Oppsummering frå NRLU-seminaret om arbeidskrav i matematikklærarutdanninga i GLU 1-7 og GLU 5-10, Trondheim april 2014

Størrelse: px
Begynne med side:

Download "Oppsummering frå NRLU-seminaret om arbeidskrav i matematikklærarutdanninga i GLU 1-7 og GLU 5-10, Trondheim 23.-24.april 2014"

Transkript

1 Oppsummering frå NRLU-seminaret om arbeidskrav i matematikklærarutdanninga i GLU 1-7 og GLU 5-10, Trondheim april 2014 Arbeidsgruppa for karakterundersøkelsen vel å summera opp seminaret ved å løfta fram noko av det som vart teken opp i løpet av seminaret. Mykje av seminaret vart brukt til diskusjonar i ulike grupper. Nokre grupper diskuterte dei fire overordna spørsmåla stilte til seminardeltakarane. For kvart spørsmål løfter vi fram nokre innspel/svar/utfordringar (sjå meir i vedlegg 1) 1. Ei grunngjeving av val av arbeidskrav. Kva er målet (måla) med kravet (dei ulike krava)? Gruppa rår til at arbeidskrava ikkje berre testar studentane på instrumentell matematisk kunnskap [vår utheving] ved t.d. å gi dei rekneoppgåver i brøk der målet er å sjekka om studenten kan reknereglane. Vi har eit generelt designproblem når det gjeld arbeidskrav til studentane. Vi trur at det kan vere lurt å smalne inn og gi tydeleg retning på oppgåveformuleringar [vår utheving] knytt til ting dei skal undersøkje eller fordjupe seg i (bør nok også innehalde vurderingskriterier). På denne måten kan vi kvalitetssikre at studentane går avansert nok inn i matematisk og strukturell kunnskap. Dette gjeld oppgåveformuleringar der studentane undersøkjer matematiske omgrep og samanhengar så vel som praksisretta oppgåver der studentane skal «gjere noko» saman med elevar. 2. Vi ber dykk om å finne og beskrive det de ser som ei egna løysning på korleis ein kan kvalitetssikre at våre studentar har matematisk kunnskap nødvendig for lærarstudentar innafor det aktuelle kravet. Om mogleg konkretiser minstekrav for spesiell matematisk kunnskap som lærarstudentar må ha for å få arbeidskravet bestått. Gruppa rår til at minstekravet ikkje ligg på eit nivå der ein berre t. d. testar om studentane kan reglane for brøkrekning, men at dei også testar om studentane kan «noko meir». Vi har også valt å kalle dette for meir avansert kunnskap. Vi har valt å skildre nivåa som a) e). Alle studentar bør testast på eit eller fleire av punkta b) e), i tillegg til punkt a): a) Definisjonar av matematiske og didaktiske omgrep, reknereglar b) Ulike representasjonsformer 1

2 c) Overgang mellom ulike representasjonsformer. Oversetje tekstoppgåver til matematiske uttrykk som t. d. å lage likningar, eller sagt på ein annan måte «pakke ut» matematikken. d) Forståing for rekneoperasjonar og omgrep. Strukturell kunnskap 3. I kor stor grad er krava laget slik at «de gir tydelig veiledning til studentene om hva som forventes av dem til eksamen»? Eller er det tenkt at arbeidskrava krev at studentane viser kunnskap/ferdigheiter/kompetanse som ikkje vert teke opp i ein eksamen? Gruppa held fram at arbeidskrava kan krevje meir av studentane enn det ein kan krevje på eksamen når det gjeld fordjupning og storleik. I arbeidkrava kan ein «gå lengre». Vi ser difor ikkje at eksamensoppgåvene skal vere heilt same sjanger som arbeidskrava. Arbeidskrava kan sjølvsagt ha den dobbeltfunksjonen, at studentana fordjuper seg i faget samstundes som krava kommuniserer nivået på det ein krevjer til eksamen. Vi ser det her som rett og understreke at det så tidleg som råd i studiet/semesteret må klargjerast for studentane kva som blir kravt [vår utheving] i lærarstudiene i matematikk. Det må setjast ord på kor lista skal liggje. Det må snakkast om kva som skil krava i desse studia frå krav studentane har møtt i tidlegare matematikkstudier. Arbeidsgruppa vil rette ei særleg påminning til det nasjonale kollegiet om å vere tydelege på vurderingskriteria tidleg i studiet/semesteret. 4. I kor stor grad, og korleis kan, arbeidskrava bidra til lærarstudentanes profesjonskompetanse? Ved at arbeidskrava tar opp i seg ulike kompetansar, kan studentane seinare ivareta at deira elevar får opplæring i dette Ei gruppe såg på samanhengen mellom ulike arbeidskrav og korleis desse kan verte knytte til læringsutbytteformuleringar i emneplanane. Vidare drøfta dei om det er mogleg å ha nokre arbeidskrav som er sams for alle lærarutdanningstitusjonane. Gruppa valte å sjå på arbeidskrav som er knytte til kunnskap om matematikk som er spesiell for lærarprofesjonen, slik som sjølv å kunne gjera og forstå matematiske prosessar og argument. Eit første forslag til drøfting kan vere: Kvar institusjon lager 3-4 arbeidskrav i matematikk og 5-10 knytt til tallforståelse og regning geometri og måling overgangen fra aritmetikk til algebra 2

3 og eitt arbeidskrav knytt til utforskande aktivitetar, grunngjevingar, argument og bevis. For matematikk og 5-10 tenkjer vi at kvar institusjon lagar eit arbeidskrav knytt til at studenten har kunnskap om «ulike matematiske bevis, argumentasjonsformer og modeller innen blant annet algebra, funksjonslære og statistikk». Sjå vedlegg 2 for konkrete døme på slike arbeidskrav. Sjå og vedlegg 3 for konkrete døme på arbeidskrav knytt til utbytteformuleringar og korleis arbeidskrav kan nyttast som ei førebuing til eksamen. Kva slag arbeidskrav finn vi i lærarutdanninga i matematikk? Ei anna gruppe såg på kva typar arbeidskrav som fins i miljøet og kategoriserte desse. Sjå vedlegg 4 Arbeidsgruppa ser på seminaret som eit første møte om, og første diskusjon i matematikklærarutdanningsmiljøet om arbeidskrav i matematikklærarutdanninga. Slik var det eit nyttig møte som fekk fram mangfaldet i miljøet og der vi fekk nyttige innspel til vidare arbeid med å utvikle arbeidskrav som er nyttige for lærarstudentar i deira utvikling av matematikklærarkompetanse. Forslag til endringar/forbetringar i lærarutdanninga i matematikk Vi slutter med tre innspel til våre kollegaer i lærarutdanninga: Arbeidsgruppa vil rette ei særleg påminning til det nasjonale kollegiet om å vere tydelege på vurderingskriteria i dei emna som undervises, og i dei ulike arbeidskrava i desse emna, tidleg i studiet/semesteret. Det inneber samstundes at kvar institusjon må lage tydelege vurderingskriterier om kva som blir kravt til eksamen. Arbeidsgruppa ber kvar institusjon sikra at kunnskap i matematikk særeigen for lærarprofesjonen vert testa gjennom eitt eller fleire arbeidskrav i kvart matematikkemne. Døme på slike arbeidskrav kan diskuteras på møte i nettverket og/eller på etterutdanningskonferansen. Arbeidsgruppa meiner også at den einskilde institusjon kan kvalitetssikre studentane si faglege fordjuping ved å sjå nøye på oppgåveformuleringar knytt til arbeidskrav som er meint å sikre dette. Slike oppgåveformuleringar bør ikkje vere for vide, men vere tydeleg i høve til kva studentane skal få kunnskapar og innsikt i, gjerne fokus på mindre oppgåver utan for mange komponentar. 20.mai 2014 Andreas Christiansen, Beate Lode, Ole Enge 3

4 Vedlegg 1 Seminar om arbeidskrav i matematikklærarutdanninga april 2014 Rica Hotell Nidelven, Trondhem Arbeidsgruppe: Gry, Olaf, Terje og Beate I ein innleiande diskusjon om grunngjeving for val av arbeidskrav, vart det løfta fram at vi står i ei klemme som lærarutdannarar der vi opplever at det er skilnad mellom matematikken studentane burde kunne og det som er realiteten når vi møter dei. 1. Ei grunngjeving av val av arbeidskrav. Kva er målet (måla) med kravet (dei ulike krava)? Mangfaldet av arbeidskrav og grunngjevinga for desse er spreidde. Med utgangspunkt i ein prosessorientert diskusjon i arbeidsgruppa på seminaret, kom vi fram til følgjande: Gruppa rår til at arbeidskrava ikkje berre testar studentane på instrumentell matematisk kunnskap ved t.d. å gi dei rekneoppgåver i brøk der målet er å sjekka om studenten kan reknereglane. Noko av det som bør kjennteikne arbeidskrava, må vere at dei er knytt til noko av mangfaldet i skildringar av undervisningskompetanse i matematikk. Arbeidskrava bør setjast saman av minst eit matematisk og eit didaktisk (eller fleire) læringsutbytte skildra i dei nasjonale retningslinjene. Krava må skapast slik at det til dømes vert viktig for studentane å forstå brøk. Eksempel på korleis matematiske tema kan vere knytt til undervisningskompetanse er: i) Studentane må setje eigne ord på ein matematisk samanheng slik at andre kan forstå det som bli skildra. Her kan vi nemne arbeid med bevis. Sjå døme på arbeidskrav frå Hamar (under). ii) Studentane kan analysere «elevsvar». Gitt eit elevsvar (algoritme). Er svaret rett? Grunngjev svaret ditt. 4

5 iii) iv) Studentane kan sjølve lage passande og gode matematiske oppgåver til elevane. Gitt ei oppgåve (konkretisert). Korleis vil du gå vidare og utvide denne oppgåva? Studentane kan intervjue elevar om korleis dei tenkjer når dei prøver å finne ut av oppgåver som studentane har med til dei. Dette kan vere 7-8 oppgåver som på førehand er utforma på høgskulen. Vi har eit generelt designproblem når det gjeld arbeidskrav til studentane. Vi trur at det kan vere lurt å smalne inn og gi tydeleg retning på oppgåveformuleringar knytt til ting dei skal undersøkje eller fordjupe seg i (bør nok også innehalde vurderingskriterier). På denne måten kan vi kvalitetssikre at studentane går avansert nok inn i matematisk og strukturell kunnskap. Dette gjeld oppgåveformuleringar der studentane undersøkjer matematiske omgrep og samanhengar så vel som praksisretta oppgåver der studentane skal «gjere noko» saman med elevar. 2. Vi ber dykk om å finne og beskrive det de ser som ei egna løysning på korleis ein kan kvalitetssikre at våre studentar har matematisk kunnskap nødvendig for lærarstudentar innafor kravet. Om mogleg konkretiser minstekrav for spesiell matematisk kunnskap som lærarstudentar må ha for å få arbeidskravet bestått. Gruppa rår til at minstekravet ikkje ligg på eit nivå der ein berre t. d. testar om studentane kan reglane for brøkrekning, men at dei også testar om studentane kan «noko meir». Vi har også valt å kalle dette for meir avansert kunnskap. Vi har valt å skildre nivåa som a) e). Alle studentar bør testast på eit eller fleire av punkta b) e), i tillegg til punkt a): a) Definisjonar av matematiske og didaktiske omgrep, reknereglar b) Ulike representasjonsformer c) Overgang mellom ulike representasjonsformer. Oversetje tekstoppgåver til matematiske uttrykk som t. d. å lage likningar, eller sagt på ein annan måte «pakke ut» matematikken. d) Forståing for rekneoperasjonar og omgrep. Strukturell kunnskap e) osb. 3. I kor stor grad er krava laget slik at «de gir tydelig veiledning til studentene om hva som forventes av dem til eksamen». Eller er det tenkt at arbeidskrava krev at studentane viser kunnskap/ferdigheiter/kompetanse som ikkje vert teke opp i ein eksamen. 5

6 Gruppa held fram at arbeidskrava kan krevje meir av studentane enn det ein kan krevje på eksamen når det gjeld fordjupning og storleik. I arbeidkrava kan ein «gå lengre». Vi ser difor ikkje at eksamensoppgåvene skal vere heilt same sjanger som arbeidskrava. Gjennom krevjande arbeidskrav, som det å forstå tunge matematiske omgrep, og der ein «går lengre» enn under eksamen, får studentane røynsle med ein viktig ein prosess. Denne røynsla er viktig for det arbeidet dei seinare skal gjere med å leie elevar gjennom tilsvarande prosessar. Arbeidskrava kan sjølvsagt ha den dobbeltfunksjonen, at studentane fordjuper seg i faget samstundes som krava kommuniserer nivået på det ein krevjer til eksamen. Vi ser det her som rett og understreke at det så tidleg som råd i studiet/semesteret må klargjerast for studentane kva som blir kravt i lærarstudiene i matematikk. Det må setjast namn på kor lista skal liggje. Det må snakkast om kva som skil krava i desse studia frå krav studentane har møtt i tidlegare matematikkstudier. Ved å bruke didaktisk fagspråk kan studentane få hjelp til å bli meir medvitne om krava i desse studiane. Arbeidsgruppa har diskutert seg fram til at det kan ha noko føre seg å skifte namn på kursa frå «reine matematikknamn» til meir didaktiske namn for å løfte fram kva kursa handlar om. Gruppa ser arbeidet med å få studentane til å forstå krava til kunnskapar som svært viktig. I motsett fall risikerer vi at studentane overfører si eiga forståing for matematisk nivå til seinare arbeid med elevar. Døme på dette kan vere «algebra ligg på eit høgt nivå og er vanskeleg», altså «vil kanskje algebra vere på eit for høgt nivå for elevane på barnetrinnet». 4. I kor stor grad, og korleis kan, arbeidskrava bidra til lærarstudentanes profesjonskompetanse. Ved at arbeidskrava tar opp i seg ulike kompetansar, kan studentane seinare ivareta at deira elevar får opplæring i dette. Døme på arbeidskrav knytt til bevis (Hamar): Nedenfor er vist to sirkler med omskrevne firkanter. Mål lengden av sidene i firkantene og før opp i tabellen på neste side.(for å effektivisere arbeidet kan dere bruke vedlagte GeoGebra-fil i stedet for disse figurene på papir. Dere kan endre firkant ved å trekke i punktene på sirkelen. Det blir også mer nøyaktig ved å måle i GeoGebra.) 6

7 AB BC CD DA For evt beregnig For evt beregnig Osv.. a. Kan du se finne noen sammenheng mellom lengdene på AB, BC, CD og DA? (Det kan være lurt å prøve å legge sammen noen sider og sammenlikne). Det blir mest nøyaktig hvis dere utfører målingene i GEOGEBRA. b. Tegn noen flere sirkler med omskrevne firkanter og påvis at den sammenhengen du har funnet under a også gjelder i disse tilfellene (Gjøres enkelt ved å dra i punkter på sirkelen i GeoGebra-fila).. c. Prøv å bevise at det alltid må være slik.(oppgitt hjelpesetning: De to tangentene fra et punkt til en sirkel er like lange). d. Forklar hvordan GeoGebra-fila er bygd opp. e. Dette er et eksempel på en induktiv (utforskende) arbeidsmåte. (Vi ser på en masse enkelttilfeller og trekker en konklusjon ut av disse). Hvor mange tilfeller må vi sjekke for å være sikker på at sammenhengen gjelder i alle tilfeller? f. Gi en vurdering av induktiv arbeidsmåte som arbeidsmåte i matematikk i skolen. 7

8 h. Lag en oppgave for barnetrinnet som kan løses med induktiv arbeidsmåte. Vedlegg 2 Frå diskusjonen i arbeidsgruppa. Deltakarar: Silke, HiB, Tesfa, HSH, Mona, Matematikksenteret, Ole, HiST Vi såg først på ulike arbeidskrav frå dei ulike institusjonane. Prøvde å sjå kva som kunne vere sambandet mellom ulike krav og læringsutbytteformuleringar i emneplanane. Diskusjonen gikk så over til å konkretisere arbeidskrav som er knytt til spesifikke utbytteformuleringar. Vi skal i matematikklærarutdanninga hjelpe studentane til å utvikle «undervisningskunnskap» i matematikk. Dette vil mellom anna seia at studentane må ha «en solid og reflektert forståelse for den matematikken elevene skal lære» og at studentane sjølve skal «kunne gjennomføre og forstå matematiske prosesser og argumenter». Under læringsutbytteformuleringane for matematikk 1, 1-7 og 5-10, finn vi desse formuleringane, under kunnskap finn vi at studenten: «har inngående undervisningskunnskap i matematikken elevene arbeider med på barnetrinnet, særlig tallforståelse og regning, geometri og måling, overgangen fra aritmetikk til algebra, med et spesielt fokus på begynneropplæringen» Vidare under ferdigheiter finn vi at studenten: «kan bruke arbeidsmåter som fremmer elevenes undring, kreativitet og evne til å arbeide systematisk med utforskende aktiviteter, begrunnelser, argumenter og bevis». Vi tenkjer oss at dette er viktige moment som må arbeidas med i fleire arbeidskrav. Så lat oss vere konkrete i kva vi kan tenkje oss: Kvar institusjon lager 3-4 arbeidskrav i matematikk og 5-10 knytt til tallforståelse og regning geometri og måling overgangen fra aritmetikk til algebra og eitt arbeidskrav knytt til utforskande aktivitetar, grunngjevingar, argument og bevis. 8

9 For matematikk og 5-10 kan vi tenkjer at kvar institusjon lagar eit arbeidskrav knytt til at studenten har kunnskap om «ulike matematiske bevis, argumentasjonsformer og modeller innen blant annet algebra, funksjonslære og statistikk». Et annet aspekt i diskusjonen også var at vi lurte på hvordan vi kunne få til en tilnærming mellom institusjonene i både antall og faglig bredde av arbeidskrav. Samtidig ønsket vi at institusjonene fortsatt kan utforme sine arbeidskrav selv med stor frihet. Vi syntes at begge ønskene kan oppfylles når vi velger ut læringsmål som arbeidskravene kan knyttes til. Det kan virke snevert å begrense seg til bare ett eller to læringsmål som vi gjorde. Læringsmålet: «har inngående undervisningskunnskap i matematikken elevene arbeider med på barnetrinnet, særlig tallforståelse og regning, geometri og måling, overgangen fra aritmetikk til algebra, med et spesielt fokus på begynneropplæringen» har imidlertid stor faglig bredde og jeg oppfatter det til en viss grad som overordnet til mange av de andre målene, i den forstand at de andre læringsmålene presiserer aspekter som kan ligge i begrepet undervisningskunnskap. Så til konkrete døme på slike arbeidskrav vi snakka om. Det er sjølvsagt fleire måtar ein kan utforma desse, til dømes som innleveringar, verkstadsarbeid, oppdrag i praksis, rekneøvingar med meir. Nedanfor gir vi ulike døme på korleis slike arbeidskrav kan sjå ut. Frå ei innlevering gjeve ved HiST for Matematikk 1 1-7: Teddy går i femte klasse. Klassen arbeider nå med kvadrattall og kubikktall. Etter å ha regnet noen oppgaver som står i læreboka, rekker Teddy opp handa og sier: Du se her, hvis man ganger hvis man har to tall og man ganger dem og begge tallene ender på 5, og man ganger dem, så vil også resultatet ende på 5 a) Har du et resonnement som viser at Teddy har rett? Situasjonen kan brukes til å reise og løse flere problemer. Slike kunne for eksempel være: 1. Er det kun når begge tallene ender på 5 at resultatet ender på 5? 2. Gjelder resultatet kun for 5, eller er det alltid slik at når to tall som ender på samme siffer multipliseres, så ender produktet også på det gjeldende siffer? 3. Hvilke siffer kan kvadrattall ende på? 9

10 b) Undersøk oppgavene i 1-3. Hva er dine konklusjoner? Lag sjøl nye utforskninger med utgangspunkt i observasjonen til Teddy. Løs disse. c) Observasjonen til Teddy kom på slutten av timen. Det var ikke nok tid til å gjøre mye ut av det han sa i denne økta. Tenk over hva du som lærer vil si til Teddy og klassen den gjeldende økta, og hvordan du vil starte neste matematikk-økt. Ide: Skott, Jess, Hansen (2008): Delta side Frå eit praksisoppdrag frå HiB knytta til Matematikk emne 1 Praksisoppgave I denne oppgaven skal dere undersøke elevenes tallforståelse. Dere velger selv en problemstilling innenfor dette emne for å avgrense oppgaven. Dere skal forsøke å gjøre dere kjent med elevene sine kunnskaper og hvordan elevene bruker disse. Dette skal gjøres i samspill med elever i praksis. Vi ber dere om å ha fokus på både formelle og uformelle kunnskaper og barna sitt språk og begrepsinnhold. I oppgaven skal vi se igjen elevers muntlige ferdigheter. Utdrag fra aktiviteter hvor elevers muntlige ferdigheter kommer til uttrykk skal dokumenteres. De innsamlede data skal analyseres i lys av relevant matematikkdidaktisk teori. Oppgaven skal også inneholde en refleksjonsdel der dere knytter funnene deres til et av temaene vurdering, matematikkmestring, tilpasset opplæring eller matematikkvansker. Refleksjonsdelen skal preges av innholdet fra artikler på kursets pensumsliste. Oppgaven er en obligatorisk gruppeoppgave knyttet til praksisgruppene. Hver gruppe leverer en felles besvarelse. Det bør maksimalt være fire studenter per gruppe. Veiledning: etter behov og avtale med faglærer Innlevering: 10. november på it s learning Vurdering: godkjent / ikke godkjent Så to døme frå HSH Oppgave 1 Om undervisingskunnskap og forståing av grunngjevingar og bevis 10

11 Dette er en individuell studiekrav. Dere skal skrive et essay hvor dere skal fordype dere i ett av de følgende tema knyttet til pensum, og dere skal ta et klart standpunkt til, og argumentere for eller imot påstanden: a) Læringsmodeller Modellen til Deborah Ball et.al om undervisningskunnskap i matematikk kan ikke brukes i 1 7. trinn, kun i høyere klassetrinn. b) Realistiskmatematikkundervisning RME egner seg utelukkende til undervisning i ungdomsskolen, ikke til undervisning i 1 7. trinn. c) Multiplikative strukturer og brøk Kommutative, assosiative og distributive egenskaper er viktige å bruke i undervisningen i multiplikasjon og brøk for 3 7 trinn. Essayet skal være engasjert i kursets innhold, og det skal være klart forankret i egen praksis. Essayet skal være også innen den akademiske disiplin- det vil si at det skal være skrevet vitenskapelig korrekt, og at det skal være egnet for vitenskapelig diskusjon. Der skal være kvalitet og dybde i resonnering og analyse. Kursets litteratur skal brukes, og det forventes at kandidaten søker opp og bruker litteratur utover kursets pensum. RAMMER FOR OPPGAVEN: ett essay er ikke fullt så omfattende som en artikkel, og her settes vanligvis følgende krav til essayet: overskrifter skal ikke nummereres, og man tar ikke med innholdsliste essayet skal ha et tema", eller en melding", og der skal være en rød tråd der skal utvikles et argument i essayet man skal grave i hva teoretikere sier, og finne forskjeller/overlappinger essayet skal vã re på det nivå vi er på i kurset det skal baseres på offentlig tilgjengelig litteratur 11

12 12

13 Vedlegg 3 Frå gruppediskusjon 24.april Vi avgrensar oss til å diskutera emna matematikk 1 på GLU 1-7 og GLU Med arbeidskrav meiner vi dei krava studenten må oppfylla for å få framstilla seg til eksamen. Arbeidskrava kan vera obligatorisk frammøte, skriftlege innleveringar, munnlege framlegg eller andre krav som er definerte i emneplanane. Arbeidskrav frå Volda: Didaktisk refleksjonsoppgåve, GLU 1-7 Arbeider med desse læringsutbytteformuleringane i rammeplanen: Studenten - har inngående undervisningskunnskap i matematikken elevene arbeider med på barnetrinnet, særlig tallforståelse og regning, geometri og måling, overgangen fra aritmetikk til algebra, med et spesielt fokus på begynneropplæringen har kunnskap om den betydningen semiotiske representasjonsformer har i matematikk, og hvilke utfordringer som er knyttet til overganger mellom representasjonsformer - har kunnskap om et bredt metoderepertoar for undervisning i matematikk - kan planlegge, gjennomføre og vurdere matematikkundervisning for alle elever i trinn med fokus på variasjon og elevaktivitet, forankret i forskning, teori og praksis Temaet er relevant for munnleg eksamen Krav for å få godkjent arbeidskravet bør vera: Studenten må bruka sentrale faglege omgrep som fins i oppgåva, til dømes talvener, grupperingsmodell og lineær modell. Studenten må gi konkrete døme som skal vera tilstrekkeleg grunngjevne. Studenten må visa forståing for kva som ligg i kompetansemåla Frå Høgskolen i Volda GL1-7MAT1B - Didaktisk refleksjonsoppgåve 1 Nummer 1 av i alt 3 refleksjonsoppgåver. Innlevering av svar på 3 refleksjonsoppgåver er eit obligatorisk arbeidskrav. 13

14 Innleveringsfrist: Måndag 7. oktober 2013 kl 23:59. Oppgåvetekst: I læreplanverket, LK06, er eitt av kompetansemåla i matematikk at elevane etter 2. årssteget skal kunne «utvikle, bruke og samtale om varierte reknestrategiar for addisjon og subtraksjon av tosifra tal og vurdere kor rimelege svara er». Utdjup kva som ligg i dette kompetansemålet. Forklar korleis arbeid med til dømes talvener og ulike modellar for tal (lineær modell og grupperingsmodell) kan danne grunnlag for denne kompetansen. Gje døme på aktivitetar som er naturleg å bruke knytt til dette kompetansemålet, og grunngi kvifor desse aktivitetane er relevante for dette kompetansemålet. Omfang og krav til oppgåva: Lengda på teksten skal vere mellom 500 og 800 ord. Svaret skal vere skrive på bokmål. Filformatet skal vere Word eller PDF. Arbeidskrav frå NLA: Disposisjon til bruk ved framlegg på munnleg eksamen, GLU 1-7 Arbeider med kulepunkta i rammeplanen: Studenten - har inngående undervisningskunnskap i matematikken elevene arbeider med på barnetrinnet, særlig tallforståelse og regning, geometri og måling, overgangen fra aritmetikk til algebra, med et spesielt fokus på begynneropplæringen - har kunnskap i algebra, geometri, funksjoner, statistikk, kombinatorikk og sannsynlighetsregning og kan knytte denne kunnskapen til lærestoffet på barnetrinnet - kan planlegge, gjennomføre og vurdere matematikkundervisning for alle elever i trinn 1-7 med fokus på variasjon og elevaktivitet, forankret i forskning, teori og praksis - har gode praktiske ferdigheter i muntlig og skriftlig kommunikasjon i matematikkfaget, og kompetanse til å fremme slike ferdigheter hos elevene - kan bruke arbeidsmåter som fremmer elevenes undring, kreativitet og evne til å arbeide systematisk med utforskende aktiviteter, begrunnelser, argumenter og bevis Arbeidskravet gir tydeleg rettleiing til studenten om kva som vert forventa til munnleg eksamen 14

15 Krav for å få godkjent arbeidskravet bør vera: Studenten må bruka sentrale faglege omgrep, og visa matematisk forståing for det emnet dei har valt Studenten må tydeleg definera det matematiske temaet dei har valt Studenten må visa tilstrekkeleg fagleg fordjuping Fremlegg Muntlig Eksamen, MA1 GLU1 5-7 Dette er en individuell mappeoppgave, og du vil bli prøvd i den ved muntlig eksamen. Du velger selv matematisk emne. Eksempler på emner kan være: Brøk Prosent Tallmønstre Ligninger med en ukjent Areal Volum Sannsynlighetsregning Du skal skrive en matematikkfaglig del og en didaktisk del. Disse delene trenger ikke være knyttet til det samme matematiske emnet. For eksempel er det mulig å skrive om brøk i den didaktiske delen og sannsynlighetsregning i den matematikkfaglige. Hensikten med oppgaven er todelt. Eksaminator skal ved å lese oppgaven vite omtrent hva du tenker å legge frem på muntlig eksamen. Rapporten skal hjelpe deg til å planlegge og forberede første del av muntlig eksamen. Da oppgaven kun skal være på en side, forventes kun at du lager en grovskisse eller en disposisjon av hva du vil legge frem. Denne mappeoppgaven er ikke en kontrakt. Du har mulighet for å endre den på eget ansaver etter at oppgaven er godkjent. Matematikkfaglig del Den matematikkfaglige delen fremføres i jeg-form. Snakk om hva du kan og forstår, ikke hva elevene skal lære eller hvordan du lærer. Naturlig nok forventes det at du behersker mer enn mellomtrinnets nivå, og du må ha vesentlig bedre forståelse enn en elev på mellomtrinnet. Didaktisk del 15

16 Velg et klassetrinn. Aktuelle spørsmål er for eksempel: Hvordan kan det matematiske emnet læres og undervises? Kom gjerne med helt konkrete eksempler på hvordan dette kan gjøres og refleksjon omkring dette. Formelle krav Det skal benyttes tekstbehandling med linjeavstand 1,5 og bokstavstørrelse 12. Bruk skrifttypen Times New Roman. Oppgaven skal være på 1 side. Foruten dette skal oppgaven inneholde en forside med navn på studenten og studieår. Det selvvalgte pensumet skal gjelde emnene som tas opp i kurset og det skal være relevant for mellomtrinnet. Undervisningen ved NLA LH signaliserer nivået som forventes av deg. En halv side skal brukes på beskrivelse og presentasjon av den matematikkfaglige delen og en halv side skal brukes på beskrivelse og presentasjon av den didaktiske delen. Rapporten skal danne grunnlag for første del av muntlig eksamen. Velg et relativt begrenset fokus slik at du kan gå i dybden. Husk at du skal kunne si noe fornuftig om både matematikkfaglig og matematikkdidaktisk del på til sammen 7 minutter under eksamen. 16

17 Vedlegg 4 Sammendrag av gruppearbeid på seminar om arbeidskrav Deltakere: Tone Bulien, Signe Holm Knudzon, Anne Norstein, Øyvind Halse og Andreas Christiansen Volda har tre innleveringer og én prøve som arbeidskrav på de første 15 stp for 1 7 og Har kun individuelle krav. Bodø har kollokvier hver uke med arbeidsoppgaver. Kursene er samlingsbasert, og må tenke annerledes med hensyn til arbeidskrav. Oppgave fra Fosnot & Dolk om flere grupper med ulike antall som får ulike antall baguetter er fordelingen av baguetter rettferdig. Studentene har ikke lov å bruke det de vet om fellesnevnere i løsningen, men må løse oppgaven som en ti-åring ville ha gjort det. Regner også yatzy i ulike baser. Er fornøyd med Fosnot & Dolk som pensumlitteratur, men studentene er ikke fornøyd med Delta i motsetning til lærerne. Kollokviegrupper, sammensatt av universitetet, jobber gjennom hele semesteret med oppgaver. HSH har krav i form av regneoppgaver og didaktiske utredninger, både individuelt og som gruppearbeid. I fordypningskursene er der og arbeidskrav i form av presentering av faglige artikler og presentasjon av masteroppgaver. Usikkerhet rundt hvor lenge skal beståtte arbeidskrav være gyldige. Buskerud/Vestfold har obligatoriske regneoppgaver i grunnleggende regneferdigheter korting av brøker, håndtering av parenteser &c. En fjerdedel av oppgavene går ut på å lage undervisningsopplegg. Sogn og Fjordane har kun gruppeinnleveringer som arbeidskrav. Praksisrelaterte oppgaver. Gruppen diskuterte og en mulig kategorisering av arbeidskrav, og et forslag var kategoriene Praksisrelaterte oppgaver Didaktiske oppgaver Fagoppgaver med didaktikk Rene matematikkoppgaver/prøver for grunnkursene, og tilleggskategorien 17

18 Presentere forskningsresultater for fordypningskursene. Disse kategoriene er utdypet og spesifisert på neste side. 18

19 Kategorisering Et av midlene for å beskrive en løsninger til hvordan man kan kvalitetssikre arbeidskravene er å definere kategorier for arbeidskravene. Kategorier grunnkurs Praksisrelaterte oppgaver Arbeidskrav som er knyttet til studentens egen praksis, og som enten kan gis i form av et oppdrag til praktisk gjennomføring på en praksisskole, eller i form av å teoretisk planlegge og beskrive et undervisningsopplegg. I første tilfelle vil det enten være en vurdering/godkjenning av selve undervisningen, eller en vurdering/godkjenning av en rapport studenten skriver om gjennomføringen av undervisningen. Didaktiske oppgaver Rent didaktiske oppgaver kan være en beskrivelse og/eller analyse av didaktiske problemstillinger. Det kan som ikke uttømmende eksempler være didaktiske refleksjoner som tar utgangspunkt i reelle eller fiktive undervisningssituasjoner, det kan være kartleggingsoppgaver eller det kan være rent teoretiske beskrivelser didaktisk teori. Fagoppgaver med didaktikk Oppgaver som i hovedsak er matematikkfaglige, men hvor kontekst og problemstillinger ofte er hentet fra reelle eller fiktive undervisningssituasjoner. Typiske oppgaver kan være at studenten blir bedt om å løse en rent matematisk oppgave, og blir så bedt om å analysere og kommentere et løsningsforslag til samme oppgave gjort av en elev i et gitt klassetrinn. Elevens løsningsforslag kan enten være genialt og/eller originalt, eller det kan illustrere en misoppfatning. Rene matematikkoppgaver/prøver Kan brukes for å identifisere studenter som ikke behersker den matematikkfaglige kompetanse de bør beherske etter endt grunnskole og videregående, og som er en forutsetning for å kunne gjennomføre en lærerutdanning. Et ikke godkjent resultat kan brukes til enten å sile ut studenter som da viser seg å ikke være kvalifisert, eller å gi studenter ekstra undervisning i manglende kunnskaper. Emnene til slike prøver kan for eksempel være brøkoppgaver og andre aritmetikkoppgaver, geometrioppgaver og algebraoppgaver. Tilleggskategorier fordypning 19

20 Presentere forskningsresultater Studentene fordyper seg i for eksempel en vitenskapelig artikkel eller bok, eller en master- eller doktoroppgave, og presentere denne for medstudenter. Studentene arbeider enten individuelt eller i grupper, og presentasjonene er enten skriftlige eller muntlige. Oppgaver av denne typen ofte til studenter som samtidig jobber med bacheloroppgaver, for å hjelpe dem på vei med litteratursøk. Et annet arbeidskrav kan være at studenter får i oppgave å være «opponent» eller «kritisk venn» til presentasjon nevnt i forrige avsnitt. 20

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap

Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Kompetanse for kvalitet, matematikk 1 (KFK MAT1) Ansvarlig fakultet Fakultet for humaniora og utdanningsvitenskap Studiepoeng: 30 (15+15). Separat eksamen høst 2014 (muntlig) og vår 2015 (skriftlig). INNLEDNING

Detaljer

Studieplan 2015/2016

Studieplan 2015/2016 Matematikk GLU 5-10 Studiepoeng: 60 Studiets varighet, omfang og nivå Studiet er et fulltidsstudium på et år. Innledning Studieplan 2015/2016 e skal gjennom faget matematikk bli i stand til å gjøre en

Detaljer

Studieplan - Nettmat 2

Studieplan - Nettmat 2 Studieplan - Nettmat 2 Matematikk 2, nettbasert videreutdanning for lærere pa 5. - 10. trinn (30 studiepoeng) Studiepoeng: 30 studiepoeng Undervisningsspråk: Norsk Studiets omfang/varighet: Studiet har

Detaljer

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN

H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN H Ø G S K O L E N I B E R G E N Avdeling for lærerutdanning Landåssvingen 15, 5096 BERGEN Eksamensoppgave høsten 2012 Ny/utsatt eksamen Bokmål Eksamensdato : 14. desember 2012 Utdanning : GLU 1-7 Emne

Detaljer

Fagplan for matematikk 1MU (30 studiepoeng) kompetanse for kvalitet

Fagplan for matematikk 1MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 1MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 1MU (30 studiepoeng) kompetanse for kvalitet bygger på nasjonale retningslinjer for matematikkfaget i rammeplan

Detaljer

Delemneplan for undervisningskunnskap i brøk og desimaltall

Delemneplan for undervisningskunnskap i brøk og desimaltall Delemneplan for undervisningskunnskap i brøk og desimaltall Emnet omfatter matematikkdidaktiske og matematikkfaglige tema innen brøk og desimaltall som er viktige for alle som skal undervise i matematikk

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

Fagplan for matematikk 1MU (30 studiepoeng) - matematikk for mellom - og ungdomstrinnet

Fagplan for matematikk 1MU (30 studiepoeng) - matematikk for mellom - og ungdomstrinnet Fagplan for matematikk 1MU (30 studiepoeng) - matematikk for mellom - og ungdomstrinnet Fagplanen bygger på rammeplan for allmennlærerutdanning av 2003. Fagplan godkjent av avdelingens studieutvalg 11.

Detaljer

Høgskolen i Østfold. Studieplan for. Norsk 1. Studiet går over to semester 30 studiepoeng. Godkjent av Dato: Endret av Dato:

Høgskolen i Østfold. Studieplan for. Norsk 1. Studiet går over to semester 30 studiepoeng. Godkjent av Dato: Endret av Dato: Høgskolen i Østfold Studieplan for Norsk 1 Studiet går over to semester 30 studiepoeng Godkjent av Dato: Endret av Dato: Innholdsfortegnelse INNHOLDSFORTEGNELSE... 2 MÅLGRUPPE OG OPPTAKSKRAV... 3 STUDIETS

Detaljer

Barnehagelærarutdanning med vekt på Kunst, kultur og kreativitet 180 studiepoeng

Barnehagelærarutdanning med vekt på Kunst, kultur og kreativitet 180 studiepoeng Høgskolen i Bergen Bachelorstudium: Barnehagelærarutdanning med vekt på Kunst, kultur og kreativitet 180 studiepoeng Innleiing Barnehagelærarutdanning er ei treårig forskningsbasert, profesjonsretta og

Detaljer

Retningsliner for lokalt gitt munnleg eksamen og munnleg-praktisk eksamen i Møre og Romsdal fylkeskommune

Retningsliner for lokalt gitt munnleg eksamen og munnleg-praktisk eksamen i Møre og Romsdal fylkeskommune rundskriv nr. 5/15 Frå: Utdanningsavdelinga Til: Dei vidaregåande skolane i Møre og Romsdal Dei private vidaregåande skolane i Møre og Romsdal Dato: Ref: 29.01.2015 6082/2015/062 - Retningsliner for lokalt

Detaljer

Matpakkematematikk. Data frå Miljølære til undervisning. Samarbeid mellom Pollen skule og Miljølære. Statistikk i 7.klasse

Matpakkematematikk. Data frå Miljølære til undervisning. Samarbeid mellom Pollen skule og Miljølære. Statistikk i 7.klasse Samarbeid mellom og Miljølære Matpakkematematikk Data frå Miljølære til undervisning Statistikk i 7.klasse Samarbeid mellom og Miljølære Lag riktig diagram Oppgåva går ut på å utarbeide ei grafisk framstilling

Detaljer

Matematikk 1 (5.-10. trinn)

Matematikk 1 (5.-10. trinn) Emne GLU2113_1, BOKMÅL, 2014 HØST, versjon 31.mai.2015 23:42:15 Matematikk 1 (5.-10. trinn) Emnekode: GLU2113_1, Vekting: 15 studiepoeng Tilbys av: Det humanistiske fakultet, Institutt for grunnskolelærerutdanning,

Detaljer

Barnerettane i LOKALSAMFUNNET

Barnerettane i LOKALSAMFUNNET Eit undervisningsopplegg om Barnerettane i LOKALSAMFUNNET Aktivitetsark med oppgåveidear og tips til lærarane Hjelpeark med bakgrunnsinformasjon og kopieringsoriginalar DELTAKING Artikkel 12: DISKRIMINERING

Detaljer

Matematikk 3 (5.-10. trinn)

Matematikk 3 (5.-10. trinn) Matematikk 3 (5.-10. trinn) Emnekode: GLU2211_1, Vekting: 15 studiepoeng Tilbys av: Det humanistiske fakultet, Institutt for grunnskolelærerutdanning, idrett og spesialpedagogikk Semester undervisningsstart

Detaljer

INFORMASJONSHEFTE GRUNNSKULELÆRARUTDANNINGANE HØGSKULEN I VOLDA STUDIEA RET 2015 2016. www.hivolda.no/glu

INFORMASJONSHEFTE GRUNNSKULELÆRARUTDANNINGANE HØGSKULEN I VOLDA STUDIEA RET 2015 2016. www.hivolda.no/glu INFORMASJONSHEFTE GRUNNSKULELÆRARUTDANNINGANE HØGSKULEN I VOLDA STUDIEA RET 2015 2016 www.hivolda.no/glu 1 2 Innhald Tid til studiar og undervising... 4 Frammøte... 4 Arbeidskrav, eksamen og progresjon

Detaljer

Matematikk 5. 10. trinn

Matematikk 5. 10. trinn 13.04.2015 Matematikk 5. 10. trinn «Det å være mattelærer er noe mer enn å være matematiker, og det å være mattelærer er noe mer enn å være pedagog» Ellen Konstanse Hovik og Helga Kufaas Tellefsen Hva

Detaljer

FAGPLAN I MATEMATIKK 1, 1.-7. trinn

FAGPLAN I MATEMATIKK 1, 1.-7. trinn FAGPLAN I MATEMATIKK 1, 1.-7. trinn 30 (15+15) studiepoeng Grunnskolelærerutdanning for 1.-7. trinn Emnekoder: G1MAT1100 G1MAT2100 Fagplanen ble godkjent av avdelingsstyret 18. juni 2010 og 24. mars 2011

Detaljer

Nynorsk Institutt for lærerutdanning og skoleutvikling Universitetet i Oslo Hovudtest Elevspørjeskjema 8. klasse Rettleiing I dette heftet vil du finne spørsmål om deg sjølv. Nokre spørsmål dreier seg

Detaljer

ORDINÆR EKSAMEN 15. des 2009 kl 10.00 18. des 2009 kl 10.00 Sensur faller innen 12.01.10.

ORDINÆR EKSAMEN 15. des 2009 kl 10.00 18. des 2009 kl 10.00 Sensur faller innen 12.01.10. Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Temabasert hjemmeeksamen i Naturfag 2, NA230 230-D 30 studiepoeng ORDINÆR EKSAMEN 15. des 2009 kl 10.00 18. des 2009 kl 10.00 Sensur faller

Detaljer

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen

ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015. Lærer: Turid Nilsen ÅRSPLAN I MATEMATIKK 1. KLASSE BREIVIKBOTN SKOLE 2014-2015 Lærer: Turid Nilsen Matematikkverket består av: Grunntall 1a + 1b Ressursperm Nettsted med oppgaver Grunnleggende ferdigheter Grunnleggjande ferdigheiter

Detaljer

Studieplan for. Regning som grunnleggende ferdighet i alle fag

Studieplan for. Regning som grunnleggende ferdighet i alle fag Studieplan for Regning som grunnleggende ferdighet i alle fag 15+15 studiepoeng Studieplanen er godkjent: (07.03.14) A. Overordnet beskrivelse av studiet 1. Innledning Videreutdanningskurset i regning

Detaljer

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014

ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 ÅRSPLAN I MATEMATIKK 2. KLASSE BREIVIKBOTN SKOLE 2013-2014 Lærer: Turid Nilsen Matematikkverket består av: - Ressursperm - Grunntall 2a + 2b - CD-rom Forfattere: Bjørn Bakke og Inger Nygjelten Bakke Grunnleggende

Detaljer

SKR-B. UTSATT EKSAMEN 06.06.08. Sensur faller innen 27.06.08.

SKR-B. UTSATT EKSAMEN 06.06.08. Sensur faller innen 27.06.08. Høgskolen i Sør-Trøndelag Avdeling for lærer- og tolkeutdanning Individuell skriftlig eksamen i MATEMATIKK 1, M1SKR SKR-B 1 studiepoeng UTSATT EKSAMEN 6.6.8. Sensur faller innen 27.6.8. BOKMÅL Resultatet

Detaljer

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk

Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning. Revidert læreplan i matematikk Guri A. Nortvedt Institutt for lærerutdanning og skoleforskning Revidert læreplan i matematikk Læreplan i matematikk Skoleforordningen 1734 Regning og matematikk Dagliglivets matematikk Grunnleggende ferdigheter

Detaljer

Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag

Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag Emneplan for matematikk 1MB, trinn 1-7 (30 studiepoeng) oppdrag Studieprogramkode K1MBO Emnekode og emnenavn Matematikk 1MB trinn 1-7 - oppdrag Engelsk emnenavn Mathematics for Grades level 1-7, Course

Detaljer

Vekeplan 10. klasse. Namn:.. Veke 22-24. Førebuing til ein eventuell munnleg eksamen, Sult. Tal og algebra/eksamen. Norsk: Førebuing til ein eventuell

Vekeplan 10. klasse. Namn:.. Veke 22-24. Førebuing til ein eventuell munnleg eksamen, Sult. Tal og algebra/eksamen. Norsk: Førebuing til ein eventuell Vekeplan 10. klasse Namn:.. Norsk: Samf: RLE: Førebuing til ein eventuell munnleg eksamen, Sult Sjå filmen Sult; bruke læringsstrategi til å skrive om filmen. Mål: Vere førebudd til ein eventuell munnleg

Detaljer

Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet

Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet Fagplan for matematikk 2MU (30 studiepoeng) kompetanse for kvalitet bygger på nasjonale retningslinjer for matematikkfaget i rammeplan

Detaljer

Frå novelle til teikneserie

Frå novelle til teikneserie Frå novelle til teikneserie Å arbeide umarkert med nynorsk som sidemål Undervisningsopplegget Mykje av inspirasjonen til arbeidet med novella, er henta frå i praksis: nynorsk sidemål i grunnskule 1 (2008).

Detaljer

Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7

Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7 Sensurveiledning til skriftlig eksamen i Matematikk 1, 1-7 24. mai 2011 Oppgavesettet besto av 3 oppgaver. Alle oppgavene skulle besvares og svarene begrunnes. Oppgavene telte i utgangspunktet som vist

Detaljer

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 Faglærer: Læreverk: Hege Skogly Grunntall 2a og 2b, Bakke og Bakke Ressursperm og nettsted Grunnleggende ferdigheter i faget (Fra læreplanverket for Kunnskapsløftet,

Detaljer

Introduksjon til spansk språk og latinamerikastudium Introduction to Spanish and Latin American Studies Studiepoeng 10 Undervisningssemester

Introduksjon til spansk språk og latinamerikastudium Introduction to Spanish and Latin American Studies Studiepoeng 10 Undervisningssemester Emnekode SPLA100 Emnenamn Introduksjon til spansk språk og latinamerikastudium Engelsk emnenamn Introduction to Spanish and Latin American Studies Studiepoeng 10 Undervisningssemester Haust Undervisningsspråk

Detaljer

RETNINGSLINJER FOR BACHELOROPPGAVEN

RETNINGSLINJER FOR BACHELOROPPGAVEN RETNINGSLINJER FOR BACHELOROPPGAVEN Grunnskolelærerutdanningen Fakultet for estetiske fag, folkekultur og lærerutdanning Høgskolen i Telemark Emnene PEL 104/504 Porsgrunn, september 2015 2 Innhold 1. Formål...

Detaljer

Emneplan for matematikk 1MB

Emneplan for matematikk 1MB Emneplan for matematikk 1MB Studieprogramkode K1MBO Emnekode og emnenavn Matematikk 1MB Engelsk emnenavn Mathematics for Grades 1-7, Course 1 Studieprogrammet emnet inngår i Frittstående videreutdanning

Detaljer

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B

Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: Nye Mega 8A og 8B Årsplan i matematikk 8.trinn, 2014-2015 Faglærere: Lars Skaale Hauge, Hans Tinggård Dillekås og Ina Hernar Lærebok: 8A og 8B Grunnleggende ferdigheter i faget: Munnlege ferdigheiter i matematikk inneber

Detaljer

Matematisk samtale og undersøkingslandskap

Matematisk samtale og undersøkingslandskap Matematisk samtale og undersøkingslandskap En visuell representasjon av de ulike matematiske kompetansene 5-Mar-06 5-Mar-06 2 Tankegang og resonnementskompetanse Tankegang og resonnementskompetansen er

Detaljer

Studieplan for. Regning som grunnleggende ferdighet

Studieplan for. Regning som grunnleggende ferdighet VERSJON 16.06.2014 Studieplan for Regning som grunnleggende ferdighet 30 studiepoeng Studieplanen er godkjent/revidert: 00.00.00 Studiet er etablert av Høgskolestyret: 00.00.00 A. Overordnet beskrivelse

Detaljer

Profesjonsskriving på bokmål og nynorsk Sofie E. Holmen, Høgskulen i Volda Nettverk for nynorsk i lærarutdanninga, 20.10.15

Profesjonsskriving på bokmål og nynorsk Sofie E. Holmen, Høgskulen i Volda Nettverk for nynorsk i lærarutdanninga, 20.10.15 Profesjonsskriving på bokmål og nynorsk Sofie E. Holmen, Høgskulen i Volda Nettverk for nynorsk i lærarutdanninga, 20.10.15 Bakgrunn Forskrift om rammeplan for grunnskolelærarutdanningane: «Kandidaten

Detaljer

Emnet er ope for alle med studierett ved UiB.

Emnet er ope for alle med studierett ved UiB. Emnekode Emnenamn Engelsk emnenamn Studiepoeng 15 Undervisningssemester Undervisningsspråk Studienivå Krav til studierett Mål og innhald Læringsutbyte/resultat Kunnskap Grunnkompetanse ITAL111 Italiensk

Detaljer

Alle barn har rett til å seie meininga si, og meininga deira skal bli tatt på alvor

Alle barn har rett til å seie meininga si, og meininga deira skal bli tatt på alvor Eit undervisningsopplegg om BARNERETTANE MÅL frå læreplanen DELTAKING Artikkel 12: DISKRIMINERING Artikkel 2: Alle barn har rett til vern mot diskriminering PRIVATLIV Artikkel 16: Alle barn har rett til

Detaljer

Eksamensrettleiing for vurdering av sentralt gitt eksamen. 1 Organisering av sentralt gitt skriftleg eksamen

Eksamensrettleiing for vurdering av sentralt gitt eksamen. 1 Organisering av sentralt gitt skriftleg eksamen Eksamensrettleiing for vurdering av sentralt gitt eksamen Denne eksamensrettleiinga gir informasjon om sentralt gitt eksamen, og korleis denne eksamen skal vurderast. Rettleiinga skal vere kjend for elever,

Detaljer

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149

Addisjon og subtraksjon 1358 1357 1307-124-158-158 =1234 =1199 =1149 Addisjon og subtraksjon Oppstilling Ved addisjon og subtraksjon av fleirsifra tal skal einarar stå under einarar, tiarar under tiarar osb. Addisjon utan mentetal Addisjon med mentetal 1 212 357 + 32 +

Detaljer

Til bruk i utviklingssamtale på 8. trinnet. Samtaleguide om lesing

Til bruk i utviklingssamtale på 8. trinnet. Samtaleguide om lesing Til bruk i utviklingssamtale på 8. trinnet Samtaleguide om lesing Innleiing Samtaleguiden er meint som ei støtte for opne samtalar mellom lærar, elev og foreldre. Merksemda blir retta mot lesevanar, lesaridentitet

Detaljer

UTDANNINGSVAL NORDBYGDO UNGDOMSSKULE.

UTDANNINGSVAL NORDBYGDO UNGDOMSSKULE. UTDANNINGSVAL NORDBYGDO UNGDOMSSKULE. KOMPETANSEMÅL Etter 10.trinn skal elevane kunna:. Gje ei oversikt over lokalt næringsliv. Klargjera eigne interesser, anlegg og verdiar som føresetnad for sjølvstendige

Detaljer

Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene. Andreas Christiansen Ole Enge Beate Lode

Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene. Andreas Christiansen Ole Enge Beate Lode Nasjonale retningslinjer for karaktersetting i matematikk i GLUutdanningene Andreas Christiansen Ole Enge Beate Lode Retningslinjer for karaktersetting Vi prøver å finne svar på to utfordringer: - Hva

Detaljer

Matematikk 1, 4MX15-10E1 A

Matematikk 1, 4MX15-10E1 A Skriftlig eksamen i Matematikk 1, 4MX15-10E1 A 15 studiepoeng ORDINÆR EKSAMEN 19. desember 2011. BOKMÅL Sensur faller innen onsdag 11. januar 2012. Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

Årsplan i SAMFUNNSFAG 9.klasse 2014-2015

Årsplan i SAMFUNNSFAG 9.klasse 2014-2015 Årsplan i SAMFUNNSFAG 9.klasse 2014-2015 Utforskaren Hovudområdet grip over i og inn i dei andre hovudområda i faget, og difor skal ein arbeide med kompetansemåla i utforskaren samtidig med at ein arbeider

Detaljer

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen

Emneplan 2014-2015. Matematikk 2 for 1.-10. trinn. Videreutdanning for lærere. HBV - Fakultet for humaniora og utdanningsvitenskap, studiested Drammen Emneplan 2014-2015 Matematikk 2 for 1.-10. trinn Videreutdanning for lærere HBV - Fakultet for humaniora og, studiested Drammen Høgskolen i Buskerud og Vestfold Postboks 7053 3007 Drammen Side 2/6 KFK-MAT2

Detaljer

Emnebeskrivelse videreutdanning i matematikk for lærere

Emnebeskrivelse videreutdanning i matematikk for lærere Emnebeskrivelse videreutdanning i matematikk for lærere Emnekode: Bestemmes senere Emnenavn: Matematikk 1 matematikk og matematikkdidaktikk for lærere 1.-7. trinn Antall studiepoeng: 15 + 15 Undervisningsspråk:

Detaljer

Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag

Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag Fagplan for matematikk 2, trinn 5-10 (30 studiepoeng) oppdrag 30 studiepoeng Samlings- og nettbasert videreutdanning Studieprogramkode KFKMU2 Godkjent av fakultetets studieutvalg 7. mai 2012. Redaksjonelle

Detaljer

Årsplan i matematikk for 2.årssteg

Årsplan i matematikk for 2.årssteg Årsplan i matematikk for 2.årssteg Læreverk: Abakus Grunnbok 2A, grunnbok 2B, Oppgåvebok 2B. I stadenfor oppgåvebok 2A har vi brukt Tusen millionar oppgåvebok 2. Klassen nyttar nettsida til dette læreverket,

Detaljer

Fagplan for matematikk 1, nettbasert Mathematics 1 for Teachers

Fagplan for matematikk 1, nettbasert Mathematics 1 for Teachers Fagplan for matematikk 1, nettbasert Mathematics 1 for Teachers 30 studiepoeng Varighet: 2 semestre Studieprogramkode: MA1NETT Fagplanen bygger på rammeplan for allmennlærerutdanningen av 2003 Fagplanen

Detaljer

Retten til spesialundervisning

Retten til spesialundervisning Retten til spesialundervisning Elevens individuelle rett til spesialundervisning Gunda Kallestad OT/PPT Opplæringslova 5-1, første ledd Elevar som ikkje har, eller som ikkje kan få tilfredsstillande utbytte

Detaljer

Saksnr Utval Møtedato Utdanningsutvalet 05.09.2013. I sak Ud-6/12 om anonym retting av prøver gjorde utdanningsutvalet slikt vedtak;

Saksnr Utval Møtedato Utdanningsutvalet 05.09.2013. I sak Ud-6/12 om anonym retting av prøver gjorde utdanningsutvalet slikt vedtak; saksframlegg Dato: Referanse: Vår saksbehandlar: 14.08.2013 49823/2013 Sverre Hollen Saksnr Utval Møtedato Utdanningsutvalet 05.09.2013 Anonym retting av prøver våren 2013 Bakgrunn I sak Ud-6/12 om anonym

Detaljer

Vurderingsrettleiing 2011

Vurderingsrettleiing 2011 Vurderingsrettleiing 2011 ENG0012 Engelsk 10.trinn Til sentralt gitt skriftleg eksamen Nynorsk Vurderingsrettleiing til sentralt gitt skriftleg eksamen 2011 Denne vurderingsrettleiinga gir informasjon

Detaljer

INFORMASJONSHEFTE TIL EMNE SOS5-202 PRAKSIS I SOSIALT ARBEID

INFORMASJONSHEFTE TIL EMNE SOS5-202 PRAKSIS I SOSIALT ARBEID INFORMASJONSHEFTE TIL EMNE SOS5-202 PRAKSIS I SOSIALT ARBEID NB: Alle delane av praksis er obligatoriske Høgskulen i Sogn og Fjordane Avdeling for samfunnsfag v/ praksisansvarleg Marita Brekke Skjelvan

Detaljer

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14

3 52 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 52 2014-10-14 15:08:14 5 Sinus 1P Y > Algebra Book Sinus 1P-Y-nyn.indb 5 014-10-14 15:08:14 Algebra MÅL for opplæringa er at eleven skal kunne forenkle fleirledda uttrykk og løyse likningar av første grad og enkle potenslikningar

Detaljer

2MA25 Matematikk. Emnets navn: Matematikk Emnekode: 2MA25 Studiepoeng: 30 Semester: Høst / Vår Språk: Norsk 1 / 7

2MA25 Matematikk. Emnets navn: Matematikk Emnekode: 2MA25 Studiepoeng: 30 Semester: Høst / Vår Språk: Norsk 1 / 7 2MA25 Matematikk Emnets navn: Matematikk Emnekode: 2MA25 Studiepoeng: 30 Semester: Høst / Vår Språk: Norsk 1 / 7 Læringsutbytte : Etter endt opplæring skal studentene ha kunnskaper om og ferdigheter i

Detaljer

3.2.4 Døme for vidaregåande opplæring: Religiøs, etnisk og kulturell variasjon

3.2.4 Døme for vidaregåande opplæring: Religiøs, etnisk og kulturell variasjon Uansett om elevane skal svare på den individuelle oppgåva skriftleg eller munnleg, kan læraren og elevane avtale når og korleis det kan vere formålstenleg med tilbakemeldingar. Læraren kan bruke undervegsvurderinga

Detaljer

Vi lærer om respekt og likestilling

Vi lærer om respekt og likestilling Vi lærer om respekt og likestilling I Rammeplanen står det at barnehagen skal tilby alle barn eit rikt, variert, stimulerande og utfordrande læringsmiljø, uansett alder, kjønn, funksjonsnivå, sosial og

Detaljer

Etablerarkurs Sogn og Fjordane Fylkeskommune

Etablerarkurs Sogn og Fjordane Fylkeskommune Etablerarkurs Sogn og Fjordane Fylkeskommune forretningsidé forretningsmodell - forretningsplan Sogn og Fjordane Fylkeskommune i samarbeid med Viaduct og Mentor AS Innleiing... 3 Samling 1: Forretningsideen

Detaljer

VESTNES KOMMUNE HELLAND SKULE 6390 VESTNES

VESTNES KOMMUNE HELLAND SKULE 6390 VESTNES Eksamen nærmar seg, og då vil Helland skule med dette skrivet gje informasjon til elevar og foreldre/føresette om korleis eksamen både skriftleg og munnleg blir gjennomført. Vil også informere om klagerett

Detaljer

Tilgangskontroll i arbeidslivet

Tilgangskontroll i arbeidslivet - Feil! Det er ingen tekst med den angitte stilen i dokumentet. Tilgangskontroll i arbeidslivet Rettleiar frå Datatilsynet Juli 2010 Tilgangskontroll i arbeidslivet Elektroniske tilgangskontrollar for

Detaljer

Livslang læring og sosial kompetanse i Bodøskolene

Livslang læring og sosial kompetanse i Bodøskolene Livslang læring og sosial kompetanse i Bodøskolene Grunnleggende ferdigheter Med denne folderen ønsker vi å: Synliggjøre både hva og hvordan Bodøskolen arbeider for at elevene skal utvikle kompetanse som

Detaljer

ÅRSPLAN FOR 9. TRINN 2015-2016

ÅRSPLAN FOR 9. TRINN 2015-2016 ÅRSPLAN FOR 9. TRINN 2015-2016 Lindås ungdomsskule 5955 LINDÅS Tlf. 56375054 Klasse: 9.trinn Fag: Matematikk Faglærar: Turid Åsebø Angelskår, Hanne Vatshelle og Anne Britt Svendsen Hovudkjelder: Nye Mega

Detaljer

Skulebasert kompetanseutvikling med fokus på lesing

Skulebasert kompetanseutvikling med fokus på lesing Skulebasert kompetanseutvikling med fokus på lesing Kvifor satse på lesing? si rolle i ungdomstrinnsatsinga Praktiske eksempel / erfaringar frå piloteringa Nettresurssar Kva er tilgjengeleg for kven Eksempel

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

Reviderte læreplaner konsekvenser for undervisningen?

Reviderte læreplaner konsekvenser for undervisningen? Reviderte læreplaner konsekvenser for undervisningen? Multiaden 2013 Innhold Kompetanse i matematikk Den reviderte læreplanen Hva skal elevene lære? Grunnleggende ferdigheter i matematikk Konsekvenser

Detaljer

Profesjonsskriving på nynorsk

Profesjonsskriving på nynorsk Profesjonsskriving på nynorsk Ei utprøving ved Høgskolen i Østfold NOLES 1. februar 2012 Benthe Kolberg Jansson Norsk, Pel og grunnleggande ferdigheiter St. meld. Nr. 11 (2008-2009): Læreren. Rollen og

Detaljer

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN

ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN ROSSELAND SKOLE LÆREPLAN I MATEMATIKK 2. TRINN Årstimetallet i faget: 133 Songdalen for livskvalitet Generell del av læreplanen, grunnleggende ferdigheter og prinsipper for opplæringen er innarbeidet i

Detaljer

IKT-kompetanse for øvingsskular

IKT-kompetanse for øvingsskular Notat / Svein Arnesen IKT-kompetanse for øvingsskular Spørjeundersøking ved Vartdal skule VOLDA Forfattar Ansvarleg utgjevar ISSN Sats Distribusjon Svein Arnesen Høgskulen i Volda -7 Svein Arnesen http://www.hivolda.no/fou

Detaljer

Psykologisk førstehjelp i skulen

Psykologisk førstehjelp i skulen Psykologisk førstehjelp i skulen Fagnettverk for psykisk helse Sogndal 21. mars 2014 Solrun Samnøy, prosjekt leiar Psykologisk førstehjelp Sjølvhjelpsmateriell laga av Solfrid Raknes Barneversjon og ungdomsversjon

Detaljer

NORSKLÆRAR? lese, skrive, tenkje, fortelje

NORSKLÆRAR? lese, skrive, tenkje, fortelje NORSKLÆRAR? lese, skrive, tenkje, fortelje NORSKFAGET FOR STUDENTAR OG ELEVAR Norskfaget i grunnskolelærarutdanninga handlar om identitet, kultur, danning og tilhøvet vårt til samtid og fortid. Faget skal

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 23.05.2014. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 23.05.2014 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Kompetanseutvikling - 2009/2010 (budsjettåret 2009 - vgo)

Kompetanseutvikling - 2009/2010 (budsjettåret 2009 - vgo) rundskriv nr 5/09 Frå: Utdanningsavdelinga Til: Dei vidaregåande skolane Dato: Ref: 16.03.2009 MR 9146/2009/040 Kompetanseutvikling - 2009/2010 (budsjettåret 2009 - vgo) Fylkesutdanningsdirektøren meiner

Detaljer

Heile IOP skal arkiverast i elevmappa i P360

Heile IOP skal arkiverast i elevmappa i P360 Videregående opplæring RETTLEIAR TIL UTFYLLING AV INDIVIDUELL OPPLÆRINGSPLAN(IOP) Dette dokumentet, mal for IOP, inneheld 3 delar. Del 1: skal fyllast ut av kontaktlærar. Den generelle delen skal innhalde

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

HØYRING - JUSTERING AV LÆREPLAN I NATURFAG OG MATEMATIKK

HØYRING - JUSTERING AV LÆREPLAN I NATURFAG OG MATEMATIKK HORDALAND FYLKESKOMMUNE Opplæringsavdelinga Arkivsak 201210112-3 Arkivnr. 520 Saksh. Sandvik, Tor Ivar Sagen Saksgang Opplærings- og helseutvalet Fylkesutvalet Møtedato 12.02.2013 20.02.2013-21.02.2013

Detaljer

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE.

KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. KOMPETANSEMÅL I MATEMATIKK 1. KLASSE. Tal telje til 100, dele opp og byggje mengder opp til 10, setje saman og dele opp tiargrupper opp til 100 og dele tosifra tal i tiarar og einarar. bruke tallinja til

Detaljer

Jobbskygging. Innhald. Jobbskygging side 1. ELEVARK 8 trinn

Jobbskygging. Innhald. Jobbskygging side 1. ELEVARK 8 trinn Jobbskygging side 1 ELEVARK 8 trinn Jobbskygging Innhald Yrke og utdanning i familien min Nettverk og kompetanse. Kva betyr omgrepa? Slektstreet mitt Yrkesprofil Stilling og ansvarsområde. Kva betyr omgrepa?

Detaljer

Tenk på det! Informasjon om Humanistisk konfirmasjon NYNORSK

Tenk på det! Informasjon om Humanistisk konfirmasjon NYNORSK Tenk på det! Informasjon om Humanistisk konfirmasjon NYNORSK FRIDOM TIL Å TENKJE OG MEINE KVA DU VIL ER EIN MENNESKERETT Fordi vi alle er ein del av ein større heilskap, er evna og viljen til å vise toleranse

Detaljer

Skjema for medarbeidarsamtalar i Radøy kommune

Skjema for medarbeidarsamtalar i Radøy kommune Skjema for medarbeidarsamtalar i Radøy kommune 1 Bedriftspedagogisk Senter A.S bps@bps.as Medarbeidarsamtalar i Radøy kommune - slik gjer vi det Leiar har ansvar for å gjennomføra samtalane sine slik det

Detaljer

Styresak. Ivar Eriksen Oppfølging av årleg melding frå helseføretaka. Arkivsak 2011/545/ Styresak 051/12 B Styremøte 07.05.2012

Styresak. Ivar Eriksen Oppfølging av årleg melding frå helseføretaka. Arkivsak 2011/545/ Styresak 051/12 B Styremøte 07.05.2012 Styresak Går til: Styremedlemmer Føretak: Helse Vest RHF Dato: 24.04.2012 Sakhandsamar: Saka gjeld: Ivar Eriksen Oppfølging av årleg melding frå helseføretaka Arkivsak 2011/545/ Styresak 051/12 B Styremøte

Detaljer

TIL FAGANSVARLEGE FOR BACHELOR-

TIL FAGANSVARLEGE FOR BACHELOR- TIL FAGANSVARLEGE FOR BACHELOR- OG MASTEROPPGÅVA DET TEKNISK-NATURVITSKAPLEGE FAKULTET Det teknisk-naturvitskaplege fakultet (legg inn på alle sidene.. 30.09.2009 INNHALD: 1. INNLEIING... 2 2. TIDSFRISTAR...

Detaljer

Ein tydeleg medspelar. frå elev til lærling. Informasjon, tips og råd til deg som skal søke læreplass

Ein tydeleg medspelar. frå elev til lærling. Informasjon, tips og råd til deg som skal søke læreplass Ein tydeleg medspelar frå elev til lærling Informasjon, tips og råd til deg som skal søke læreplass SØKNADEN Må vere ryddig Søknad/CV skal ikkje ha skrivefeil Spør norsklærar om hjelp Hugs å skrive under

Detaljer

Valdres vidaregåande skule

Valdres vidaregåande skule Valdres vidaregåande skule Organiseringa av skriftleg vurdering på vg3 Kvifor prosesskriving? Opplegg for skriveøkter Kvifor hjelpe ein medelev? Døme på elevtekst Kva er ei god framovermelding? KOR MYKJE

Detaljer

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK

KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK KOMPETANSEMÅL ETTER 2. TRINN MATEMATIKK Tal Hovudområdet tal og algebra handlar om å utvikle talforståing og innsikt i korleis tal og talbehandling inngår i system og mønster. Med tal kan ein kvantifisere

Detaljer

Studieplan 2014/2015

Studieplan 2014/2015 1 / 9 Studieplan 2014/2015 Matematikk, uteskole og digital kompetanse fra barnehage til 7. trinn Studiepoeng: 30 Studiets varighet, omfang og nivå Studiet er et deltidsstudium på grunnivå med normert studietid

Detaljer

Det æ 'kji so lett å gjera eit valg når alt æ på salg Dialektundersøking

Det æ 'kji so lett å gjera eit valg når alt æ på salg Dialektundersøking Det æ 'kji so lett å gjera eit valg når alt æ på salg Dialektundersøking Mål: Elevane skal kjenne til utbreiinga av hallingmålet i nærmiljøet. Dei skal vita noko om korleis hallingmålet har utvikla seg

Detaljer

STUDIEPLANMAL 2011 med brukarrettleiing

STUDIEPLANMAL 2011 med brukarrettleiing STUDIPLANMAL 2011 med brukarrettleiing Felt med informasjon som vises i studieplanen på nettsidene vert markert med Felt med intern (administrativ) informasjon vert markert med I Felt: I/ Forklaring: Val:

Detaljer

Fra Forskrift til Opplæringslova:

Fra Forskrift til Opplæringslova: Fra Forskrift til Opplæringslova: 5-1. Kva det kan klagast på Det kan klagast på standpunktkarakterar, eksamenskarakterar, karakterar til fag- /sveineprøver og kompetanseprøve, og realkompetansevurdering.

Detaljer

Vurderingsrettleiing 2011

Vurderingsrettleiing 2011 Vurderingsrettleiing 2011 NOR0214/NOR0215 Norsk hovudmål og norsk sidemål Sentralt gitt skriftleg eksamen Nynorsk Vurderingsrettleiing til sentralt gitt skriftleg eksamen 2011 Denne vurderingsrettleiinga

Detaljer

Matematikk - veilednings- og støttemateriell

Matematikk - veilednings- og støttemateriell Matematikk - veilednings- og Veilednings-/ Veiledning til læreplanene i matematikk fellesfag Veiledning 16.08. 21.08. 0,- Lærer på videregående Veiledningen gir praktiske eksempler på hvordan lærer kan

Detaljer

Vurdering for læring - prosjektsamarbeid mellom skulane i Jærnettverket

Vurdering for læring - prosjektsamarbeid mellom skulane i Jærnettverket Vurdering for læring - prosjektsamarbeid mellom skulane i Jærnettverket OB Starta med å besøkja alle ressursgruppene 25 stk Skulebesøk Ca 1 2 timar på kvar plass Skulane hadde svært ulikt utgangspunkt

Detaljer