Magnetfeltøvelse MÅL/HENSIKT. Øvelsen skal gi studenten en forståelse for hvordan måling av magnetfelt kan gi oss verdifull informasjon om nordlys.

Størrelse: px
Begynne med side:

Download "Magnetfeltøvelse MÅL/HENSIKT. Øvelsen skal gi studenten en forståelse for hvordan måling av magnetfelt kan gi oss verdifull informasjon om nordlys."

Transkript

1 Magnetfeltøvelse MÅL/HENSIKT VARIGHET STED UTSTYRSLISTE SIKKERHETSKRAV FORKUNNSKAPER Øvelsen skal gi studenten en forståelse for hvordan måling av magnetfelt kan gi oss verdifull informasjon om nordlys. 2 timer Narom Laboratorium Honeywell magnetometer, kalkulator, oppspent lang ledning som tåler flere ampère kontinuerlig strøm, strømkilde som kan levere minst 10 A. Fordel å ha lært hvor stort og hvilken retning magnetfelt har nær en uendelig lang rett leder med elektrisk strøm. Ingenting spesielt, bare noe som dekker forkunnskapskravet SIDE 1 AV 10

2 Teoretisk del: Bakgrunn for labøvelse Generell innledning Jorda har et magnetfelt, og vi vet å benytte oss av dette når vi navigerer med kompass. Kompassnåla dreier seg rundt slik at den peker mot nord. Magnetfeltet må derfor ha en retning. Og jordas magnetfelt har også en størrelse, og den er på mellom 40 og 70 µt (mikrotesla), hvilket er ganske svakt sammenliknet med feltet vi har like utenfor en kjøleskapsmagnet, som er på ca µt (lik 0,01 0,06 T, tesla). I fysikken kaller vi fysiske egenskaper for vektorer når de både har en størrelse og en retning. Men magnetfeltet fra jorda er faktisk ikke rettet samme vei som en vanlig kompassnål. Jordmagnetfeltet på våre breddegrader peker delvis inn i jorda samtidig som det peker nordover. På orienteringskompasser er det lagt inn et ekstra lodd som gjør at kompassnåla holder seg horisontal, selv om jordas magnetfelt peker delvis innover. Det er dette ekstra loddet som gjør at våre vanlig orienteringskompasser ikke er særlig egnede for eksempel i Australia, hvor jordmagnetfeltet delvis peker opp fra bakken (og mot nord). Du kan selv spekulere ut hvorfor det går bra med vanlige skipskompass, slik at disse fungerer bra nesten over alt, men ikke like i nærheten av magnetisk nordpol eller sørpol. Det er litt rart å tenke på at det egentlig er den sørlige magnetfeltpolen som ligger langt mot geografisk nord, og magnetisk nordpol langt mot sør. Feltlinjene peker fra magnetisk nordpol mot magnetisk sørpol. Nordpolen på en kompassnål peker mot nord (på folkemunne kalt magnetisk nord, men i fysikken definert som magnetisk sør). Jordas magnetfelt endrer seg i løpet av hundretusener av år. Vi mener til og med å ha påvist at magnetisk nord og sørpol har vippet rundt noen ganger opp gjennom jordas historie. Men i løpet av en dag eller en uke, er endringene alt for små til å registrere. Likevel kan vi med følsomme magnetfeltmålere, gjerne kalt magnetometre, registrere svake endringer i jordmagnetfeltet i løpet av sekunder og minutter. Disse endringene skyldes ikke forhold i jordens indre, men at vi får et tilleggsmagnetfelt som skyldes elektriske strømmer i atmosfæren. Vi har også magnetfelt som skyldes menneskelig aktivitet, for eksempel trikk, T-bane, jernbane, el-biler, andre biler, kraftledninger, varmekabler, motorer, komfyrer osv. Vi skal ikke gå inn på disse siste magnetfeltbidragene i denne øvelsen, men kun konsentrere oss om de magnetfeltene naturen selv skaper. Når elektrisk ladde partikler som er slynget ut fra sola når jordas atmosfære, vil partiklene ofte følge jordas magnetfelt og mer eller mindre spiralere seg inn mot polområdene. Kommer partiklene langt nok inn mot jorda, treffer de atmosfæren, og skaper nord- eller sørlys. De fleste av partiklene er elektrisk ladet (elektroner eller protoner), og dersom en ansamling elektroner farer forbi oss oppe i atmosfæren, tilsvarer dette at det faktisk går en elektrisk strøm der oppe et kort øyeblikk. De fleste strømmer av denne typen går i retning øst til vest, eller motsatt. Partikkelstrømmene går gjerne i en høyde på mellom 100 og 130 km over bakken når de danner nordlys. Fra fysikken vet vi at elektriske strømmer skaper magnetfelt. Dette oppdaget dansken Ørstedt i 1807, og hans oppdagelse fikk fysikken til å blomstre kolossalt opp.i løpet av få år hadde Ampère, Biot, Savart, Faraday og andre gjort noen av deres viktigste oppdagelser. Senere samlet Maxwell disse erfaringene i de velkjente Maxwells lover. Men for å hoppe tilbake fra historien til vår gjennomgang av nordlys og magnetfelt, er det altså slik at nordlys dannes av elektrisk ladde partikler som er kommet med SIDE 2 AV 10

3 solvinden fra sola. De samme elektriske ladde partiklene lager et magnetfelt i området i nærheten. Ved kraftig partikkelstrøm kan det bli mye nordlys, og relativt store magnetfeltbidrag ved bakken. Retningen på det totale magnetfeltet kan da midlertidig skifte retning, og det er rapportert at kompasset kan komme opp til 10 grader ut av den normale retningen under kraftige nordlys. Kraftig partikkelstrøm gir det vi kaller en magnetisk storm, og denne stykkes opp i enkelthendelser (fluktasjoner) som kalles magnetisk substorm. Alt dette betyr at dersom vi kan måle magnetfeltene, vil vi også få en pekepinn om når det er nordlys, og vi kan også finne ut litt om hvor nordlyset var. Alternativ forklaring: Når nordlys strekker seg som en bue over himmelen vil denne ha en relativt kort utstrekning i nord-syd retning, men vil kunne strekke seg tusener av kilometer i øst-vest retning. Nordlyspartiklene fører til ionisasjon langs buen og dermed også høy elektrisk ledningsevne. Elektriske felt i ionosfæren vil da kunne drive en betydelig elektrisk strøm (kalt elektrojet) langs buen. Fra bakken kan det se ut som om vi har en tilnærmet rettlinjet linjestrøm over oss, gjerne da i øst-vest retning. Magnetfeltet avtar imidlertid med avstanden fra der strømmen går, og det betyr at vi må være i nærheten for at ikke bidraget til magnetfelt helt drukner i støy. Vi kan således ikke med måleinstrumenter i Norge følge med på sørlys ved Antarktis. Vi har imidlertid følsomme nok instrumenter til at vi for eksempel kan registrere magnetfelt fra kraftige nordlys rett over Andøya, helt opp på Svalbard, og helt ned til Trondheim. Kraftigste utslag vil vi allikevel få nettopp på bakken like under nordlyset, som i vårt eksempel ville vært Andøya. Magnetfelt fra en elektrisk strøm I fysikken bruker vi det vi kaller Biot-Savarts lov for å beregne magnetfelt fra en vilkårlig strømfordeling. Iblant kan vi modellere fysikken på en enklere måte. Dersom strømmen følger omtrent en rett linje overalt i nærheten av det stedet vi måler feltet i, kan vi bruke en forenklet beregning. Feltet er da gitt som: og feltet i et punkt p et stykke fra strømlinjen vil da være rettet tangentielt i forhold til en sirkel gjennom p, der sirkelen har sentrum i linjen og er vinkelrett på denne. Hvilken vei tangenten skal peke finner vi ut fra høyrehåndsregelen : Dersom vi griper med høyre hånd omkring strømlinjen med tommelen i strømmens retning, vil magnetfeltet dreie seg rundt ledningen i samme retning som de øvrige fire fingrene peker. Magnetfeltet er for øvrig omvendt proporsjonalt med avstanden. Det vil si at feltet går ned til halvparten dersom avstanden til linjen økes til den doble. SIDE 3 AV 10

4 Dersom vi måler magnetfeltet i tre ortogonale retninger (X,Y,Z), kan vi finne retning og størrelse på magnetfeltet. Men dette er ikke nok til å bestemme akkurat hvor strømlinjen gikk. Vi kan finne retningen til strømlinjen, men vi kan ikke bestemme hvor langt unna strømlinjen var. Dersom vi derimot måler magnetfeltet samtidig to forskjellige plasser på jorda (og ikke alt for langt fra hverandre), vil vi kunne bestemme retningen fra to steder, og får en form for krysspeiling som gjør at vi faktisk kan bestemme posisjonen. Og så snart vi har posisjonen, kan vi også bestemme strømstyrken. Dette er tanken i grove trekk bak et nasjonalt og internasjonalt nettverk av magnetometre som tikker og går trutt og sikkert sekund etter sekund, dag etter dag, år etter år. Og et utdrag av disse måledataene er tilgjengelig fritt over internett. Gå til websidene til Nordlysobservatoriet i Tromsø på og velg The geomagnetic page. Eksempler på registrerte varasjoner i magnetfeltet er vist nedenfor. Her er det ikke X,Y,Z-komponenter som er vist, men horisontalkomponenten (H), misvisningen/ deklinasjonen (D), det vil si vinkelen mellom geografisk nord og magnetisk nord, og sist, men ikke minst, vertikalkomponenten av magnetfeltet (Z). Longyearbyen Sørøya SIDE 4 AV 10

5 Andenes Rørvik Bergen Selv om de totale variasjonene i jordas magnetfelt er mindre enn 2% så kan magnetfeltet fluktuere ganske mye i den perioden jeg har valgt ut. Størst fluktasjoner skjer ved Sørøya, og mye mindre i Bergen. Hver gang vi har en topp, enten oppover eller nedover, tilsvarer det at det flyr en del ladde partikler forbi høyt oppe i atmosfæren, denne gang i nærheten av Sørøya. Strømmen kan bli betydelig, og det må også til for at vi skal kunne få utslag på instrumentene våre når nordlyset og de ladde partiklene faktisk befinner seg ca 100 km oppe i atmosfæren! Det hadde ikke vært mulig å måle magnetfelter fra en kraftledning på den avstanden!!! Det er to grunner til at strømmen blir så stor som den blir. Strøm er definert som ladninger som passerer en (tenkt) flate pr. sekund. En stor strøm kan vi da få til ved enten å ha mange ladde partikler pr. volum (stor ladningstetthet), og/eller at ladningene farer forbi i stor fart. Våre partikler har en fart av omtrent samme størrelsesorden som lyset. Farten er altså meget stor. Når en så i tillegg har en betydelig ladningstetthet, blir strømmen stor. SIDE 5 AV 10

6 For de mest interesserte: Formelen ovenfor gjelder også for det tilfellet at strømmen ikke er samlet innenfor en tynn linje (kanal, ledning ). Selv om ladningene er fordelt over et stort tverrsnitt, får vi samme formler som ovenfor, forutsatt at ladningsfordelingen er det vi kaller sylindersymmetrisk, og forutsatt at partikkelstrømmen ikke når helt ned på bakken. Når vi i slike tilfeller får en retning og avstand til strømlinjen, er det da å forstå som symmetriaksen til strømfordelingen. Vi nevnte innledningsvis at den enkle formelen bare gjaldt dersom strømlinjen er rett overalt i nærheten av det punktet vi måler magnetfeltet i. Dette er en lite presis formulering, men sier omtrent som så: Dersom den nærmeste avstanden til strømlinjen er h, må strømmen følge en rett linje overalt innenfor en avstand av ca 5h, kanskje enda litt mer. Det er selvfølgelig ingen skarp grense her. Det er en glidende overgang, og grensen bestemmes ut fra hvor presise vi ønsker å være. Iblant kommer partikkelstrømmen inn mot jorda på en slik måte at den lager en flatestrøm som er omtrent like stor overalt i et helt plan over det stedet en gjør målinger. I så fall vil formelen ovenfor ikke gjelde. Vi får et magnetfelt som er gitt ved: B = 0.63 s (i µt) her s er såkalt flatestrømtetthet (strøm pr lengde) i det planet strømmen går. Magnetfeltet vil da være horisontalt og vinkelrett på retningen som strømmen går i (igjen bestemt ut fra høyrehåndsregelen). Dersom flatestrømmen dekker et så stort område at det omfatter flere målestasjoner, vil magnetfeltendringene på de aktuelle stasjonene være horisontale, parallelle og ha omtrent samme størrelse. Vi vil i denne øvelsen ikke bruke modeller basert på flatestrømmer for å analyse magnetfeltfluktasjoner. Oppsummering Jordas magnetfelt kan beskrives ved hjelp av vektorer, og peker delvis nedover og mot nord på våre breddegrader. Magnetfeltet på jordas overflate skyldes hovedsakelig strømmer av flytende jern i jordas indre, men partikkelstrømmer som kommer fra sola inn mot atmosfæren vår lager også et magnetfelt. Dette siste magnetfeltet kan variere i løpet av sekunder og minutter. Vi kan bruke samtidige magnetfeltmålinger fra flere målestasjoner for å bestemme hvor partikkelstrømmene gikk og hvor sterke strømmene var. Når vi skal regne på dataene, bruker vi ofte en forenklet modell som gir magnetfelt fra en rett leder som gitt ved den første figuren i denne veiledningen. Iblant kan det være bedre å analysere dataene under antagelsen at partikkelstrømmene forekommer i store horisontale plan, men vi vil ikke bruke en slik modell i denne øvelsen. SIDE 6 AV 10

7 Oppgave 1: Jordens magnetfelt og kompasset a) Legg kompasset flatt på et sted hvor det ikke finnes metallgjenstander nær ved (heller ikke spikere!). Merk retningen mot (magnetisk)nord. b) Legg magnetometeret med x-retningen parallell med kompassnåla. Fjern kompasset og mål så de tre komponentene av magnetfeltet med magnetometeret. c) Sannsynligvis måler du en verdi forskjellig fra 0 i y-retning. Forklar dette. d) Hvor sterkt er magnetfeltet(b) totalt; målt i antall mikrotesla? e) Hvor stor vinkel(i) danner magnetfeltet med horisontalplanet? Tegn figur. f) En av de kjente eventyrerne i Norge i dag vurderer å kjøpe et måleinstrument akkurat maken til det dere bruker i denne øvelsen for å kunne være sikker på at han i en planlagt ekspedisjon skal kunne finne den magnetiske sydpol. Hvordan ville dere ha brukt instrumentet for å lete dere fram til den magnetiske polen? SIDE 7 AV 10

8 Oppgave 2: Likestrøm kan få en kompassnål til å slå ut Vi vil her vise at likestrøm gjennom en ledning faktisk kan få en kompassnål til å slå ut, med andre ord gjenta Ørsteds berømte eksperiment. For å få det til, må vi konkurrere med jordas magnetfelt. Fra oppgave 1 kjenner du horisontalkomponenten av jordens magnetfelt på det stedet du er. a) Beregning Dersom du skal få et tydelig utslag på en kompassnål ved å sende en strøm gjennom en ledning, må strømmen være så stor at magnetfeltet du genererer blir omtrent like kraftig som horisontalkomponenten av jordmagnetfeltet. Beregn/anslå omtent hvor sterk strøm det må gå i ledningen for å få tilstrekkelig magnetfelt til å få et tydelig utslag på kompasset Anta at du ikke kommer så mye nærmere enn 1 cm med en ledning til en kompassnål. Bruk biot- savarts lov og snu den slik at du kan finne I. Magnetfeltet B som vi skal bruke i denne formelen er kun horisontal magnetfeltstyrke (H). b) Eksperiment Plasser kompasset på en horisontal flate et godt stykke vekk fra metallgjenstander. Forsøk så å holde en ledning horisontalt like over kompasshuset, først med ledningen på tvers av kompassnåla og dernest med ledningen langs kompassnåla. Hold resten av ledningen lengst mulig vekk fra kompasset. Koble et enkelt 9 V batteri kortvarig til ledningen i hver av de to retningene av ledningen samtidig som du observerer om kompasset slår ut eller ikke. (Du kortslutter batteriet, så koble ikke ledningen til batteriet lenger tid enn nødvendig). Forklar dine observasjoner ut fra høyrehåndsregelen. Bruk figurene på vedlagte ark. SIDE 8 AV 10

9 Tegn med pil Forventet: Resultat: SIDE 9 AV 10

10 Oppgave 3: Måling av magnetfelt fra et kunstig nordlys ved hjelp av et magnetometer Vi kan ikke skape nordlys på kommando, så vi må «simulere» nordlys i denne øvelsen. Siden vi i denne øvelsen bare er opptatt av det magnetfeltet som nordlyset genererer, kan vi simulere dette magnetfeltet ved hjelp av en lang, rett ledning hvor det går en likestrøm en viss periode. Ledningen henger vi opp i lufta, og vi skal gjøre målinger under denne ledningen både når det ikke går og når det går en strøm gjennom den.. Målinger Plasser magnetometeret med x-retningen parallell med ledningen rett under ledningen og merk av posisjonen. For å få brukbare måledata bør ikke avstanden til ledningen være for stor (20 30 cm). Mål de tre komponentene til jordmagnetfeltet uten at det går noe elektrisk strøm i ledningen over måleområdet. Noter dataene i tabellen i pkt. b) a) Mål avstanden mellom ledningen og magnetometeret før du begynner å måle. La så instruktøren skru på strømmen i ledningen, og gjenta målingene for to forskjellige strømverdier. Dette skal liksom svare til at det går en langt sterkere strøm oppe i atmosfæren i forbindelse med et nordlys. b) B x (µt) Med strøm 1 Med strøm 2 Uten strøm Differanse 1 Differanse 2 B y (µt) B z (µt) c) Beregning Når du har notert målingene i tabellen skal vi først finne differansen og så kan vi beregne totale magnetfelt. SIDE 10 AV 10

Elektrisk og Magnetisk felt

Elektrisk og Magnetisk felt Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske

Detaljer

Solur har ord på seg å være unøyaktige,

Solur har ord på seg å være unøyaktige, I samverkan mellan Nämnaren och Tangenten ANNE BRUVOLD Lag et solur som virker Hur man bygger ett solur som visar korrekt tid är inte självklart. I artikeln kan man läsa om olika typer av solur, från de

Detaljer

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag

Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste

Detaljer

Stråling - Nordlys. 10. November 2006

Stråling - Nordlys. 10. November 2006 Stråling - Nordlys 10. November 2006 Dagens hovedtema Nordlys Ioniserende stråling Elektromagnetisk stråling fra rommet Lunsj kl. 1200-1300 i kantinen på Høyteknologisenteret Nordlys Hva er nordlys, hvor

Detaljer

ESERO AKTIVITET HVILKEN EFFEKT HAR SOLEN? Lærerveiledning og elevaktivitet. Klassetrinn 7-8

ESERO AKTIVITET HVILKEN EFFEKT HAR SOLEN? Lærerveiledning og elevaktivitet. Klassetrinn 7-8 ESERO AKTIVITET Klassetrinn 7-8 Lærerveiledning og elevaktivitet Oversikt Tid Læremål Nødvendige materialer 50 min. lære at Solen dreier seg rundt sin egen akse fra vest til øst (mot urviserne) oppdage

Detaljer

Solcellen. Nicolai Kristen Solheim

Solcellen. Nicolai Kristen Solheim Solcellen Nicolai Kristen Solheim Abstract Med denne oppgaven ønsker vi å oppnå kunnskap om hvordan man rent praktisk kan benytte en solcelle som generator for elektrisk strøm. Vi ønsker også å finne ut

Detaljer

Kort innføring i kart, kartreferanser og kompass

Kort innføring i kart, kartreferanser og kompass Kort innføring i kart, kartreferanser og kompass UTM Universal Transverse Mercator (UTM) er en måte å projisere jordas horisontale flate over i to dimensjoner. UTM deler jorda inn i 60 belter fra pol til

Detaljer

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14

Manual til laboratorieøvelse. Solceller. Foto: Túrelio, Wikimedia Commons. Versjon 10.02.14 Manual til laboratorieøvelse Solceller Foto: Túrelio, Wikimedia Commons Versjon 10.02.14 Teori Energi og arbeid Arbeid er et mål på bruk av krefter og har symbolet W. Energi er et mål på lagret arbeid

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert

Detaljer

Obligatorisk oppgave 1

Obligatorisk oppgave 1 Obligatorisk oppgave 1 Oppgave 1 a) Trykket avtar eksponentialt etter høyden. Dette kan vises ved å bruke formlene og slik at, hvor skalahøyden der er gasskonstanten for tørr luft, er temperaturen og er

Detaljer

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks

FORSØK I OPTIKK. Forsøk 1: Bestemmelse av brytningsindeks FORSØK I OPTIKK Forsøk 1: Bestemmelse av brytningsindeks Hensikt I dette forsøket skal brytningsindeksen bestemmes for en sylindrisk linse ut fra måling av brytningsvinkler og bruk av Snells lov. Teori

Detaljer

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02.

ELEKTRISITET. - Sammenhengen mellom spenning, strøm og resistans. Lene Dypvik NN Øyvind Nilsen. Naturfag 1 Høgskolen i Bodø 18.01.02. ELEKTRISITET - Sammenhengen mellom spenning, strøm og resistans Lene Dypvik NN Øyvind Nilsen Naturfag 1 Høgskolen i Bodø 18.01.02.2008 Revidert av Lene, Øyvind og NN Innledning Dette forsøket handler om

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

Om flo og fjære og kunsten å veie Månen

Om flo og fjære og kunsten å veie Månen Om flo og fjære og kunsten å veie Månen Jan Myrheim Institutt for fysikk NTNU 28. mars 2012 Innhold Målt flo og fjære i Trondheimsfjorden Teori for tidevannskrefter Hvordan veie Sola og Månen Friksjon

Detaljer

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012

Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012 Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004. NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle

Detaljer

Sammendrag, uke 13 (30. mars)

Sammendrag, uke 13 (30. mars) nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde

Detaljer

Den franske fysikeren Charles de Columb er opphavet til Colombs lov.

Den franske fysikeren Charles de Columb er opphavet til Colombs lov. 4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes

Detaljer

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte

LAVFREKVENS FELT. Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte Magnetiske og elektrisk felt Virkning på kroppen Eksempler på felt og kilder inne, ute og i bilen Måling og fremgangsmåte LAVFREKVENS FELT Jostein Ravndal Ravnco Resources AS www.ravnco.com Magnetfelt

Detaljer

Løsningsforslag til prøve i fysikk

Løsningsforslag til prøve i fysikk Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt

Detaljer

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI

Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Geografisk navigasjon. Lengde- og breddegrader

Geografisk navigasjon. Lengde- og breddegrader Geografisk navigasjon Kartreferanse er en tallangivelse av en geografisk posisjon. Tallene kan legges inn i en datamaskin med digitalt kart, en GPS eller avmerkes på et papirkart. En slik tallmessig beskrivelse

Detaljer

Fysikkdag for Sørreisa sentralskole. Lys og elektronikk. Presentert av: Fysikk 1. Teknologi og forskningslære. Physics SL/HL (IB)

Fysikkdag for Sørreisa sentralskole. Lys og elektronikk. Presentert av: Fysikk 1. Teknologi og forskningslære. Physics SL/HL (IB) Fysikkdag for Sørreisa sentralskole Tema Lys og elektronikk Presentert av: Fysikk 1 Teknologi og forskningslære Og Physics SL/HL (IB) Innhold Tidsplan... 3 Post 1: Elektrisk motor... 4 Post 2: Diode...

Detaljer

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2

EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2 SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

BYGG ET FYRTÅRN FOR OG ETTERAREID

BYGG ET FYRTÅRN FOR OG ETTERAREID BYGG ET FYRTÅRN MÅL FRA KUNNSKAPSLØFTET Kompetansemål etter 7. årstrinn FOR OG ETTERAREID Fenomener og stoffer Mål for opplæringen er at eleven skal kunne gjøre forsøk magnetisme og elektrisitet og forklare

Detaljer

Kan du se meg blinke? 6. 9. trinn 90 minutter

Kan du se meg blinke? 6. 9. trinn 90 minutter Lærerveiledning Passer for: Varighet: Kan du se meg blinke? 6. 9. trinn 90 minutter Kan du se meg blinke? er et skoleprogram der elevene får lage hver sin blinkende dioderefleks som de skal designe selv.

Detaljer

Oppgaver til kapittel 4 Elektroteknikk

Oppgaver til kapittel 4 Elektroteknikk Oppgaver til kapittel 4 Elektroteknikk Oppgavene til dette kapittelet er lag med tanke på grunnleggende forståelse av elektroteknikken. Av erfaring bør eleven få anledning til å regne elektroteknikkoppgaver

Detaljer

Opplæring i Kart og Kompass

Opplæring i Kart og Kompass Opplæring i Kart og Kompass 3 gode grunner til å lære seg KART &KOMPASS 1. Du må vise at du kan bruke kart og kompass på tur, for å få «Jeg er beredt» merket 2. Programmerket: Kart og Kompass 3. Du går

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

Historien om universets tilblivelse

Historien om universets tilblivelse Historien om universets tilblivelse i den første skoleuka fortalte vi historien om universets tilblivelse og for elevene i gruppe 1. Her er historien Verden ble skapt for lenge, lenge siden. Og det var

Detaljer

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve

LABORATORIERAPPORT. RL- og RC-kretser. Kristian Garberg Skjerve LABORATORIERAPPORT RL- og RC-kretser AV Kristian Garberg Skjerve Sammendrag Oppgavens hensikt er å studere pulsrespons for RL- og RC-kretser, samt studere tidskonstanten, τ, i RC- og RL-kretser. Det er

Detaljer

Brukerveiledning for passiv kabelsøker

Brukerveiledning for passiv kabelsøker Revidert 16.02.2009 Brukerveiledning for passiv kabelsøker Bildet viser prototyper av kabelsøkemottaker og signalinjektor Siv. ing. Stian Holte Frogsv. 41 3611 Kongsberg stiaholt@online.no Stian Holte

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

Sammenhengen mellom strøm og spenning

Sammenhengen mellom strøm og spenning Sammenhengen mellom strøm og spenning Naturfag 1 30. oktober 2009 Camilla Holsmo Karianne Kvernvik Allmennlærerutdanningen Innhold 1.0 Innledning... 2 2.0 Teori... 3 2.1 Faglige begreper... 3 2.2 Teoriforståelse...

Detaljer

TFEM, METODE OG INSTRUMENTBESKRIVELSE

TFEM, METODE OG INSTRUMENTBESKRIVELSE TFEM, METODE OG INSTRUMENTBESKRIVELSE 1 Metodebeskrivelse TFEM, (Time and Frequency Electro Magnetic) er en elektromagnetisk metode hvor målingene foregår både i tidsdomenet og i frekvensdomenet. Med NGUs

Detaljer

Turbok for Molde og Omegn

Turbok for Molde og Omegn Turbok for Molde og Omegn Rutebeskrivelsene Demoutgave med 4 av over 30 turer Kai A. Olsen og Bjørnar S. Pedersen Forord På selve fotturen kan det være behov rutebeskrivelser. Hvor begynner stien? Skal

Detaljer

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER

+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER 1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,

Detaljer

Romkofferten. April 23, 2011 NAROM. Gjøre eksperimenter med utstyret i romkofferten og koble disse til teori

Romkofferten. April 23, 2011 NAROM. Gjøre eksperimenter med utstyret i romkofferten og koble disse til teori April 23, 2011 NAROM Grunnskolen X Videregående X Lærere X Høgskole/Universitet X HENSIKT VARIGHET STED UTSTYR SIKKERHET FORKUNNSKAP PROGRAMVARE Gjøre eksperimenter med utstyret i romkofferten og koble

Detaljer

Oppgaver i naturfag 19-åringer, fysikkspesialistene

Oppgaver i naturfag 19-åringer, fysikkspesialistene Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

LØSNINGSFORSLAG, KAPITTEL 2

LØSNINGSFORSLAG, KAPITTEL 2 ØNINGFORAG, KAPITTE REVIEW QUETION: Hva er forskjellen på konduksjon og konveksjon? Konduksjon: Varme overføres på molekylært nivå uten at molekylene flytter på seg. Tenk deg at du holder en spiseskje

Detaljer

Elektrisitet og magnetisme (5. 7. trinn) av Kai Håkon Sunde

Elektrisitet og magnetisme (5. 7. trinn) av Kai Håkon Sunde Lærerveiledning Elektrisitet og magnetisme (5. 7. trinn) av Kai Håkon Sunde Informasjon om skoleprogrammet Elektrisitet og magnetisme ligger som grunnlag for vårt tekniske samfunn. Vi vil vise elevene

Detaljer

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011

FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN Andre runde: 3/ Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:3 klokketimer Hjelpemidler:Tabell

Detaljer

Kontinuasjonseksamensoppgave i TFY4120 Fysikk

Kontinuasjonseksamensoppgave i TFY4120 Fysikk Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00

Detaljer

IEC 60479 serien. IEC 60479 består av følgende deler under den generelle tittel Virkninger av strøm på mennesker og husdyr

IEC 60479 serien. IEC 60479 består av følgende deler under den generelle tittel Virkninger av strøm på mennesker og husdyr IEC 60479 serien IEC 60479 består av følgende deler under den generelle tittel Virkninger av strøm på mennesker og husdyr Del 1: Generelle forhold Del 2: Spesielle forhold Kapittel 4: Virkninger av vekselstrøm

Detaljer

Nat 104. Forelesningsnotater. Våren 2011. Det vidunderlige magnetfeltet. UiA / Tarald Peersen

Nat 104. Forelesningsnotater. Våren 2011. Det vidunderlige magnetfeltet. UiA / Tarald Peersen Nat 104 Forelesningsnotater Våren 2011 Det vidunderlige magnetfeltet UiA / Tarald Peersen Magnetfelt og magnetisk kraft Magnetisme Innledning Å føle de magnetiske krefter er en fascinerende opplevelse,

Detaljer

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK

NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,

Detaljer

5:2 Tre strålingstyper

5:2 Tre strålingstyper 58 5 Radioaktivitet 5:2 Tre strålingstyper alfa, beta, gamma AKTIVITET Rekkevidden til strålingen Undersøk rekkevidden til gammastråling i luft. Bruk en geigerteller og framstill aktiviteten som funksjon

Detaljer

Navigasjon. Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015. Tom Hetty Olsen

Navigasjon. Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015. Tom Hetty Olsen Navigasjon Koordinater og navigasjon Norsk Folkehjelp Lørenskog Tirsdag 29. januar 2015 Tom Hetty Olsen Kartreferanse Kartreferanse er en tallangivelse av en geografisk posisjon. Tallene kan legges inn

Detaljer

Artikkel 7: Navigering til sjøs uten GPS

Artikkel 7: Navigering til sjøs uten GPS Artikkel 7: Navigering til sjøs uten GPS Hvordan kan navigatøren bestemme posisjonen uten GPS? I 1714 utlovet Det engelske parlament 20000 pund (en formidabel sum den gangen) som belønning for den som

Detaljer

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken

LABORATORIERAPPORT. Halvlederdioden AC-beregninger. Christian Egebakken LABORATORIERAPPORT Halvlederdioden AC-beregninger AV Christian Egebakken Sammendrag I dette prosjektet har vi forklart den grunnleggende teorien bak dioden. Vi har undersøkt noen av bruksområdene til vanlige

Detaljer

EKSAMENSOPPGAVE I FYS-1002

EKSAMENSOPPGAVE I FYS-1002 Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS5. Likestrømmotor.

KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS5. Likestrømmotor. KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS5 Likestrømmotor. Denne lab.øvelsen er en introduksjon til elektromotorer. Den tar sikte på å introdusere/repetere noen enkle mekaniske

Detaljer

6.201 Badevekt i heisen

6.201 Badevekt i heisen RST 1 6 Kraft og bevegelse 27 6.201 Badevekt i heisen undersøke sammenhengen mellom normalkraften fra underlaget på et legeme og legemets akselerasjon teste hypoteser om kraft og akselerasjon Du skal undersøke

Detaljer

Skyvelæret. Det en kanskje først legger merke til er den store målekjeften. Den er sammensatt av en fast målekjeft og en bevegelig målekjeft.

Skyvelæret. Det en kanskje først legger merke til er den store målekjeften. Den er sammensatt av en fast målekjeft og en bevegelig målekjeft. Skyvelæret av Elev Elevsen og Medelev Hjelpersen Manus til Photo Story 3: Hei! I denne videoen skal du få lære hva et skyvelære er og hvordan du kan bruke det til å gjøre nøyaktige målinger. Dette er et

Detaljer

EKSAMENSOPPGAVE I FYS-0100

EKSAMENSOPPGAVE I FYS-0100 EKSAMENSOPPGAVE I FYS-0100 Eksamen i: Fys-0100 Generell fysikk Eksamensdag: Onsdag 1. desember 2010 Tid for eksamen: Kl. 0900-1300 Sted: Åsgårdveien 9, lavblokka Tillatte hjelpemidler: K. Rottmann: Matematisk

Detaljer

MONTERINGSANVISNING TERMPORTEN

MONTERINGSANVISNING TERMPORTEN MONTERINGSANVISNING TERMPORTEN MONTERINGSANVISNING Før du setter i gang. For montering, bruk og vedlikehold av denne porten på en sikker måte, er det flere forutsetninger som må tas. For sikkerheten til

Detaljer

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a

Statisk magnetfelt. Kristian Reed a, Erlend S. Syrdalen a Statisk magnetfelt Kristian Reed a, Erlend S. Syrdalen a a Institutt for fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N-791 Trondheim, Norway. Sammendrag I det følgende eksperimentet ble en

Detaljer

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE

VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE VOLUM 1 FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER 1 Innledning til volum 1 V - 2 2 Grunnleggende om volum 1 V - 2 3 av V - 5 3a Kube V - 5 3b Rett prisme V - 7 3c Sylinder V - 8 3d

Detaljer

Solenergi og solceller- teori

Solenergi og solceller- teori Solenergi og solceller- teori Innholdsfortegnelse Solenergi er fornybart men hvorfor?... 1 Sola -Energikilde nummer én... 1 Solceller - Slik funker det... 3 Strøm, spenning og effekt ampere, volt og watt...

Detaljer

1 Leksjon 2: Sol og måneformørkelse

1 Leksjon 2: Sol og måneformørkelse Innhold 1 LEKSJON 2: SOL OG MÅNEFORMØRKELSE... 1 1.1 SOLFORMØRKELSEN I MANAVGAT I TYRKIA 29. MARS 2006... 1 1.2 DELVIS SOLFORMØRKELSE I KRISTIANSAND 31. MAI 2003... 4 1.3 SOLFORMØRKELSE VED NYMÅNE MÅNEFORMØRKELSE

Detaljer

Hvor i all verden? Helge Jellestad

Hvor i all verden? Helge Jellestad Helge Jellestad Hvor i all verden? Vi presenterer her deler av et et undervisningsopplegg for ungdomstrinnet og videregående skole. Hele opplegget kan du lese mer om på www.caspar.no/tangenten/2009/hvor-i-all-verden.pdf.

Detaljer

Halvledere. Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter. Passer for:

Halvledere. Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter. Passer for: Halvledere Lærerveiledning Passer for: Vg1 Vg3 Antall elever: Maksimum 15 Varighet: 90 minutter Halvledere er et skoleprogram hvor elevene får en innføring i halvlederelektronikk. Elevene får bygge en

Detaljer

Resultanten til krefter

Resultanten til krefter KRAFTBEGREPET Resultanten til krefter En kraft er en vektor. Kraften har måltall (størrelse), enhet(n) og retning (horisontalt mot høyre) Kraften virker langs en rett linje, kraftens angrepslinje Punktet

Detaljer

Bolig nær høyspentanlegg

Bolig nær høyspentanlegg Bolig nær høyspentanlegg Å bo nær høyspentledninger En del mennesker er bekymret for risikoen for sykdom ved å bo og oppholde seg nær høyspentanlegg. Høyspentledninger er svært synlige og ruvende i terrenget

Detaljer

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 9. april 2015

ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN. 9. april 2015 ABELGØY MATEMATIKKONKURRANSE FOR 9. TRINN 9. april 2015 Sekskantede stjerner i en sekskantet stjerne, stråler som alltid forgrener seg i mindre stråler er de ikke fantastiske, disse fnuggene? Målsetting:

Detaljer

EKSAMEN VÅREN 2009 SENSORTEORI. Klasse OM2 og ON1

EKSAMEN VÅREN 2009 SENSORTEORI. Klasse OM2 og ON1 SJØKRIGSSKOLEN Tirsdag 02.06.09 EKSAMEN VÅREN 2009 Klasse OM2 og ON1 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk

Detaljer

3 1 Strømmålinger dag 1

3 1 Strømmålinger dag 1 3 Strømmålinger dag a) Mål hvor stor spenning (V) og hvor mye strøm (A) som produseres med: - solcellepanelet til LEGO settet, 2- solcellepanelet til hydrogenbilen 3- solcellepanelet til brenselcellesette.

Detaljer

Fornavn. Etternavn. Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft.

Fornavn. Etternavn. Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft. 1 Magnetiske poler Innlæringsmål: forstå hvordan positive og negative magnetiske poler kan demonstrere tiltrekkende og frastøtende kraft. 1. Nevn fem objekter som en magnet vil tiltrekke seg. 2. Hva kalles

Detaljer

Fysisk aktivitetsplan: Uke 7-12

Fysisk aktivitetsplan: Uke 7-12 Fysisk aktivitetsplan: Uke 7-12 Her er en mer avansert treningsplan for når du har bygget opp et fitness-grunnlag ved å bruke introduksjonstreningen. Denne treningsplanen gjør det mulig for deg å trene

Detaljer

DET Grønne merket GRØNN

DET Grønne merket GRØNN HVIT BRONSE DET Grønne merket NBBFs ferdighetsmerke -nivå 11 skal du huske på at det viktigste er å beherske teknikkene. Riktig utførelse og forståelse er viktigere enn at du for eksempel treffer på alt

Detaljer

Hårtrimmersett Bruksanvisning

Hårtrimmersett Bruksanvisning Hårtrimmersett Bruksanvisning Moreda hårtrimmersett 3 ulike trimmehoder med diamantslipte blader: - Standard - Ekstra smal - Ekstra vid - Trådløs oppladbar maskin - Turbomotor - Lys ved opplading - 5 posisjoner

Detaljer

Praktisk oppgave i gymsalen.

Praktisk oppgave i gymsalen. Info til lærer Dette heftet inneholder oppgaver som passer å gjøre etter arbeidet med Brann i Matteboken, eller som en aktivitet i løpet av den perioden de arbeider med de andre oppgaveheftene. I aktivitetene

Detaljer

Fuglenebb. --------------------------------------------------------------------------------

Fuglenebb. -------------------------------------------------------------------------------- Fuglenebb. -------------------------------------------------------------------------------- For sikkerhets skyld, bør disse fresestålene BARE brukes I fresebord aldri på frihånd. For å lage stolper og

Detaljer

Få en innføring i raketteori og relatere dette til Newtons lover

Få en innføring i raketteori og relatere dette til Newtons lover Vannrakett MÅL/HENSIKT VARIGHET STED UTSTYRSLISTE SIKKERHETSKRAV FORKUNNSKAPER LITTERATUR Få en innføring i raketteori og relatere dette til Newtons lover 3 timer NAROM lab Rokit - Vannrakettkit fra KPT

Detaljer

LØSNINGSFORSLAG, KAPITTEL 8

LØSNINGSFORSLAG, KAPITTEL 8 LØSNINGSFORSLAG, KAPITTEL 8 REVIEW QUESTIONS: 1 Beskriv én-celle og tre-celle-modellene av den generelle sirkulasjonen Én-celle-modellen: Solen varmer opp ekvator mest konvergens. Luften stiger og søker

Detaljer

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter

Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Lærerveiledning Passer for: Varighet: Blikk mot himmelen 8. - 10. trinn Inntil 90 minutter Blikk mot himmelen er et skoleprogram der elevene får bli kjent med dannelsen av universet, vårt solsystem og

Detaljer

FORSØK MED ROTERENDE SYSTEMER

FORSØK MED ROTERENDE SYSTEMER FORSØK MED ROTERENDE SYSTEMER Laboratorieøvelsen består av 3 forsøk. Forsøk 1: Bestemmelse av treghetsmomentet til roterende punktmasser Hensikt Hensikt med dette forsøket er å bestemme treghetsmomentet

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: GEF 1100 Klimasystemet Eksamensdag: Torsdag 8. oktober 2015 Tid for eksamen: 15:00 18:00 Tillatte hjelpemidler: Kalkulator Oppgavesettet

Detaljer

Løsningsforslag til øving 14

Løsningsforslag til øving 14 Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov

Detaljer

OVERFLATE FRA A TIL Å

OVERFLATE FRA A TIL Å OVERFLATE FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til overflate... 2 2 Grunnleggende om overflate.. 2 3 Overflate til:.. 3 3 3a Kube. 3 3b Rett Prisme... 5 3c

Detaljer

Eskeland Electronics AS

Eskeland Electronics AS Eskeland Electronics AS Etablert 1993 Adresse: Rasmus Solbergs vei 1, 1400 Ski Leverandør av: Dataloggere Metalldetektorer Rør og kabelsøkere Lekkasjesøkere Radar for grunnundersøkelser Kurs i ledningsøking

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.

Detaljer

Batteri. Lampe. Strømbryter. Magnetbryter. Motstand. Potensiometer. Fotomotstand. Kondensator. Lysdiode. Transistor NPN. Motor. Mikrofon.

Batteri. Lampe. Strømbryter. Magnetbryter. Motstand. Potensiometer. Fotomotstand. Kondensator. Lysdiode. Transistor NPN. Motor. Mikrofon. Batteri Lampe Strømbryter Magnetbryter Motstand Potensiometer Fotomotstand Kondensator Lysdiode Transistor NPN Motor Mikrofon Høytaler Ampèremeter 1 1. Sett sammen kretsen. Pass på at motorens pluss og

Detaljer

Victor Reader Classic

Victor Reader Classic Brukerhåndbok Victor Reader Classic Norsk utgave Bo Jo Tveter AS Victor Reader Classic Brukerhåndbok Copyright Bo Jo Tveter AS 2002 Bo Jo Tveter AS Akersbakken 12, N-0172 OSLO Telefon: 23 32 75 00 E-post:

Detaljer

Ønsker å bestille krus: (Maksimum ett per person) Ønsker å bestille diplom: Navn:

Ønsker å bestille krus: (Maksimum ett per person) Ønsker å bestille diplom: Navn: FJELLTRIMMEN I GRANE 2015 Nr. Postnavn Gradering MOH Kartblad Besøkt dato 1 Stavvatnet Enkel 318 1925 IV Svenningdal 2 Steinhytta /Tosenfjellet Enkel 535 1825 I Tosbotn 3 Storklumpen/Blåfjellet Meget krevende

Detaljer

ESERO AKTIVITET GODT ELLER DÅRLIG SIGNAL? Lærerveiledning og elevaktivitet. Klassetrinn: alle. Utviklet av

ESERO AKTIVITET GODT ELLER DÅRLIG SIGNAL? Lærerveiledning og elevaktivitet. Klassetrinn: alle. Utviklet av ESERO AKTIVITET Klassetrinn: alle? Utviklet av Lærerveiledning og elevaktivitet Oversikt Tid Læreplanmål Nødvendige materialer 45 min undersøke fenomener knyttet til lyd, hørsel og støy, diskutere observasjonene

Detaljer

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten

Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Dette er en tese som handler om egenskaper ved rommet og hvilken betydning disse har for at naturkreftene er slik vi kjenner dem. Et

Detaljer

Radiostyrt oppladbar monstertruck med firehjulstrekk Ferdig montert og malt

Radiostyrt oppladbar monstertruck med firehjulstrekk Ferdig montert og malt Radiostyrt oppladbar monstertruck med firehjulstrekk Ferdig montert og malt Les bruksanvisningen før du begynner å bruke produktet. Viktig informasjon - Følg alltid bruksanvisningen til produktet. - Slå

Detaljer

Magnetisk felt og fluks. Institutt for fysikk, NTNU

Magnetisk felt og fluks. Institutt for fysikk, NTNU Oppgave 4 Lab i TFY4125 Magnetisk felt og fluks Institutt for fysikk, NTNU 2 1.1 Innledning Kontroll av statiske og tidsavhengige magnetfelt er viktig i vitenskap og teknologi. I de fleste tilfellene er

Detaljer

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?

Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal? Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering

Detaljer

Sjekkpunkt 6 Tverrsjøstallen Sjekkpunkt 11 Roensætra

Sjekkpunkt 6 Tverrsjøstallen Sjekkpunkt 11 Roensætra TVERRSJØSTALLEN 2.juni 2012 Sjekkpunkt 6 Tverrsjøstallen Sjekkpunkt 11 Roensætra 22,34 km 637 høydemeter 6-7 Tverrsjøstallen-Pershusfjellet* 2,92 km / 17,92 km** 128 hm / 628 hm** 7-8 Pershusfjellet*-Spålsætra

Detaljer

SUUNTO MIRROR COMPASSES

SUUNTO MIRROR COMPASSES UUTO MIRROR COMPA RUKRHÅDOK O 1. Kompassanatomi 1. ål med rød ende som peker mot den magnetiske ordpolen 2. Retningspil som peker mot målet på kartet og mens du går 3. Kompassplate med rette hjørner og

Detaljer

Rom forskning. - det finnes kulere rom enn verdensrommet. Hvilken fasong har universet?

Rom forskning. - det finnes kulere rom enn verdensrommet. Hvilken fasong har universet? Rom forskning Af: Bjørn Ian Dundas Matematisk Institutt Universitetet i Bergen email: dundas@math.uib.no - det finnes kulere rom enn verdensrommet den) vil jeg avslutte med å snakke om sfærespekteret.

Detaljer