa fornyes på grunn av platetektonikk, mens månen sluttet å være geologisk aktiv for milliarder av år siden. Gjennomsnittsalderen til jordskorpa er bare noen få hundre millioner år, og spor etter kratre dannet tidlig i solsystemets historie er derfor blitt visket vekk. e) Forklar hvorfor vi har flo og fjære (tidevann), og hvorfor de inntreffer to ganger i døgnet. Tidevann oppstår fordi månens (og solas) tyngdekraft varierer med avstanden. Månen trekker derfor mer på den siden av jorda som er nærmest enn den trekker på sentrum av jorda, og enda mer enn på den siden som vender vekk. Dette fører til at vi får en tidevannstopp på hver side av jorda. Fordi jorda roterer, vil et gitt punkt på jordas overflate være vendt mot månen en gang i løpet av ett døgn, og det vil også være vendt vekk fra månen en gang i løpet av et døgn. Derfor får vi to tidevannstopper i løpet av døgnet. f) Sammenlign kort atmosfærene til Venus, jorda og Mars. Atmosfæren til Venus består for det meste av CO 2 (96.5%) og resten er for det meste nitrogen. Lufttrykket ved overflaten er ca. 90 ganger lufttrykket ved jordoverflaten og temperaturen ved overflaten er på ca. 460 o C (730 K) og er temmelig lik over hele overflaten. Skyene består bl.a. av svovelsyre. Jordatmosfæren består først og fremst av nitrogen (78 %) og oksygen (21 %) og små mengder andre stoffer (mest argon (0.9 %) og CO 2 (0.04 %) samt variable mengde vanndamp). Trykket er det vi kjenner og temperaturen ved havoverflaten midlet over hele jorda ca C, men med vesentlige forskjeller fra pol til ekvator og mellom årstidene. Marsatmosfæren består for det meste av CO 2 (96%), resten er for det meste argon (2%) og nitrogen (1.9%). Atmosfæren er svært tynn, trykket på overflaten under 1% av lufttrykket på jorda. Årlig middeltemperatur på overflaten er ca. 60 C, men kan komme opp i +35 C ved ekvator midt på dagen og ned i ca. 150 C ved polene. 4

5 g) Nevn to grunner til at det er lite sannsynlig å finne jordlignende liv på overflaten til Mars i dag. Atmosfæren til Mars er tynn, og i tillegg mangler den et betydelig magnetfelt. Dette gjør at overflaten er ganske ubeskyttet mot UV- og annen høyenergetisk stråling fra sola, og mot kosmisk stråling. Uten denne beskyttelsen er det vanskelig for jordlignende liv å overleve. Jordlignende liv er også avhengig av rennende vann. Selv om det nylig ble oppdaget rennende vann på overflaten til Mars, er dette vannet bare til stede i kortere perioder, og i tillegg er det fylt av salter som er skadelige for organiske forbindelser. Dette er en annen grunn til at det er lite sannsynlig å finne jordlignende liv på overflaten til Mars i dag. Ekstra: Dopplereffekten Hva er dopplereffekten? Forklar hvordan den kan brukes til å oppdage eksoplaneter. Dopplereffekten gjelder for alle typer bølger, men i kurset har vi bare sett på elektromagnetiske bølger. Hvis en bølgekilde, for eksempel en stjerne, beveger seg langs synslinjen vår, vil bølgene vi mottar fra den ha større bølgelengde (rødforskyvning) enn de utsendte dersom kilden beveger seg vekk fra oss, kortere bølgelengde (blåforskyvning) dersom kilden er på vei mot oss. Graden av rødeller blåforskyvning er proporsjonal med kildens fart langs synslinjen. Vi kan måle effekten ved å se ved hvilke bølgelengder vi finner kjente spektrallinjer i kildens spektrum. Dette brukes til å oppdage eksoplaneter. Dersom en stjerne har en planet, vil stjernen og planeten bevege seg i baner rundt systemets tyngdepunkt. Det fører til at stjernen av og til beveger seg mot oss, av og til på tvers av synslinjen, og av og til vekk fra oss, og dette gjentar seg periodisk. Vi kan derfor se effekten av planeten ved at linjer i stjernens spektrum veksler periodisk mellom å være blåforskjøvet og rødforskjøvet. 5

FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO

FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO FASIT Svarene trenger ikke være like utdypende som her. Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Onsdag 13. mai

Detaljer

FASIT UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

FASIT UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet FASIT UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Onsdag 18. mai 2016 Tid for eksamen: 14:30 17:30 Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Onsdag 12. november 2014 Tid for eksamen:0900-1200 Oppgavesettet er på 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Tirsdag 22. mai 2018 Tid for eksamen:1430-1730 Oppgavesettet er på 2 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Onsdag 15. novemer 2017 Tid for eksamen:0900-1200 Oppgavesettet er på 2 sider

Detaljer

EksameniASTlolo 13 mai2

EksameniASTlolo 13 mai2 EksameniASTlolo 13 mai2 tl Ptoleneisk system Sentrum i defentene til Merkur og Venus ligger alltid på linje med jorder og Cmiddelbsolen En kunstig forklaring e OM Kopernikansk system Merkur jordens Venus

Detaljer

AST En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton

AST En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton AST1010 - En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton De viktigste punktene i dag Kopernikus: Sola i sentrum, men fremdeles episykler. Brahe: Nøyaktige målinger

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: 15. november 2012 Tid for eksamen:0900-1200 Oppgavesettet er på 2

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. De viktigste punktene i dag: Elektromagnetisk bølge 1/23/2017. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 1: Merkur og Venus

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 1: Merkur og Venus AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus Innhold Hva ønsker vi å vite om de indre planetene? Hvordan kan vi finne det ut? Oversikt over Merkur: Bane, geologi

Detaljer

AST1010 En kosmisk reise. Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars

AST1010 En kosmisk reise. Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars AST1010 En kosmisk reise Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars Jorden: Bane, atmosfære, geologi, magnetfelt. Månen: Faser og formørkelser. Atmosfære og geologi, tidevann

Detaljer

En kosmisk reise Forelesning 2. Om stjernehimmelen, koordinatsystemer og astronomi i antikken

En kosmisk reise Forelesning 2. Om stjernehimmelen, koordinatsystemer og astronomi i antikken En kosmisk reise Forelesning 2 Om stjernehimmelen, koordinatsystemer og astronomi i antikken De viktigste punktene i dag: Hvordan angi posisjon på himmelen Hvordan stjernehimmelen forandrer seg gjennom

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006)

2/7/2017. AST1010 En kosmisk reise. De viktigste punktene i dag: IAUs definisjon av en planet i solsystemet (2006) AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus De viktigste punktene i dag: Hva er en planet? Plutos ferd fra planet til dvergplanet. Hvordan kan vi finne ut

Detaljer

AST En kosmisk reise Forelesning 2:

AST En kosmisk reise Forelesning 2: AST1010 - En kosmisk reise Forelesning 2: Li: astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet De vikbgste punktene i dag Geosentrisk: Jorden i sentrum Heliosentrisk: Solen

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling

AST1010 En kosmisk reise. Forelesning 4: Elektromagnetisk stråling AST1010 En kosmisk reise Forelesning 4: Elektromagnetisk stråling De viktigste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs

Detaljer

AST En kosmisk reise Forelesning 2: Litt astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet

AST En kosmisk reise Forelesning 2: Litt astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet AST1010 - En kosmisk reise Forelesning 2: Litt astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet Beskjeder Gruppeundervisning starter neste uke. Finn din gruppe på StudentWeb

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: 9. mai Tid for eksamen:0900-1200 Oppgavesettet er på 2 sider Vedlegg:

Detaljer

AST En kosmisk reise Forelesning 2: De viktigste punktene i dag. Det geosentriske verdensbildet 1/23/2017

AST En kosmisk reise Forelesning 2: De viktigste punktene i dag. Det geosentriske verdensbildet 1/23/2017 AST1010 - En kosmisk reise Forelesning 2: Litt astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet De viktigste punktene i dag Geosentrisk: Jorden i sentrum Heliosentrisk:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Onsdag 14. mai 2014 Tid for eksamen:0900-1200 Oppgavesettet er på 2 sider

Detaljer

De punktene i dag

De punktene i dag AST1010 - En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus @l Galilei og Newton De vik@gste punktene i dag Kopernikus: Sola i sentrum, men fremdeles episykler. Brahe: Nøyak@ge målinger

Detaljer

AST En kosmisk reise Forelesning 2:

AST En kosmisk reise Forelesning 2: AST1010 - En kosmisk reise Forelesning 2: Li: astronomihistorie Det geosentriske verdensbildet Det heliosentriske verdensbildet De vikbgste punktene i dag Geosentrisk: Jorden i sentrum Heliosentrisk: Solen

Detaljer

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1

AST1010 En kosmisk reise. Forelesning 4: Fysikken i astrofysikk, del 1 AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Innhold Mekanikk Termodynamikk Elektrisitet og magnetisme Elektromagnetiske bølger Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

AST1010 En kosmisk reise. Forelesning 6: De indre planetene og månen del 1: Merkur og Venus

AST1010 En kosmisk reise. Forelesning 6: De indre planetene og månen del 1: Merkur og Venus AST1010 En kosmisk reise Forelesning 6: De indre planetene og månen del 1: Merkur og Venus De viktigste punktene i dag: Hva er en planet? Plutos ferd fra planet til dvergplanet. Hvordan kan vi finne ut

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Fredag 7. april 2017 Tid for eksamen: 09:00 12:00 Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Onsdag 16. november 2016 Tid for eksamen: 09:00 12:00 Oppgavesettet er

Detaljer

Artikkel 7: Navigering til sjøs uten GPS

Artikkel 7: Navigering til sjøs uten GPS Artikkel 7: Navigering til sjøs uten GPS Hvordan kan navigatøren bestemme posisjonen uten GPS? I 1714 utlovet Det engelske parlament 20000 pund (en formidabel sum den gangen) som belønning for den som

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus Innhold Hva ønsker vi å vite om de indre planetene? Hvordan kan vi finne det ut? Oversikt over Merkur: Bane, geologi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 Astronomi en kosmisk reise Eksamensdag: Fredag 7. april 2017 Tid for eksamen: 09:00 12:00 Oppgavesettet er på

Detaljer

AST En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton

AST En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton AST1010 - En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus til Galilei og Newton Hvorfor drev man egentlig med astronomi? Middelalderen: Ikke fullt så mørk som mange tror. Kopernikus: Ikke

Detaljer

De vikagste punktene i dag:

De vikagste punktene i dag: AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 De vikagste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magneasme:

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Elektromagne;sk stråling De vik;gste punktene i dag: Sorte legemer og sort stråling. Emisjons- og absorpsjonslinjer. Kirchhoffs lover. Synkrotronstråling Bohrs atommodell

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 4: Fysikken i astrofysikk, del 1 Mekanikk Termodynamikk Innhold Elektrisitet og magnecsme ElektromagneCske bølger 1 Mekanikk Newtons bevegelseslover Et legeme som ikke

Detaljer

AST1010 En kosmisk reise. Forelesning 21: Oppsummering

AST1010 En kosmisk reise. Forelesning 21: Oppsummering AST1010 En kosmisk reise Forelesning 21: Oppsummering En campus med planeter: del på 10 10 Sola Diameter 1.4 x 10 6 km 14 cm (grapefrukt) Jorda Merkur Venus Mars Jupiter Saturn Uranus Neptun Avstand til

Detaljer

De vikcgste punktene i dag:

De vikcgste punktene i dag: 07/02/16 AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 1: Merkur og Venus De vikcgste punktene i dag: Hva er en planet? Plutos ferd fra planet Cl dvergplanet. Hvordan kan vi finne

Detaljer

Planetene. Neptun Uranus Saturn Jupiter Mars Jorda Venus Merkur

Planetene. Neptun Uranus Saturn Jupiter Mars Jorda Venus Merkur Planetene Neptun Uranus Saturn Jupiter Mars Jorda Venus Merkur De indre planetene De ytre planetene Kepler s 3 lover Planetene beveger seg i elipseformede baner med sola i det ene brennpunktet. Den rette

Detaljer

Oppgaver med fasit for AST1010 våren 2004

Oppgaver med fasit for AST1010 våren 2004 Oppgaver med fasit for AST1010 våren 2004 1. Hva er et lysår? Hva måler vi med enheten lysår? Et lysår er den avstand som lyset tilbakelegger i løpet av ett år. Lysår brukes når man skal angi avstanden

Detaljer

1 Leksjon 2: Sol og måneformørkelse

1 Leksjon 2: Sol og måneformørkelse Innhold 1 LEKSJON 2: SOL OG MÅNEFORMØRKELSE... 1 1.1 SOLFORMØRKELSEN I MANAVGAT I TYRKIA 29. MARS 2006... 1 1.2 DELVIS SOLFORMØRKELSE I KRISTIANSAND 31. MAI 2003... 4 1.3 SOLFORMØRKELSE VED NYMÅNE MÅNEFORMØRKELSE

Detaljer

1. Hvordan definerer vi lengdeenheten parsek (parsec)? Hvilke avstander måles vanligvis i parsek eller megaparsek (Mpc - millioner parsek)?

1. Hvordan definerer vi lengdeenheten parsek (parsec)? Hvilke avstander måles vanligvis i parsek eller megaparsek (Mpc - millioner parsek)? Eksamen i AST1010 den kosmiske reisen Tidspunkt: 10 mai 2005 kl 09.00 (3 timer) Det anbefales å gi forholdsvis korte svar på hvert spørsmål, men å svare på så mange av spørsmålene som mulig. Hvert spørsmål

Detaljer

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2

AST1010 En kosmisk reise. Forelesning 5: Fysikken i astrofysikk, del 2 AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover Optikk: Refleksjon, brytning og diffraksjon Relativitetsteori, spesiell

Detaljer

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST101 Grunnkurs i astronomi Eksamensdag: Onsdag 14. mai, 2003 Tid for eksamen: 09.00 15.00 Oppgavesettet er på 5 sider Vedlegg:

Detaljer

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131

Kosmos YF Naturfag 2. Stråling og radioaktivitet Nordlys. Figur side 131 Stråling og radioaktivitet Nordlys Figur side 131 Antallet solflekker varierer med en periode på ca. elleve år. Vi hadde et maksimum i 2001, og vi venter et nytt rundt 2011 2012. Stråling og radioaktivitet

Detaljer

Eksamen AST1010 oppgaver med fasit

Eksamen AST1010 oppgaver med fasit Eksamen AST1010 oppgaver med fasit Det anbefales å gi korte svar på hvert spørsmål, men å svare på så mange spørsmål som mulig. Hvert spørsmål teller likt ved bedømmelsen, men det legges vekt på at besvarelsen

Detaljer

Eksamen AST november 2007 Oppgaver med fasit

Eksamen AST november 2007 Oppgaver med fasit Eksamen AST1010 15 november 2007 Oppgaver med fasit Oppgave 1. Hva er himmelekvator og hva er ekliptikken? Hva er grunnen til at himmelekvator og ekliptikken ikke faller sammen på himmelkula, men danner

Detaljer

De vikdgste punktene i dag:

De vikdgste punktene i dag: AST1010 En kosmisk reise Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars De vikdgste punktene i dag: Jorden: Bane, atmosfære, geologi, magneielt. Månen: Faser og formørkelser. Atmosfære

Detaljer

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 2: Jorden, månen og Mars

AST1010 En kosmisk reise. Forelesning 7: De indre planetene og månen del 2: Jorden, månen og Mars AST1010 En kosmisk reise Forelesning 7: De indre planetene og månen del 2: Jorden, månen og Mars De viktigste punktene i dag: Jorden: Bane, atmosfære, geologi, magnetfelt. Månen: Faser og formørkelser.

Detaljer

AST1010 En kosmisk reise. Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HRdiagrammet

AST1010 En kosmisk reise. Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HRdiagrammet AST1010 En kosmisk reise Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HRdiagrammet Innhold Parallakse og avstand Tilsynelatende og absolutt størrelsesklasse. Avstandsmodulus.

Detaljer

De vik;gste punktene i dag:

De vik;gste punktene i dag: En kosmisk reise Forelesning 2 Om stjernehimmelen, koordinatsystemer og astronomi i an;kken De vik;gste punktene i dag: Hvordan angi posisjon på himmelen Hvordan stjernehimmelen forandrer seg gjennom gjennom

Detaljer

Tycho Brahe Observatoriet på UiA - 2010

Tycho Brahe Observatoriet på UiA - 2010 Tycho Brahe Observatoriet på UiA - 2010 Etter Tycho Brahes død overtok Johannes Kepler (1571-1630) observasjonsmaterialet til Tycho Brahe. Kepler fikk i oppgave av Brahe å studere Marsbanen litt nøyere,

Detaljer

AST1010 En kosmisk reise. Innledende stoff om stjerner: Avstander, størrelsesklasser, HR-diagrammet

AST1010 En kosmisk reise. Innledende stoff om stjerner: Avstander, størrelsesklasser, HR-diagrammet AST1010 En kosmisk reise Innledende stoff om stjerner: Avstander, størrelsesklasser, HR-diagrammet Hva er målet? Hva er viktig? Dere trenger ikke å huske alle tall i detalj. F.eks.: Diameter til alle planetene

Detaljer

Observasjon av universet ved ulike bølgelengder fra radiobølger til gammastråling. Terje Bjerkgård og Erlend Rønnekleiv

Observasjon av universet ved ulike bølgelengder fra radiobølger til gammastråling. Terje Bjerkgård og Erlend Rønnekleiv Observasjon av universet ved ulike bølgelengder fra radiobølger til gammastråling. Terje Bjerkgård og Erlend Rønnekleiv Innhold Elektromagnetisk stråling Det elektromagnetiske spektrum Gammastråling Røntgenstråling

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HR- diagrammet Innhold Parallakse og avstand Tilsynelatende og absoluj størrelsesklasse. Avstandsmodulen.

Detaljer

Regneoppgaver AST 1010, vår 2017

Regneoppgaver AST 1010, vår 2017 Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 09.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.

Detaljer

AST En kosmisk reise Forelesning 3: De vikagste punktene i dag 8/24/15. Hvordan finne sted og Ad uten GPS og klokke? Astronomi er svaret!

AST En kosmisk reise Forelesning 3: De vikagste punktene i dag 8/24/15. Hvordan finne sted og Ad uten GPS og klokke? Astronomi er svaret! AST1010 - En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus Al Galilei og Newton De vikagste punktene i dag Kopernikus: Sola i sentrum, men fremdeles episykler. Brahe: NøyakAge målinger

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009 Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er

Detaljer

AST En kosmisk reise Forelesning 3:

AST En kosmisk reise Forelesning 3: AST1010 - En kosmisk reise Forelesning 3: Fra middelalderen via Kopernikus Al Galilei og Newton Hvorfor drev man egentlig med astronomi? Middelalderen: Ikke fullt så mørk som mange tror. Kopernikus: Ikke

Detaljer

Fasit for AST1010 høsten 2004.

Fasit for AST1010 høsten 2004. Fasit for AST1010 høsten 2004. 1. Hva er en astronomisk enhet (astronomical unit, AU) og hva brukes den til? En astronomisk enhet (astronomical unit - AU) svarer til middelavstanden mellom sola og jorda,

Detaljer

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk

AST1010 En kosmisk reise. De viktigste punktene i dag: Mekanikk 1/19/2017. Forelesning 3: Mekanikk og termodynamikk AST1010 En kosmisk reise Forelesning 3: Mekanikk og termodynamikk De viktigste punktene i dag: Mekanikk: Kraft, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magnetisme:

Detaljer

AST1010 En kosmisk reise. Forelesning 18: Eksoplaneter og jakten på liv

AST1010 En kosmisk reise. Forelesning 18: Eksoplaneter og jakten på liv AST1010 En kosmisk reise Forelesning 18: Eksoplaneter og jakten på liv 3 p for enheter 2 p for størrelser (OBAFGKM teller som en størrelse her) 2 p for hovedserien 1 p for røde kjemper 1 p for sola 1 p

Detaljer

AST1010 En kosmisk reise. Innhold. Stjerners avstand og lysstyrke 01/03/16

AST1010 En kosmisk reise. Innhold. Stjerners avstand og lysstyrke 01/03/16 AST1010 En kosmisk reise Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HR- diagrammet Innhold Parallakse og avstand Tilsynelatende og absolui størrelsesklasse. Avstandsmodulen.

Detaljer

De vikcgste punktene i dag:

De vikcgste punktene i dag: AST1010 En kosmisk reise Forelesning 8: De indre planetene og månen del 2: Jorden, månen og Mars De vikcgste punktene i dag: Jorden: Bane, atmosfære, geologi, magnehelt. Månen: Faser og formørkelser. Atmosfære

Detaljer

Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, Oppgavesettet er på 6 sider

Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, Oppgavesettet er på 6 sider UNIVERSITETET I OSLO Det matetmatisk-naturvitenskapelige fakultet Midtveis -eksamen i AST1100, 10 oktober 2007, 14.30 17.30 Oppgavesettet er på 6 sider Konstanter og uttrykk som kan være nyttige: Lyshastigheten:

Detaljer

Oppgaver med fasit våren Hva er månefaser? Hvorfor har vi månefaser?

Oppgaver med fasit våren Hva er månefaser? Hvorfor har vi månefaser? 1 Oppgaver med fasit våren 2007 1. Hva er månefaser? Hvorfor har vi månefaser? Svar: Månefaser er den del av den solbelyste månen som er synlig fra jorda. Vi snakker om nymåne, sigdmåne, halvmåne og fullmåne.

Detaljer

Oppgaver, Fasit og Sensurveiledning

Oppgaver, Fasit og Sensurveiledning Oppgaver, Fasit og Sensurveiledning for AST1010 høsten 2003 1. Hva er ekliptikken? Et helt riktig svar: Solas tilsynelatende bane mellom stjernene på himmelkula i løpet av året. Et akseptabelt svar er:

Detaljer

AST1010 En kosmisk reise. Forelesning 3: Mekanikk, termodynamikk og elektromagnetisme

AST1010 En kosmisk reise. Forelesning 3: Mekanikk, termodynamikk og elektromagnetisme AST1010 En kosmisk reise Forelesning 3: Mekanikk, termodynamikk og elektromagnetisme Beskjeder Gruppe undervisningen er flyttet. Nye rom er: Onsdag: Kjemibygningen seminarrom Berzelius. Fredag: Fysikkbygningen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: AST1010 - Astronomi - en kosmisk reise Eksamensdag: Onsdag 11. november 2015 Tid for eksamen:0900-1200 Oppgavesettet er på 3

Detaljer

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år.

Jorda bruker omtrent 365 og en kvart dag på en runde rundt sola. Tilsammen blir disse fire fjerdedelene til en hel dag i løpet av 4 år. "Hvem har rett?" - Jorda og verdensrommet 1. Om skuddår - I løpet av 9 år vil man oppleve 2 skuddårsdager. - I løpet av 7 år vil man oppleve 2 skuddårsdager. - I løpet av 2 år vil man oppleve 2 skuddårsdager.

Detaljer

AST1010 En kosmisk reise. I dag 2/16/2017. Forelesning 11: Dannelsen av solsystemet. Planetene i grove trekk Kollapsteorien Litt om eksoplaneter

AST1010 En kosmisk reise. I dag 2/16/2017. Forelesning 11: Dannelsen av solsystemet. Planetene i grove trekk Kollapsteorien Litt om eksoplaneter AST1010 En kosmisk reise Forelesning 11: Dannelsen av solsystemet I dag Planetene i grove trekk Kollapsteorien Litt om eksoplaneter Solsystemet: Varierende relative mengder av metaller og silikater forhold

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 5: Fysikken i astrofysikk, del 2 Innhold Synkrotronstråling Bohrs atommodell og Kirchhoffs lover OpJkk: Refleksjon, brytning og diffraksjon RelaJvitetsteori, spesiell

Detaljer

Kjenn på gravitasjonskraften

Kjenn på gravitasjonskraften Kjenn på gravitasjonskraften Klasseromressurs for grunnskolen Kort om aktiviteten I denne aktiviteten lærer elevene om gravitasjonskraften og hvilke krefter som virker på alt i universet. Vi prøver å svare

Detaljer

ESERO AKTIVITET Grunnskole og vgs

ESERO AKTIVITET Grunnskole og vgs ESERO AKTIVITET Grunnskole og vgs Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 90 min Lære hvordan magnetfelt oppfører seg Lære om magnetfelt på andre planeter og himmellegemer

Detaljer

1 Historien om det heliosentriske Univers

1 Historien om det heliosentriske Univers 1 Historien om det heliosentriske Univers Det er umulig for en observatør uten teleskop å observere om det er Jorden som roterer rundt Solen eller om det er Solen som roterer rundt Jorden. På Jorden opplever

Detaljer

Newton Camp modul 1190 "Luftige reiser, Newton-camp Vest-Agder 2015"

Newton Camp modul 1190 Luftige reiser, Newton-camp Vest-Agder 2015 Newton Camp modul 1190 "Luftige reiser, Newton-camp Vest-Agder 2015" Kort beskrivelse av Newton Camp-modulen I disse aktivitetene skal vi se på hvordan luft kan brukes på ulike metoder til å forflytte

Detaljer

AST1010 En kosmisk reise. Forelesning 16: Eksoplaneter og jakten på liv

AST1010 En kosmisk reise. Forelesning 16: Eksoplaneter og jakten på liv AST1010 En kosmisk reise Forelesning 16: Eksoplaneter og jakten på liv Innhold Betingelser for liv Den beboelige sonen Metoder til å finne eksoplaneter Hva har vi funnet hittil? AST1010 - Liv i universet

Detaljer

KOSMOS. 9: Stråling fra sola og universet Figur side 267. Den øverste bølgen har lavere frekvens enn den nederste. Bølgelengde Bølgetopp.

KOSMOS. 9: Stråling fra sola og universet Figur side 267. Den øverste bølgen har lavere frekvens enn den nederste. Bølgelengde Bølgetopp. 9: Stråling fra sola og universet Figur side 267 Bølgelengde Bølgetopp Bølgeretning Bølgelengde Bølgetopp Lav frekvens Bølgelengde Høy frekvens 1 2 3 4 5 Tid (s) Den øverste bølgen har lavere frekvens

Detaljer

AST1010 En kosmisk reise. Forelesning 12: Dannelsen av solsystemet

AST1010 En kosmisk reise. Forelesning 12: Dannelsen av solsystemet AST1010 En kosmisk reise Forelesning 12: Dannelsen av solsystemet Et par viktige detaljer fra sist Asteroider: 100 års forvarsel Baner kan regnes ut Kometer: 1-5 års forvarsel Kommer fra det ytre solsystemet

Detaljer

Regneoppgaver AST 1010, vår 2017

Regneoppgaver AST 1010, vår 2017 Regneoppgaver AST 1010, vår 2017 (Sist oppdatert: 29.03.2017) OBS: Ikke få panikk om du ikke får til oppgavene med en gang, eller om du står helt fast: I forelesningsnotatene 1 finner du regneeksempler.

Detaljer

AST1010 En kosmisk reise. Forelesning 19: Kosmologi

AST1010 En kosmisk reise. Forelesning 19: Kosmologi AST1010 En kosmisk reise Forelesning 19: Kosmologi Hubble og Big Bang Bondi, Gold, Hoyle og Steady State Gamow, Alpher, Herman og bakgrunnsstrålingen Oppdagelsen av bakgrunnsstrålingen Universets historie

Detaljer

FLERVALGSOPPGAVER I NATURFAG - FYSIKK

FLERVALGSOPPGAVER I NATURFAG - FYSIKK FLERVALGSOPPGAVER I NATURFAG - FYSIKK Naturfag fysikk 1 Hvor mye strøm går det i en leder når man belaster lysnettet som har en spenning på 220 V med en effekt på 2 200 W? A) 100 A B) 10 A C) 1,0 A D)

Detaljer

AST1010 En kosmisk reise. Innhold 10/13/15. Forelesning 16: Eksoplaneter og jakten på liv

AST1010 En kosmisk reise. Innhold 10/13/15. Forelesning 16: Eksoplaneter og jakten på liv AST1010 En kosmisk reise Forelesning 16: Eksoplaneter og jakten på liv Innhold BeCngelser for liv Den beboelige sonen Metoder Cl å finne eksoplaneter Hva har vi funnet hill? 1 AST1010 - Liv i universet

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 16: Eksoplaneter og jakten på liv Innhold BeCngelser for liv Den beboelige sonen Metoder Cl å finne eksoplaneter Hva har vi funnet hill? 1 AST1010 - Liv i universet

Detaljer

AST1010 En kosmisk reise. Innhold. Stjerners avstand og lysstyrke 9/27/15

AST1010 En kosmisk reise. Innhold. Stjerners avstand og lysstyrke 9/27/15 AST1010 En kosmisk reise Forelesning 13: Innledende stoff om stjerner: Avstander, størrelsesklasser, HR- diagrammet Innhold Parallakse og avstand Tilsynelatende og absolul størrelsesklasse. Avstandsmodulen.

Detaljer

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1

Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: Løsningsforslag. Oppgave 1 UNIVERSITETET I OSLO Det matematisk naturvitenskapelige fakultet Eksamen i AST2110 Universet Eksamensdag: Fredag 9. juni 2006 Tid for eksamen: 09.00 12.00 Løsningsforslag Oppgave 1 Robertson-Walker metrikken

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNVERSTETET OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1000 Eksamensdag: 14. august 2015 Tid for eksamen: 14.30-18.30, 4 timer Oppgavesettet er på 5 sider Vedlegg: Formelark (2 sider).

Detaljer

AST1010 En kosmisk reise. Forelesning 7: Dannelsen av solsystemet

AST1010 En kosmisk reise. Forelesning 7: Dannelsen av solsystemet AST1010 En kosmisk reise Forelesning 7: Dannelsen av solsystemet Obligatorisk Oppgave Kommer på fredag. Følg med på semestersidene. Skal også sende e-post. Elektronisk oppgave Kun 15 oppgaver. Skal ikke

Detaljer

Repe)sjon, del 2. Oppgave 1: 11/4/15. Merkur og Venus alltid nær sola. Gjennomgang av eksamen H2010 Råd og formaninger

Repe)sjon, del 2. Oppgave 1: 11/4/15. Merkur og Venus alltid nær sola. Gjennomgang av eksamen H2010 Råd og formaninger Repe)sjon, del 2 Gjennomgang av eksamen H2010 Råd og formaninger Oppgave 1: Observert fra jorden er den største vinkelavstanden mellom planetene Merkur og Venus og solen henholdsvis 28 og 46 grader. Hvordan

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 3: Mekanikk og termodynamikk De vik@gste punktene i dag: Mekanikk: KraD, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magne@sme:

Detaljer

Løsningsforslag til eksamen i FYS1000, 14/8 2015

Løsningsforslag til eksamen i FYS1000, 14/8 2015 Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en

Detaljer

Oppgaver med fasit høstsemesteret 2006.

Oppgaver med fasit høstsemesteret 2006. 1 Oppgaver med fasit høstsemesteret 2006. Det anbefales å gi korte svar på hvert spørsmål, men å svare på så mange av spørsmålene som mulig. Hvert spørsmål teller likt ved bedømmelsen, men det legges vekt

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 3: Mekanikk og termodynamikk De vikbgste punktene i dag: Mekanikk: KraF, akselerasjon, massesenter, spinn Termodynamikk: Temperatur og trykk Elektrisitet og magnebsme:

Detaljer

Solsystemet, 5.-7. trinn

Solsystemet, 5.-7. trinn Lærerveiledning Solsystemet, 5.-7. trinn Viktig informasjon om Solsystemet Vi ønsker at lærere og elever er forberedt når de kommer til VilVite. Lærerveiledningen inneholder viktig informasjon om læringsprogrammet

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

AST1010 En kosmisk reise. Forelesning 19: Kosmologi, del I

AST1010 En kosmisk reise. Forelesning 19: Kosmologi, del I AST1010 En kosmisk reise Forelesning 19: Kosmologi, del I Astronomiske avstander Hvordan vet vi at nærmeste stjerne er 4 lysår unna? Parallakse (kun nære stjerner) Hvordan vet vi at galaksen vår er 100

Detaljer

AST1010 En kosmisk reise. Forelesning 12: Dannelsen av solsystemet

AST1010 En kosmisk reise. Forelesning 12: Dannelsen av solsystemet AST1010 En kosmisk reise Forelesning 12: Dannelsen av solsystemet Innhold Planetene i grove trekk Krav til en teori for solsystemets dannelse Kollapsteorien Litt om eksoplaneter Solsystemet: Varierende

Detaljer

AST1010 En kosmisk reise

AST1010 En kosmisk reise AST1010 En kosmisk reise Forelesning 16: Nøytronstjerner og sorte hull HR-diagram: Logaritmisk skala for både L og T (Ikke glem at temperaturen øker mot venstre.) Karbondetonasjon vs. kjernekollaps Fusjon

Detaljer

LØSNINGSFORSLAG, KAPITTEL 3

LØSNINGSFORSLAG, KAPITTEL 3 LØSNINGSFORSLAG, KAPITTEL 3 REVIEW QUESTIONS: 1 Hvordan påvirker absorpsjon og spredning i atmosfæren hvor mye sollys som når ned til bakken? Når solstråling treffer et molekyl eller en partikkel skjer

Detaljer

Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR. v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange.

Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR. v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange. Arctic Lidar Observatory for Middle Atmosphere Research - ALOMAR v/ Barbara Lahnor, prosjektingeniør ALOMAR barbara@rocketrange.no Hvorfor studere den øvre atmosfæren? ALOMAR forskningsinfrastruktur til

Detaljer

AST En kosmisk reise Forelesning 1 : Kursopplegg. Gruppetimer

AST En kosmisk reise Forelesning 1 : Kursopplegg. Gruppetimer AST1010 - En kosmisk reise Forelesning 1 : Om emnet, pensum og eksamen Hva er astronomi og astrofysikk? Å finne fram på stjernehimmelen Kursopplegg Forelesninger: 2 x 2 timer/uke. Gruppetimer: 1 x 2 timer/uke

Detaljer

AST1010 den kosmiske reisen 15 november Hva forstår vi med jordaksens presesjon og hva forårsaker presesjonen?

AST1010 den kosmiske reisen 15 november Hva forstår vi med jordaksens presesjon og hva forårsaker presesjonen? Side 1 AST1010 den kosmiske reisen 15 november 2005 1. Hva forstår vi med jordaksens presesjon og hva forårsaker presesjonen? Svar: Jordaksens presesjon er en langsom rotasjon av jordaksen rundt normalen

Detaljer