b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden

Størrelse: px
Begynne med side:

Download "b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden"

Transkript

1 Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b) 7 går ikke opp i 8 siden vi får en rest på 6 når 8 deles med 7 c) 7 går opp i 57 siden 57 7 d) 7 går ikke opp i siden vi får en rest på 5 når deles med 7 Oppgave 5 Her må vi anta at verken a eller b er. Hvis a går opp i b, så må det finnes et heltall k slik at b k a og hvis b går opp i a, må det finnes et heltall k slik at a k b. Dermed blir b k k b og k k. Men produktet av to heltall er lik kun hvis begge er eller hvis begge er -. Dermed må a b eller a b. Oppgave 8 La for eksempel a, b 8 og c 9. Da er b c 7. Men går opp i 7, men går ikke opp verken i 8 eller 9. Oppgave 9 Kort repetisjon av teorien: Gitt et heltall a og et positivt heltall d. Da finnes det to entydige tall q og r der r d slik at a q d r. Her kalles r for resten og q for kvotienten. Med andre ord er q det (hele) antallet ganger d går opp i a og r er resten ved divisjonen. Definisjonen sier at også når a er negativ skal resten r være slik at r d. Da kan vi, hvis d ikke går opp i a (dvs. r ), bruke flg. regneregel: La a være positiv og la q og r være kvotient og rest når vi deler a med d. Da blir d r rest og ( q ) kvotient når a deles med d. Eksempel: Hva blir kvotient og rest når skal deles med? Vi deler først med. Det gir en kvotient q på og en rest r på. Dermed blir kvotienten ( + ) = og resten = når deles med. a), 5 b), c), 7 d) 77, e), f), g), h),

2 Oppgave 6 Kort repetisjon av teorien: La a og d være to heltall der d. Da er a mod d r der r er resten og a div d q der q er kvotienten når a heltalldivideres med d. Dvs. de entydige verdiene r og q gitt ved a q d r og r d. Obs: r kan ikke være negativ. a) 7 mod b) mod 7 c) mod d) 99 mod 9 9 Oppgave 7 a) mod b) 97 mod c) 55 mod 9 d) mod 9 Oppgave 8 De tallene som er kongruent med modulo er gitt på formen k der k er et vilkårlig heltall. Ved for eksempel å velge k,,,, får vi tallene, 6, 8, og 5. Oppgave 9 a) 8 er ikke kongruent med 5 modulo 7 siden 7 ikke går opp i 8 5 = 75. b) er ikke kongruent med 5 modulo 7 siden 7 ikke går opp i 5 = 98. c) 9 er kongruent med 5 modulo 7 siden 7 går opp i 9 5 =. d) er ikke kongruent med 5 modulo 7 siden 7 ikke går opp i 5 = 7. Avsnitt.5 Generelt om primtall Når vi skal undersøke om et tall p er et primtall, må vi sjekke om det finnes tall som går opp i p. Da prøver vi med tallene,, 5, 7,,, 7, 9,... Dette er rekken av primtall. Vi vet også at hvis p ikke er primtall, så må det finnes primtall q som går opp i p og der q p. Hvis for eksempel p =, holder det å prøve med q =,, 5 og 7 siden. Flg. regneregel kan gjøre arbeidet med å avgjøre om et tall er et primtall, raskere: Hvis et positivt heltall p er summen av to positive heltall a og b, dvs. p = a + b, så vil et tall q ikke gå opp i p hvis det går opp i a, men ikke i b. Eksempel : Går opp? = Vi vet at går opp i 99 og at ikke går opp i. Dermed går ikke opp i. Eksempel : Går 7 opp i? = 7 +. Vi vet at 7 ikke går opp i og dermed går ikke 7 opp i.

3 Oppgave a) = *7, er ikke primtall b) 9 5, primtall siden verken,, 5 går opp i 9 c) 7 8, primtall siden verken,, 5 eller 7 går opp 7 d) 97 9, primtall siden verken,, 5 eller 7 går opp 97 e) = *7, er ikke primtall f) = *, er ikke primtall Oppgave a) 9 er primtall b) 7 =*9, 7 er ikke primtall c) 9 er ikke primtall siden 9 = * d), primtall siden verken,, 5 eller 7 går opp i e) 7, primtall siden verken,, 5 eller 7 går opp i 7 f), primtall siden verken,, 5 eller 7 går opp i Oppgave a) 88 b) c) 79 d) 7 e) f) Oppgave a) 9 b) 8 c) d) e) 89 7 f) Oppgave 5! Oppgave allene, 7,,, 7, 9, og 9 er de tallene mindre enn som er innbyrdes primisk med. Dvs. gcd(, k) = for k lik hvert av disse tallene

4 Oppgave Her plukker vi primtall fra hvert tall inntil vi har fått nok: a) Gitt 5 7 og 5. Vi kan maksimalt plukke ut fem -ere og tre 5-ere fra begge 5 tallene. Største felles divisor blir dermed 5 b) Gitt 7 og Største felles divisor blir. c) Gitt og 7. Det siste tallet går opp i det første, 7 blir da største felles divisor d) Gitt 5 og 5. allene er like og største felles divisor er lik 5 e) Gitt 5 7 og 7. Disse har som største felles divisor f) Gitt og. Siden går opp i blir største felles divisor Oppgave Vi får minste felles multiplum for to tall som et produkt av primtallsfaktorer ved først å ta med i produktet alle primtallsfaktorer som bare er i det ene tallet eller som bare er i det andre tallet. I tillegg tar vi med så mange faktorer som er i begge tallene som det er i det tallet det er flest. Eksempel: Hvis det første tallet er 5 og det andre tallet 5 7, så blir minste felles multiplum lik 5 7. a) b) c) d) 5 e) f) Har ikke minste felles multiplum siden det ene tallet er Oppgave Med three consecutive integers menes tre tall som følger etter hverandre. For eksempel gjelder det tallene 5, 6 og 7. re slike tall er alltid på formen k, k og k der k er et heltall. Minst ett av disse tre tallene må være delelig med siden annethvert tall er partall og tredjehvert tall er delelig med. Derfor vil minst ett avtallene k, k og k være delelig med og minst ett delelig med. Dermed vil produktet være delelig med 6.

5 Avsnitt.6 Oppgave. Gangen i algoritmen kan settes opp i en tabell. il venstre står kvotienten og til høyre resten under divisjonen med. Det er satt opp tabeller for verdiene, 5 og 976: De binære sifrene må leses oppover, dvs. første binære siffer står nederst: = 5 = 976 =. Noen liker å sette tabellene på vannrett form. abellen for kunne settes opp slik: Da må de binære sifrene leses fra høyre mot venstre, dvs. =. Oppgave a) 6 8 = =. b) = 5 + = 5. 5

6 c) = =. d) = 6896 Lag et Java-program som kjører flg. programbit: int n = Integer.parseInt("",); System.out.println(n); eller int n = b; System.out.println(n); Det vil gi utskriften Du får også en fasit på slike oppgaver ved å bruke kalkulatoren i Windows 7. Klikk på Vis/View og velg versjonen for programmering. Oppgave 5 Hvert heksadesimalt siffer erstattes med sin firesifrede binære kode, dvs. erstattes med, med, med,..... E = og F =. Eventuelle ledende -er (- er fra venstre) fjernes i det binære uttrykket vi ender opp med. Eksempel: A 6 = = a) 8E 6 = b) ABBA 6 = c) 5AB 6 = d) DEFACED 6 = Oppgave 8 Her går vi motsatt vei i forhold til oppgave 5. Vi slår sammen fire og fire binære siffer fra høyre mot venstre og oversetter dem til et heksadesimalt siffer. Hvis det er færre enn fire siffer igjen til slutt kan vi legge på -er foran til vi får fire siffer. a) = F7 6 b) = AAA 6 c) = Oppgave = = =

7 Oppgave 8 Her bør en gå via binærformen til tallene: = = = 9CBB8 6 ABB9BABBA 6 = = = Du får også en fasit på slike oppgaver ved å bruke kalkulatoren i Windows 7. Klikk på Vis/View og velg versjonen for programmering. Oppgave Euklids algoritme for å finne største felles divisor for de posistive heltallene a og b ser slik ut som Java-metode (obs. gcd betyr greatest common divisor): public static int gcd(int a, int b) { while (b!= ) { int r = a % b; // r er resten når a deles med b a = b; b = r; } } return a; Vi kan sette opp en tabell for det som skjer en kolonne for a, en for b og en for r. c) Vi starter med tilfellet der a = og b = : a b r Resultatet, dvs. største felles divisor for startverdiene til a og b, blir den verdien a har når algoritmen stopper (dvs. når b blir ). Dvs. største felles divisor for og lik. d) ilfellet a = 5 og a = 5 står i neste tabell: a b r Her finner vi at største felles divisor for 5 og 5 er lik. 7

8 Avsnitt.8 Oppgave Gitt 6 7. a) En matrise med rader og kolonner er en -matrise. Generelt har vi at en m n - matrise er en matrise med m rader og n kolonner. Uttrykket m n kalles matrisens dimensjon. b) Den første kolonnen fra venstre er. kolonne, den neste er. kolonne, osv. Det betyr at. kolonne i A er. c) Radene nummereres nedover. Den øverste raden er. rad, den neste er. rad, osv. Det betyr at. rad i A er 6 d) Vi skriver en matrise A på generell form ved ( a i, j ). Symbolet a i, j står for det elementet eller den verdien som ligger i rad nr. i og kolonne nr. j. Dvs. at elementet a, eller elementet på plass (,) er det elementet som ligger i. rad og. kolonne. Det er tallet i matrisen A. Husk at det første tallet gir raden og det andre tallet kolonnen. e) Matrisen A er den transponerte til A. I læreboken brukes liten t som eksponent, men det er mest vanlig å bruke stor. Den transponerte til A får vi ved å bytte om rader og kolonner. Dvs.. rad i A blir. kolonne i A,. rad i A blir. kolonne i A, osv. Dette betyr spesielt at hvis A er en m n -matrise så vil A bli en n m -matrise. I vårt tilfelle er A en -matrise. Dermed blir A flg. -matrise: 6 7 Oppgave b) Hvis to matriser A og B skal kunne adderes, må de ha samme dimensjon. I oppgave b) er både A og B gitt som -matriser. Dermed kan de adderes. Svaret finner vi ved å addere parvis, dvs. elementet på plass (i, j) i A B får vi ved å legge sammen a ) og b ). Dermed ( i, j ( i, j ( ) 9 5 ( ) 6 A B = ( ) ( ) 5 ( ) 9 = 5 8

9 Oppgave Hvis to matriser A og B skal kunne multipliseres, må de ha riktige dimensjoner. Hvis A er en m n -matrise og B en k l -matrise, så kan A multipliseres med B (dvs. danne AB ) hvis n k, dvs. hvis antallet kolonner i A er lik antall rader i B. Resultatet AB blir en ml -matrise, dvs. antallet rader i AB blir det samme som antallet rader i A og antallet kolonner i AB blir det samme som antallet kolonner i B. Vi finner det som skal være på plass (,) i AB ved å multiplisere rad i A med kolonne i B. Det på plass (,) i AB finner vi ved å multiplisere rad i A med kolonne i B, osv. En rad og en kolonne multipliseres ved å danne produkt-summen, dvs. vi multipliserer elementene parvis og adderer fortløpende. a) Her er både A og B -matriser (kvadratiske matriser) og dermed kan de multipliseres. Vi får AB = * * * * = * * * * = 8 b) Her er A en -matrise og B en -matrise og dermed kan de multipliseres. Resultatet AB blir en -matrise. AB = = * ( ) * * * * * *( ) ( ) * *( ) * *( ) * *( ) ( ) * *( ) * *( ) * = 9 Oppgave a) Her er både A og B -matriser. Dermed kan de multipliseres og resultatet AB blir en -matrise: AB = = 9

10 Oppgave Her er det gitt at A er en -matrise, B en 5-matrise og C en -matrise. Husk reglen som sier at to matriser X og Y kan multipliseres, dvs. vi kan finne XY, Hvis antallet kolonner i X er lik antallet rader i Y. Husk også at hvis vi har en m n -matrise, så er m antall rader og n antall kolonner. a) AB OK, A har kolonner og B har rader. b) BA Galt! B har 5 kolonner og A har rader. c) AC OK, A har kolonner og C har rader. d) CA Galt! C har kolonner og A har rader. e) BC Galt! B har 5 kolonner og C har rader. f) CB OK, C har kolonner og B har rader. Oppgave En kvadratisk matrise A kalles en diagonalmatrise hvis alle elementene utenfor diagonalen er. Gitt to n n -diagonalmatriser A og B. La C være matriseproduktet AB. Da er c i, j er gitt ved a i, b, j ai,b, j.... ai, nbn, j. Men nå er a i, j, i j og b i, j, i j. Dermed vil c i, j, i j og c i, i ai, ibi, i. Se på flg. eksempel: a A a, a b B b, b ab AB a b ab Oppgave 5 n A*A*... * A (dvs. et produkt med n ledd), A* =, A * =. Her ser vi et mønster! Vi får at n n.

11 Oppgave 8, B =, a) B A = = b) B A = = c) AB = ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( = Oppgave 9, B = a) B A = = b) B A = = Oppgave, B =, AB =

Største felles divisor. (eng: greatest common divisors)

Største felles divisor. (eng: greatest common divisors) Største felles divisor. (eng: greatest common divisors) La a og b være to tall der ikke begge er 0. Største felles divisor (eller faktor) for a og b er det største heltallet som går opp i både a og b.

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på.

b) Hvis det er mulig å svare blankt (dvs. vet ikke) blir det 5 svaralternativer på hvert spørsmål, og dermed mulige måter å svare på. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Avsnitt 5. Oppgave 3 Når et spørsmål har 4 svaralternativer

Detaljer

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018

Øvingsforelesning 4. Modulo hva er nå det for no? TMA4140 Diskret Matematikk. 24. og 26. september 2018 Modulo hva er nå det for no? Øvingsforelesning 4 TMA4140 Diskret Matematikk 24. og 26. september 2018 Dagen i dag Repetere den euklidske algoritmen, kongruensregning og annet underveis H11.3a: Inverser

Detaljer

Teori og oppgaver om 2-komplement

Teori og oppgaver om 2-komplement Høgskolen i Oslo og Akershus Diskret matematikk høsten 2014 Teori og oppgaver om 2-komplement 1) Binær addisjon Vi legger sammen binære tall på en tilsvarende måte som desimale tall (dvs. tall i 10- talssystemet).

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver

Chapter 6 - Discrete Mathematics and Its Applications. Løsningsforslag på utvalgte oppgaver Avsnitt 6. Chapter 6 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Oppgave a) Valget av en fra matematikk og en fra data er uavhengig av hverandre. Dermed blir det 35

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p.

Primtall. Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Primtall Et heltall p > 0 kalles et primtall hvis kun 1 og p går opp i p. Hvordan avgjøre om et heltall a > 1 er et primtall? Regel: Hvis a > 1 ikke er et primtall, så må det finnes et primtall p a som

Detaljer

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:

Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Forelesningsnotat i Diskret matematikk 27. september 2018

Forelesningsnotat i Diskret matematikk 27. september 2018 Kvadratiske matriser Hvis en matrise A er kvadratisk kan den multipliseres med seg selv. Vi skriver vanligvis A 2 istedenfor AA, A 3 istedenfor AAA, osv. Spesielt er A 1 = A. Enhetsmatriser, også kalt

Detaljer

Modulo-regning. hvis a og b ikke er kongruente modulo m.

Modulo-regning. hvis a og b ikke er kongruente modulo m. Modulo-regning Definisjon: La m være et positivt heltall (dvs. m> 0). Vi sier at to hele tall a og b er kongruente modulo m hvis m går opp i (a b). Dette betegnes med a b (mod m) Vi skriver a b (mod m)

Detaljer

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)}

{(1,0), (2,0), (2,1), (3,0), (3,1), (3,2), (4,0), (4,1), (4,2), (4,3) } {(1,0), (1,1), (1,2), (1,3), (2,0), (2,2), (3,0), (3,3), (4,0)} Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete athematics and Its Applications Forfatter: Kenneth H. osen Avsnitt 8. Oppgave A {,,,,4} og B {,,,} a) {( a,

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk

Øvingsforelesning 5. Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk. TMA4140 Diskret Matematikk Binær-, oktal-, desimal- og heksidesimaletall, litt mer tallteori og kombinatorikk Øvingsforelesning 5 TMA4140 Diskret Matematikk 1. og 3. oktober 2018 Dagen i dag Repetere binære, oktale osv. heltallsrepresentasjoner,

Detaljer

Oversikt over det kinesiske restteoremet

Oversikt over det kinesiske restteoremet Oversikt over det kinesiske restteoremet Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at: (1) x 2 (mod 6); (2) x 3 (mod 11). Hvordan vet jeg at vi bør benytte det kinesiske restteoremet?

Detaljer

Oversikt over kvadratiske kongruenser og Legendresymboler

Oversikt over kvadratiske kongruenser og Legendresymboler Oversikt over kvadratiske kongruenser og Legendresymboler Richard Williamson 3. desember 2014 Oppgave 1 Heltallet er et primtall. Er 11799 en kvadratisk rest modulo? Hvordan løse oppgaven? Oversett først

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Oppgave 1.1 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Relativt primiske tall

Relativt primiske tall Relativt primiske tall To heltall a og b (der ikke begge er 0) kalles relativt primiske hvis gcd(a, b) = 1, dvs. de har ingen felles faktorer utenom 1. NB! a og b trenger ikke være primtall for at de skal

Detaljer

Oppgaver med et odde nummer har fasit bakerst i læreboken. Her er løsningsforslag med mellomregninger for de gitte øvingsoppgavene.

Oppgaver med et odde nummer har fasit bakerst i læreboken. Her er løsningsforslag med mellomregninger for de gitte øvingsoppgavene. Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen Oppgaver med et odde nummer har fasit bakerst i

Detaljer

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )

Euklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 ) For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s

Detaljer

Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016

Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016 Løsningsforslag til 1. obligatorisk oppgave i Diskret matematikk, høsten 2016 Oppgave 1 a) b) r = p q p q s = p q q p q p t = p q p q c) Vi ser av sannehetsverditabellen at uttrykkene (p q) r og p (q r)

Detaljer

Matematikk for IT, høsten 2016

Matematikk for IT, høsten 2016 Matematikk for IT, høsten 0 Oblig 1 Løsningsforslag 6. august 0 1..1 a) 19 76? 76 : 19 = 4 Vi ser at vi får 0 i rest ved denne divisjonen. Vi kan derfor konkludere med at 19 deler 76. b) 19 131? 131 :

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

Alle hele tall g > 1 kan være grunntall i et tallsystem.

Alle hele tall g > 1 kan være grunntall i et tallsystem. Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Oversikt over lineære kongruenser og lineære diofantiske ligninger

Oversikt over lineære kongruenser og lineære diofantiske ligninger Oversikt over lineære kongruenser og lineære diofantiske ligninger Richard Williamson 3. desember 2014 Oppgave 1 Finn et heltall x slik at 462x 27 (mod 195). Benytt først Euklids algoritme for å finne

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1

Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 Delkapittel 2.1 Plangeometriske algoritmer Side 1 av 7 Algoritmer og datastrukturer Kapittel 2 - Delkapittel 2.1 2.1 Punkter, linjesegmenter og polygoner 2.1.1 Polygoner og internett HTML-sider kan ha

Detaljer

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I TMA4140 LØSNINGSFORSLAG Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 KONTINUASJONSEKSAMEN I TMA440 LØSNINGSFORSLAG Oppgave Sannhetsverditabell for det logiske utsagnet ( (p q) ) ( q r

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2017 Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen

MA1301 Tallteori Høsten 2014 Løsninger til Eksamen MA1301 Tallteori Høsten 2014 Løsning til Eksamen Richard Williamson 11. desemb 2014 Innhold Oppgave 1 2 a)........................................... 2 b)........................................... 2 c)...........................................

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe.

Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. 8. november 2005 c Vladimir Oleshchuk 35. Teorem 11 (Z n, ) er en endelig abelsk gruppe. Endelige grupper Teorem 10 (Z n, + n ) er en endelig abelsk gruppe. En gruppe er en mengde S sammen med en binær operasjon definert på S, betegnes (S, ), med følgende egenskaper: 1. a, b S, a b S 2. det

Detaljer

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir =

Tallsystemer. Tallene x, y, z og u er gitt ved x = 2, y = 2, z = 4 og u = 2. Dermed blir = Tallsystemer Heltall oppgis vanligvis i det desimale tallsystemet, også kalt 10-tallssystemet. Eksempel. Gitt tallet 3794. Dette kan skrives slik: 3 1000 + 7 100 + 9 10 + 4 = 3 10 3 + 7 10 2 + 9 10 1 +

Detaljer

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

i Dato:

i Dato: c:- høgskolen i oslo I Emne I EmnlekOde: I FagligvelIeder: Diskret matematikk FO 019A UJfUttersrud raruppe( r): i Dato: - I Eksamenstid: 12.12.2005 9-14 I Eksam-ensopp gavenbestår av: I Antall sid~nkl

Detaljer

Konvertering mellom tallsystemer

Konvertering mellom tallsystemer Konvertering mellom tallsystemer Hans Petter Taugbøl Kragset hpkragse@ifi.uio.no November 2014 1 Introduksjon Dette dokumentet er ment som en referanse for konvertering mellom det desimale, det binære,

Detaljer

Rekker (eng: series, summations)

Rekker (eng: series, summations) Rekker (eng: series, summations) En rekke er summen av leddene i en følge. Gitt følgen a 0, a 1, a,, a n,, a N Da blir den tilsvarende rekken a 0 + a 1 + a + + a n + + a N Bokstaven n er en summasjonsindeks.

Detaljer

Eksempler på praktisk bruk av modulo-regning.

Eksempler på praktisk bruk av modulo-regning. Eksempler på praktisk bruk av modulo-regning. Se http://www.cs.hioa.no/~evav/dm/emner/modulo1.pdf Tverrsum Tverrsummen til et heltall er summen av tallets sifre. Eksempel. a = 7358. Tverrsummen til a er

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Il UNIVERSITETET I AGDER

Il UNIVERSITETET I AGDER Il UNIVERSITETET I AGDER FAKULTETFOR TEKNOLOGIOG REALFAG EKSAMEN Emnekode: Emnenavn: MA913 Tall og algebra Dato: 7. desember 2011 Varighet: 09.00 15.00 Antall sider inkl. forside 7 Tillatte hjelpemidler:

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går

STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5: 1. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går STØRRELSER OG TALL Om størrelser skriver Euklid i Bok 5:. En størrelse er en del av en annen størrelse, den mindre av den større når den måler (går opp i) den større.. Den større er et multiplum av den

Detaljer

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER

KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER KAPITTEL 10. EUKLIDS ALGORITME OG DIOFANTISKE LIGNINGER Euklids algoritme Euklid s setning 1, divisjonslemmaet, fra Bok 7 Gitt to ulike tall. Det minste trekkes så fra det største så mange ganger dette

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Matriser. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 8 Matriser Løsningsforslag Oppgave 1 Redusert trappeform og løsning av lineære likningssystemer a) Totalmatrisa blir Vi tilordner dette i MATLAB: 5 1 1

Detaljer

Oversikt over kryptografi

Oversikt over kryptografi Oversikt over kryptografi Richard Williamson 3. desember 2014 Oppgave 1 Person A ønsker å sende meldingen Ha det! til person B, og ønsker å benytte RSAalgoritmen for å kryptere den. Den offentlige nøkkelen

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Tallenes hemmeligheter QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Tallenes hemmeligheter Kapittel 1 Oppgave 8. Nei Oppgave 9. Det nnes ikke nødvendigvis et minste element i mengden. Et eksempel

Detaljer

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger

Niels Henrik Abels matematikkonkurranse 2013 2014. Løsninger Niels Henrik Abels matematikkonkurranse 0 04. Løsninger Første runde 7. november 0 Oppgave. Siden er et primtall, vil bare potenser av gå opp i 0. Altså,,,,..., 0 i alt tall........................................

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.

Vi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler. 196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og

Detaljer

Forelesning 21 torsdag den 30. oktober

Forelesning 21 torsdag den 30. oktober Forelesning 21 torsdag den 30. oktober 5.12 Mersenne-primtall Merknad 5.12.1. Nå kommer vi til å se på et fint tema hvor kvadratisk gjensidighet kan benyttes. Terminologi 5.12.2. La n være et naturlig

Detaljer

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0

Dette brukte vi f.eks. til å bevise binomialteoremet. n i. (a + b) n = a i b n i. i=0 Prinsippet om matematisk induksjon: anta du har en påstand som er avhengig av et positivt heltall n. Om du kan vise to ting, nemlig at påstanden er sann for n = 1 og at om påstanden er sann for n = k,

Detaljer

Forelesning 14 torsdag den 2. oktober

Forelesning 14 torsdag den 2. oktober Forelesning 14 torsdag den 2. oktober 4.1 Primtall Definisjon 4.1.1. La n være et naturlig tall. Da er n et primtall om: (1) n 2; (2) de eneste naturlige tallene som er divisorer til n er 1 og n. Eksempel

Detaljer

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005.

Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Løysingsforslag til eksamen i MA1301-Talteori, 30/11-2005. Oppgåve 1 a) Rekn ut gcd(788, 116). Finn alle løysingane i heile tal til likninga 788x + 116y = gcd(788, 116). b) Ein antikvar sel ein dag nokre

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

Repetisjon: høydepunkter fra første del av MA1301-tallteori.

Repetisjon: høydepunkter fra første del av MA1301-tallteori. Repetisjon: høydepunkter fra første del av MA1301-tallteori. Matematisk induksjon Binomialteoremet Divisjonsalgoritmen Euklids algoritme Lineære diofantiske ligninger Aritmetikkens fundamentalteorem Euklid:

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 20 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. Løsningsforslag Emnekode: ITF75 Dato: 5 desember Emne: Matematikk for IT Eksamenstid: kl 9 til kl Hjelpemidler: To A4-ark med valgfritt innhold på begge sider Kalkulator er ikke tillatt Faglærer: Christian

Detaljer

Chapter 1 - Discrete Mathematics and Its Applications

Chapter 1 - Discrete Mathematics and Its Applications Chapter 1 - Discrete Mathematics and Its Applications Løsningsforslag på utvalgte oppgaver Avsnitt 1.2 Oppgave 3 På norsk blir dette: Du kan velges til president i USA bare hvis du er minst 35 år, er født

Detaljer

3 Største felles faktor og minste felles multiplum

3 Største felles faktor og minste felles multiplum 3 Største felles faktor og minste felles multiplum 3.1 Største felles faktor og minste felles multiplum. Metodiske aspekter Største felles faktor og minste felles multiplum er kjente matematiske uttrykk

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 Delkapittel 9.1 Generelt om balanserte trær Side 1 av 13 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.1 9.1 Generelt om balanserte trær 9.1.1 Hva er et balansert tre? Begrepene balansert og

Detaljer

Introduksjon i tallteotri med anvendelser

Introduksjon i tallteotri med anvendelser Introduksjon i tallteotri med anvendelser Vladimir Oleshchuk 15. september 2005 Delbarhet og divisorer Delbarhet og divisorer Vi skal betrakte tall fra Z = {,..., 2, 1, 0, 1, 2,...} og N = {0, 1,...} og

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2015

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2015 Norsk informatikkolympiade 2015 2016 1. runde Sponset av Uke 46, 2015 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke)

KONTROLLSTRUKTURER. MAT1030 Diskret matematikk. Kontrollstrukturer. Kontrollstrukturer. Eksempel (Ubegrenset while-løkke) KONTROLLSTRUKTURER MAT1030 Diskret matematikk Forelesning 2: Flere pseudokoder. Representasjoner av tall. Dag Normann Matematisk Institutt, Universitetet i Oslo 16. januar 2008 Mandag innførte vi pseudokoder

Detaljer

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3

Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 Delkapittel 1.3 Ordnede tabeller Side 1 av 70 Algoritmer og datastrukturer Kapittel 1 - Delkapittel 1.3 1.3 Ordnede tabeller 1.3.1 Permutasjoner En samling verdier kan settes opp i en rekkefølge. Hver

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p)

1. Bevis følgende logiske ekvivalens: ((p q) p) (p q) 2. Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) . Oppgave. Bevis følgende logiske ekvivalens: ((p q) p) (p q). Bestem de sannhetsverdier for p, q og r som gjør følgende utsagn galt: (p (q r)) (q r p) 3. Avgjør om følgende utsagn er sant i universet

Detaljer

MAT1030 Forelesning 28

MAT1030 Forelesning 28 MAT1030 Forelesning 28 Kompleksitetsteori Roger Antonsen - 12. mai 2009 (Sist oppdatert: 2009-05-13 08:12) Forelesning 28: Kompleksitetsteori Introduksjon Da er vi klare (?) for siste kapittel, om kompleksitetsteori!

Detaljer

Telle med 120 fra 120

Telle med 120 fra 120 Telle med 120 fra 120 Mål Generelt: Søke etter mønstre og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2

Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 Delkapittel 9.2 Rød-svarte og 2-3-4 trær Side 1 av 16 Algoritmer og datastrukturer Kapittel 9 - Delkapittel 9.2 9.2 Rød-svarte og 2-3-4 trær 9.2.1 B-tre av orden 4 eller 2-3-4 tre Et rød-svart tre og et

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Pensum: Starting out with Python

Pensum: Starting out with Python 1 Kunnskap for en bedre verden TDT4110 Informasjonsteknologi grunnkurs: Python: Repetisjon Matriser (2D-lister) try except rekursjon skrive pent til skjerm Terje Rydland - IDI/NTNU 2 Læringsmål og pensum

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin:

LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 2003 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: LØSNINGSFORSLAG, SIF 5015, DISKRET MATEMATIKK 12. august 200 Oppgave 1. La oss begynne med å bygge en ikke-deterministisk maskin: s 0 s 1 gjennkjenner 0 1og s 0 gjennkjenner (0 1). Fra dette ser vi at

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2016 Seksjon 10.2 18 La G = (V,E) være en enkel graf med V 2. Ettersom G er enkel er de mulige

Detaljer

TMA4140 Diskret Matematikk Høst 2016

TMA4140 Diskret Matematikk Høst 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 016 Seksjon 5 4 a) Ved å observere at 18 4 + 7, 19 3 4 + 7, 0 4 5 og 1 3 7 så ser vi at P(18),

Detaljer

LO118D Forelesning 4 (DM)

LO118D Forelesning 4 (DM) LO118D Forelesning 4 (DM) Mer funksjoner + følger 28.08.2007 1 Funksjoner 2 Følger og strenger Funksjoner En funksjon f fra X til Y sies å være en-til-en (injektiv) hvis det for hver y Y er maksimalt én

Detaljer

Løsningsforslag for 1. obligatoriske oppgave høsten 2014

Løsningsforslag for 1. obligatoriske oppgave høsten 2014 Løsningsforslag for 1 obligatoriske oppgave høsten 2014 Oppgave 1a) 1) Bruk av sannhetsverditabell: p q p p ( p ) p (( p ) S S U S U S S U U S U S U S S S S S U U S U U S Vi ser at (( p ) er en tautologi,

Detaljer

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon:

EKSAMENSOPPGAVE. Kontaktperson under eksamen: Steffen Viken Valvåg Telefon: EKSAMENSOPPGAVE Eksamen i: INF-1100 Innføring i programmering og datamaskiners virkemåte Dato: Tirsdag 8. desember 2015 Tid: Kl 09:00 13:00 Sted: Teorifagbygget, Hus 1 Tillatte hjelpemidler: Ingen Oppgavesettet

Detaljer

MA1301 Tallteori Høsten 2014 Oversikt over pensumet

MA1301 Tallteori Høsten 2014 Oversikt over pensumet MA1301 Tallteori Høsten 2014 Oversikt over pensumet Richard Williamson 3. desember 2014 Innhold Pensumet 2 Generelle råd 2 Hvordan bør jeg forberede meg?.......................... 2 Hva slags oppgaver

Detaljer

Forelesning 24 mandag den 10. november

Forelesning 24 mandag den 10. november Forelesning 24 mandag den 10. november 6.3 RSA-algoritmen Merknad 6.3.1. Én av de meste berømte anveldesene av tallteori er i kryptografi. Alle former for sikre elektroniske overføringer er avhengige av

Detaljer

TDT4110 IT Grunnkurs Høst 2015

TDT4110 IT Grunnkurs Høst 2015 TDT4110 IT Grunnkurs Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Løsningsforlag Auditorieøving 1 1 Teori Løsning er skrevet med uthevet tekst

Detaljer

Niels Henrik Abels matematikkonkurranse Løsninger

Niels Henrik Abels matematikkonkurranse Løsninger Niels Henrik Abels matematikkonkurranse 20 202 Løsninger Finale 8 mars 202 Oppgave a (i) Om Berit veksler to femkroner og en tjuekrone til tre tikroner, og så to femkroner og tre tikroner til to tjuekroner,

Detaljer

En divisor til et heltall N er et heltall som går opp i N. Både 1 og N regnes blant divisorene til N.

En divisor til et heltall N er et heltall som går opp i N. Både 1 og N regnes blant divisorene til N. Oppgave 1 Hvilket av disse tallene er ikke heltall? 11! 12345678910 11 11! 11! 11! 11! 11! A B C D E 20 21 22 23 24 Hva må være oppfylt for at brøkene i løsningsalternativene skal bli hele tall? Hvilke

Detaljer