Ekstraoppgave (i) Vi henter først inn Maplekommandoer for vektorregning:

Størrelse: px
Begynne med side:

Download "Ekstraoppgave (i) Vi henter først inn Maplekommandoer for vektorregning:"

Transkript

1 Ekstraoppgave a) (i) Vi henter først inn Maplekommandoer for vektorregning: with VectorCalculus &x, `*`, `C`, `-`, `.`,!,O,! O, About, AddCoordinates, ArcLength, BasisFormat, Binormal, Compatibility, ConvertVector, CrossProduct, Curl, Curvature, D, Del, DirectionalDiff, Divergence, DotProduct, Flux, GetCoordinateParameters, GetCoordinates, GetNames, GetPVDescription, GetRootPoint, GetSpace, Gradient, Hessian, IsPositionVector, IsRootedVector, IsVectorField, Jacobian, Laplacian, LineInt, MapToBasis, Nabla, Norm, Normalize, PathInt, PlotPositionVector, PlotVector, PositionVector, PrincipalNormal, RadiusOfCurvature, RootedVector, ScalarPotential, SetCoordinateParameters, SetCoordinates, SpaceCurve, SurfaceInt, TNBFrame, Tangent, TangentLine, TangentPlane, TangentVector, Torsion, Vector, VectorField, VectorPotential, VectorSpace, Wronskian, diff, eval, evalvf, int, limit, series () Det enkleste er å definere posisjonsvektoren som en vektorvaluert funksjon: r d t/ cos t, sin t r := t/vectorcalculus:-!,o cos t, sin t () v d t/diff r t, t v := t/ d dt r t (3) v t sin t e x C cos t e y (4) Legg merkil notasjonen her. Maple bruker betegnelsen e x for enhetsvektoren, 0 (eller <,0,0 i = 3 og e y for 0, (eller 0,, 0 i = 3. (Naturligvis betyr da også e z = 0, 0,.) a d t/diff v t, t

2 a := t/ d dt v t (5) a t cos t e x sin t e y (6) (ii) For å dekomponere akselerasjonsvektoren a p, trenger vi å finne både a p og enhetstangentvektoren T = Maple bruker kommandoen Norm v t for lengden v t av en vektor v v i punktet der t = p. T d t/ v t Norm v t T := t/v t VectorCalculus:-Norm v t (7) T t sin t e x C cos t e y (8) Vi er så klaril å sette inn at t = Pi: (Husk, Maple oppfatter api som en ny størrelse.) api d subs t = Pi, a t api := cos p e x sin p e y (9) api e x (0) TPi d subs t = Pi, T t ()

3 TPi := sin p e x C cos p e y () TPi e y () Nå ser vi at dekomponeringen ble spesielt enkel i dette eksemplet, for a p t T p. Derved er tangensialkomponenten av a p lik 0, og normalkomponenten er a p = e x =, 0. La oss likevel la Maple regne det ut, for å demonstrere hvordan det kan gjøres også i mer komplisertilfeller: Tangensialkomponenten til akselerasjonen i punktet er at d DotProduct api, TPi $TPi at := 0e x (3) altså, ingen tangensialkomponent. Hele skaelerasjonen er derfor normal til bevegelsen (hvilket vi naturligvis visste heliden, for dette er en partikel som går med konstant fart rundt på en sirkel). Normalkomponenten er altså an d api at an := e x (4) b) (i) r d t/ $cos t, 4 sin t, t 4 r := t/vectorcalculus:-!,o cos t, 4 sin t, 4 t (5) v d t/diff r t, t (6)

4 v := t/ d dt r t (6) v t 4 sin t e x C 8 cos t e y C 4 e z (7) a d t/diff v t, t a := t/ d dt v t (8) a t 8 cos t e x 6 sin t e y (9) (ii) T d t/ v t Norm v t T := t/v t VectorCalculus:-Norm v t (0) T t 6 sin t 768 cos t C 57 e x C 3 cos t 768 cos t C 57 e y C 768 cos t C 57 e z () T0 d subs t = 0, T t T0 := 6 sin cos 0 C 57 e x C 3 cos cos 0 C 57 e y C 768 cos 0 C 57 e z () T e y C e z (3) a0 d subs t = 0, a t (4)

5 a0 := 8 cos 0 e x 6 sin 0 e y (4) a0 8e x (5) Tangensialkomponenten av akselerasjonen er derved at d DotProduct a0, T0 $T0 at := 0e x (6) altså er den null, mens normalvektoren er an d a0 at an := 8e x (7) Ekstraoppgave a) (i) r d t/ exp t, t, t r := t/vectorcalculus:-!,o, t, t (8) Følgendre kommandoer gir oss vektorer med riktig retning: TT d TangentVector r t (9)

6 TT := t (9) NN d PrincipalNormal r t 4 t 4 t C C e t C 4 t 3 / NN := t e t C e t C 4 t 3 / (30) BB d Binormal r t BB := e t C 4 t C e t C 4 t 3 / C e t C 4 t C e t C 4 t et t C e t C 4 t (3) Men dette er ikke enhetsvektorer. For å finne enhetsvektorene, må vi dividere på lengden (normen) av vektoren: T d TT Norm TT (3)

7 T := C C 4 t t C C 4 t C C 4 t (3) N d NN Norm NN 4 t 4 t C 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 / N := t e t e t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 / (33) e t C 4 t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 / B d BB Norm BB

8 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t B := 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t (34) t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t Egentlig kan vi få alle dissre vektorene ved rett og slett spørre etter: TNBFrame r t (35)

9 4 t 4 t C C e t C 4 t t C e t C 4 t C e t C 4 t, 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 / t e t e t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 / e t C 4 t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 3 /, (35) 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t t 4 e t t 8 t e t C 5 e t C 4 C e t C 4 t C e t C 4 t (ii) C d Curvature r t (36)

10 C := C C e t C 4 t 4 C e t C 4 t To d Torsion r t To := e t C 8 t C e t C 4 t 3 / C e C C 8 t 4 t 4 t C C e t C 4 t 3 / t C e t C 4 t 4 t 4 t C C e t C 4 t 3 C e t C 4 t C 8 t C e t C 4 t 3 / 4 t 4 t C 8 t 4 C e t C 4 t 3 (36) 3 et 4 t 4 t C e t C 8 t C e t C 4 t 4 C 8 t e t e t e t C t e t C e t C 4 t 3 t e t e t C 8 t C e t C 4 t 4 C e t C 4 t e t C 4 C e t C 4 t 3 3 e t C 4 t e t C 8 t C e t C 4 t 4 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 3 / C e t C 4 t 3 /

11 C C 4 t 4 t C 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C 8 t 4 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 3 / e t C 4 t C e t C 4 t 3 C e t C 4 t 3 / 3 4 t 4 t C e t C 8 t 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 5 / t 4 C e t C 4 t C e C e t C 4 t C 4 e t t C e t C 4 t C C 4 t C e t C 4 t C t e t e C C 4 t e t C 4 C e t C 4 t 3 3 e t C 4 t e t C 8 t e C e t C 4 t 4 t 4 t 4 t C C e t C 4 t 3 C 4 t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 3 / C e t C 4 t 3 /

12 e t C t e t 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 3 / C 3 t e t e t e t C 8 t 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 5 / t 4 C e t C 4 t C e C e t C 4 t C 4 e e t C 4 t t 4 t 4 t C C e t C 4 t 3 C e t C e t C 4 t C C 4 t t C e t C 4 t 4 t 4 t C 8 t 4 C e t C 4 t t 4 t C e t C 8 C e t C 4 t 4 4 t 4 t C C e t C 4 t 3 C 4 e t C 4 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 3 / C 3 e t C 4 t e t C 8 t 4 t 4 t C C e t C 4 t 3 C 4 t e t e t C e t C 4 t 3 C e t C 4 t C e t C 4 t 3 C e t C 4 t 5 / t

13 t 4 C e t C 4 t C e C e t C 4 t C 4 e t t C e t C 4 t C C 4 t C e t C 4 t Dette ble voldsomme greier!!! Vi prøver simplify : To d simplify % To := C e t C 4 t 3 / 4 e t t 8 t e t C 5 e t t C t e t C 5 e t C 4 C e t C 4 t C e t C 4 t (38) Det ble heldigvis bedre!! (iii) subs t = 0, T 0 (39) subs t = 0, N

14 (40) simplify % 6 3 (4) 6 subs t = 0, B (4) simplify % (43)

15 subs t = 0, C 4 e0 0 C e 0 3 / C e C e 0 C e 0 C 6 C e 0 C 4 e 0 C e 0 3 (44) simplify % 3 4 (45) subs t = 0, To e 0 C e 0 3 / 4 C 5 e C 5 e C e 0 C e 0 (46) simplify % 9 (47) For å plotte romkurven, trenger vi å hente inn Maples plottekommandoer: with plots animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d, inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d, listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto, plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot (48) spacecurve exp t, t, t, t =.5...5, axes = framed, labels = x, y, z

16

Ekstraoppgave

Ekstraoppgave with plots animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaxisplot,

Detaljer

Oppgave Vi importerer først både vektoranalyse- og plottekommandoene til Maple:

Oppgave Vi importerer først både vektoranalyse- og plottekommandoene til Maple: Oppgave 1.4.1. a) Vi importerer først både vektoranalyse- og plottekommandoene til Maple: with VectorCalculus &x, `*`, `C`, `-`, `.`,!,O,! O, About, AddCoordinates, ArcLength, BasisFormat, Binormal, Compatibility,

Detaljer

1 x 2 C 1. K 1 2 ek1 2 x C e x

1 x 2 C 1. K 1 2 ek1 2 x C e x Oppgave 3.2.4 a) diff x sqrt C x 2, x x 2 C K x 2 x 2 C 3 / 2 () simplify % x 2 C 3 / 2 (2) Dette viser at den deriverte ikke har noen reelle nullpunkter. b) diff exp K x 2 C exp x, x K 2 ek 2 x C e x

Detaljer

x (logaritemen med a som grunntall) skrives log a

x (logaritemen med a som grunntall) skrives log a Oppgave 1.5.20. For å gjøre denne oppgaven, kan du nesten alt du trenger. Det eneste nye er at funksjonen log a x (logaritemen med a som grunntall) skrives log a x i Maple. Som vanlig trenger vi å hente

Detaljer

Oppgave P1 d implicitplot y = sinh x, x = 0..5, y = 0..5, color = red P2 := PLOT...

Oppgave P1 d implicitplot y = sinh x, x = 0..5, y = 0..5, color = red P2 := PLOT... Oppgave 11.3.16. Maple kan hjelpe oss med to ting: programmet kan tegne kurvene som avgrenser området, og det kan beregne det itererte integralet. Men å sette opp det itererte integralet må vi klare selv.

Detaljer

Ekstraoppgave

Ekstraoppgave Ekstraoppgave 11.6.1. a) with plots animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,

Detaljer

Oppgave x, x$1 f 1 x := K 1. x d diff. x 2. subs x = 2, f 2 K x, x$2 f 2 x := 2. x x, x$3 f 3 x := K 6.

Oppgave x, x$1 f 1 x := K 1. x d diff. x 2. subs x = 2, f 2 K x, x$2 f 2 x := 2. x x, x$3 f 3 x := K 6. Oppgave 2.3.35 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet = 2. Det gjør vi ved å bruke kommandoen diff f, $n der f er uttrykket som skal deriveres, er navnet

Detaljer

Oppgave : For å plotte disse figurene, henter vi inn Maples plottekommandoer:

Oppgave : For å plotte disse figurene, henter vi inn Maples plottekommandoer: Oppgave 10.9.15: For å plotte disse figurene, henter vi inn Maples plottekommandoer: with plots animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d,

Detaljer

Ekstraoppgave

Ekstraoppgave Ekstraoppgave 11.7.1. b) with plots animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,

Detaljer

120 x5 K x7 C O x 9

120 x5 K x7 C O x 9 Maple kan selv konstruere taylorpolynomer til en gitt funksjon om et gitt punkt. Kommandoen er taylor der vi må taste inn funksjonen, punktet a vi finner polynomet om, og hvilken orden n vi vil at polynomet

Detaljer

plot sin x, x =KPi..Pi

plot sin x, x =KPi..Pi with plots animate, animate3d, animatecurve, arrow, changecoords, compleplot, compleplot3d, conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display, dualaisplot,

Detaljer

z = f x, y for x, y 2 D (kartesiske koordinater) Maplekommando: plot3d f x, y, x = a..b, y = c..d.

z = f x, y for x, y 2 D (kartesiske koordinater) Maplekommando: plot3d f x, y, x = a..b, y = c..d. For å plotte flater gitt i sylinderkoordinater eller kulekoordinater skal vi bruke kommandoen på disse oppgavene. Denne kommandoen kan plotte flater gitt i ulike koordinatsystemer. Vi skal plotte flater

Detaljer

Skal man tegne grafen til en likning, må Maples plotteprogrammer hentes inn. Det gjør man ved kommandoen

Skal man tegne grafen til en likning, må Maples plotteprogrammer hentes inn. Det gjør man ved kommandoen Skal man tegne grafen til en likning, må Maples plotteprogrammer hentes inn. Det gjør man ved kommandoen with plots animate, animate3d, animatecurve, arrow, changecoords, compleplot, compleplot3d, conformal,

Detaljer

Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen

Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen For å tegne grafen til en likning, skal vi bruke kommandoen implicitplot Den krever at vi henter ned Maples plottekommandoer fra arkivet. Det gjør vi ved kommandoen > with plots animate, animate3d, animatecurve,

Detaljer

Eksempel: s d taylor sin x, x = 0, 9

Eksempel: s d taylor sin x, x = 0, 9 Maple kan selv konstruere taylorpolynomer til en gitt funksjon om et gitt punkt. Kommandoen er taylor der vi må taste inn funksjonen, punktet a vi finner polynomet om, og hvilken orden n vi vil at polynomet

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag

NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første

Detaljer

Ekstraoppgave 11.6.1. with plots. Vi plotter først de to flatene x 2 C y 2 = 1 og z = 4 K x for å få en ide om hvordan T ser ut.

Ekstraoppgave 11.6.1. with plots. Vi plotter først de to flatene x 2 C y 2 = 1 og z = 4 K x for å få en ide om hvordan T ser ut. Ekstraoppgave 11.6.1. a) with plots Vi plotter først de to flatene x 2 C y 2 = 1 og z = 4 K x for å få en ide om hvordan T ser ut. P1 d plot3d x, sqrt 1 K x 2, z, x = 0..4, z = 0..4, color = blue, style

Detaljer

SIF5005 våren 2003: Maple-øving 1

SIF5005 våren 2003: Maple-øving 1 SIF våren : Maple-øving Løsningsforslag. Oppgave. Litt grunnleggende Maple Hvordan får du hjelp i Maple med en funksjon når du kjenner navnet? Det raskeste er slik: >?simplify Tips for å lese hjelpesider:

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x.

Oppgave Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. Oppgave 7.2.6 a) x d 1.0 x := 1.0 (1) for n from 1 by 1 to 20 do x d sin x end do x := 0.8170988 x := 0.7562117 x := 0.6783077 x := 0.6275718321 x := 0.5871809966 x := 0.550163908 x := 0.5261070755 x :=

Detaljer

SIF5005 våren 2003: Maple-øving 3

SIF5005 våren 2003: Maple-øving 3 SIF55 våren 3: Maple-øving 3 Løsningsforslag. Oppsett Her importerer vi noen navn vi skal bruke senere, så vi slipper å si plots[spacecurve], etc. > with(plots,displa,displa3d,tubeplot,spacecurve,fieldplot,fieldplot3

Detaljer

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do

Oppgave x d 1.0 for n from 1 by 1 to 200 do x d sin x end do Oppgave 7.2.6 a) x d 1.0 for n from 1 by 1 to 200 do x d sin x Iterasjonen ser ut til å konvergere sakte mot null som er det eneste fikspunktet for sin x. d) Det er klart at f x = 0 hvis og bare hvis x

Detaljer

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut):

Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): MA1103 vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Øving 10M Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1. 2. 3. 4. 5.

Detaljer

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2

Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon. F x = x K f x f' x. , x 2 Newtons metode er en iterativ metode. Det vil si, vi lager en funksjon F x = x K f x f' x, starter med en x 0 og beregner x 1 = F x 0, x = F x 1, x 3 = F x,... Dette er en metode der en for-løkke egner

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 2. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk 2 Vår 217 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 11.1.9: Den aktuelle kurven er gitt ved r(t) (3 cos t, 4 cos t, 5 sin t).

Detaljer

Vektorvaluerte funksjoner

Vektorvaluerte funksjoner Versjon per 8.09.05. Parametriserte kurver Vektorvaluerte funksjoner Hans Petter Hornæs Forelesningsnotat til Matematikk 0 ved HiG, høst 005. Grafen til en kontinuerlig funksjon f av en variabel kan som

Detaljer

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0

Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 Rungekuttametodene løser initialverdiproblemer på formen y' = F x, y, y x 0 = y 0 der F x, y står for et uttrykk i x og y. De er iterative metoder, så for - løkker egner seg ypperlig i denne sammenengen.

Detaljer

Løsningsforslag Obligatorisk oppgave 1 i FO340E

Løsningsforslag Obligatorisk oppgave 1 i FO340E Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

TMA4105 Matematikk2 Vår 2008

TMA4105 Matematikk2 Vår 2008 TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Grensebetingelse for trykk der hvor vann møter luft

Grensebetingelse for trykk der hvor vann møter luft Forelesning 5/4 019 ved Karsten Trulsen Grensebetingelse for trykk der hvor vann møter luft Vi skal utlede en betingelse for trykket på grenseflaten der hvor vann er i kontakt med luft. Vi gjør dette ved

Detaljer

r(t) = 3 cos t i + 4 cos t j + 5 sin t k. Hastigheten er simpelthen den tidsderiverte av posisjonen: r(t) = 2t i + t j + 4t 2 k.

r(t) = 3 cos t i + 4 cos t j + 5 sin t k. Hastigheten er simpelthen den tidsderiverte av posisjonen: r(t) = 2t i + t j + 4t 2 k. TMA415 Matematikk 2 Vår 215 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 3 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus: A

Detaljer

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.

Randkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π. Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en

Detaljer

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Velkommen til Eksamenskurs matematikk 2

Velkommen til Eksamenskurs matematikk 2 Velkommen til Eksamenskurs matematikk 2 Haakon C. Bakka Institutt for matematiske fag 12.-13. mai 2010 Introduksjon Begin with the end in mind - The 7 Habits of Highly Effective People (Stephen R. Covey)

Detaljer

Kapittel 8: Vektorer og parametriserte kurver

Kapittel 8: Vektorer og parametriserte kurver 8.1. Vektorer 717 Kapittel 8: Vektorer og parametriserte kurver 8.1. Vektorer. Oppgave 8.1.1: a Her er a + b, 5, a b, 1 og ca a, 4. På figuren er vektorene tegnet som posisjonsvektorer, bortsett fra vektoren

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, øst 2013 Forelesning 7 www.ntnu.no TMA4100 Matematikk 1, øst 2013, Forelesning 7 Derivasjon Denne uken skal vi begynne på tema 2 om derivasjon. I dagens forelesning skal vi se på

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Øving 20. mars 2015 Tidsfrist: 7.april 2015, klokken 23.55 Onsdag 25. mars kom det til en ekstraoppgave: Oppgave 4. Denne kan du velge å gjøre istedenfor oppgave 3. Det

Detaljer

TMA4105 Matematikk 2 Vår 2008

TMA4105 Matematikk 2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2008 Øving 1 Navn/kursparallell skrives her (ved gruppearbeid er det viktig at alle fyller ut): 1.

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

TDT4105 IT Grunnkurs Høst 2014

TDT4105 IT Grunnkurs Høst 2014 TDT4105 IT Grunnkurs Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Øving 6 1 Teori a) Hva er 2-komplement? b) Hva er en sample innen digital

Detaljer

Litt mer om kjeglesnitt og Keplers lover om planetbanene

Litt mer om kjeglesnitt og Keplers lover om planetbanene Litt mer om kjeglesnitt og Keplers lover om planetbanene Det er ikke meningen at enne teksten skal stå for seg selv. Den er ment som en hjelp mens u leser 11.6 og eler av kapittel 8 i læreboka. Hvis u

Detaljer

Velkommen til MA1103 Flerdimensjonal analyse

Velkommen til MA1103 Flerdimensjonal analyse Velkommen til MA1103 Flerdimensjonal analyse Foreleser: 14. januar 2013 Kursinformasjon Nettside: wiki.math.ntnu.no/ma1103/2013v/start Foreleser: (mariusi@math.ntnu.no) Start emne i epost med MA1103 Treffetid:

Detaljer

RF3100 Matematikk og fysikk Leksjon 6

RF3100 Matematikk og fysikk Leksjon 6 RF3100 Matematikk og fysikk Leksjon 6 Lars Sydnes, NITH 4.oktober 2013 I. FUNKSJONER TILFELDIGE EKSEMPLER x-koordinaten er en funksjon av t når startposisjon x 0 og startfart v x er gitt: x = x 0 + v x

Detaljer

Løsning IM3 15.06.2011.

Løsning IM3 15.06.2011. Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde.

Test, 1 Geometri. 1.2 Regning med vektorer. X Riktig. X Galt. R2, Geometri Quiz løsning. Grete Larsen. 1) En vektor har lengde. Test, 1 Geometri Innhold 1.2 Regning med vektorer... 1 1.3 Vektorer på koordinatform... 6 1.4 Vektorproduktet... 11 1.5 Linjer i rommet... 16 1.6 Plan i rommet... 18 1.7 Kuleflater... 22 Grete Larsen 1.2

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 5 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 5 Grenseverdier I dagens forelesning skal vi se på grenseverdier. 1 Hvorfor

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Eksamen Ma 3 red.pensum 2006

Eksamen Ma 3 red.pensum 2006 Eksamen Ma B høst 6.nb Eksamen Ma red.pensum 6 Oppgave

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Denne labøvelsen gir en videre innføring i elementær bruk av programmet Maple.

Denne labøvelsen gir en videre innføring i elementær bruk av programmet Maple. MAPLE-LAB 2 Denne labøvelsen gir en videre innføring i elementær bruk av programmet Maple.. Sett i gang Maple på din PC / arbeidsstasjon. Hvis du sitter på en Linux-basert maskin og opplever problemer

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Vektorregning. En kort innføring for MAT 100. Tom Lindstrøm

Vektorregning. En kort innføring for MAT 100. Tom Lindstrøm Vektorregning En kort innføring for MAT 100 Tom Lindstrøm Forord Dette heftet er skrevet som en kort innføring i vektorregning for studentene i kurset MAT 100 ved Universitetet i Oslo. Selv om de fleste

Detaljer

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)

EKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.) KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside

Detaljer

Projeksjoner av vektorer Analyse av værdata

Projeksjoner av vektorer Analyse av værdata Projeksjoner av vektorer Analyse av værdata Lars Sydnes 11. september 2013 1 Osloserien Ved værstasjoner rundt omkring i verden måler man temperaturen hver eneste dag. Vi har tilgang til målinger gjort

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

v(t) = r (t) = (2, 2t) v(t) = t 2 T(t) = 1 v(t) v(t) = (1 + t 2 ), t 2 (1 + t 2 ) t = 2(1 + t 2 ) 3/2.

v(t) = r (t) = (2, 2t) v(t) = t 2 T(t) = 1 v(t) v(t) = (1 + t 2 ), t 2 (1 + t 2 ) t = 2(1 + t 2 ) 3/2. NTNU Institutt for matematiske fag TMA40 Matematikk, øving, vår 0 Løsningsforslag Notasjon og merknader Hvis boken skriver en vektor som ai + bj + ck hender det at jeg skriver den som a, b, c). Jeg benytter

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

Eksamen REA3022 R1, Våren 2012

Eksamen REA3022 R1, Våren 2012 Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

R1 - Heldagsprøve våren

R1 - Heldagsprøve våren R - Heldagsprøve våren 04 -.05.04 Løsningsskisser Generelle problem: Ikke gi bort gratispoeng, kontroller svar og ikke slurv med enkle oppgaver! (Oppgave,, 5 og 6.) Tegn grafer ordentlig! (Piler på akser,

Detaljer

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk

Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Regneoppgaver i GEOF110 Innføring i atmosfærens og havets dynamikk Dato 17. januar 2014 Oppgavegjennomgang, i hovedsak, fredager kl. 1015-1200 i Auditorium 105 helge.drange@gfi.uib.no 1. Polare koordinater

Detaljer

NY Eksamen i matematikk III, 5 studiepoeng. August 2007

NY Eksamen i matematikk III, 5 studiepoeng. August 2007 NY Eksamen i matematikk III, 5 studiepoeng. August 7 Oppgave a. Regn ut gradienten til funksjonen f(x, y) = x +y +xy. I hvilken retning øker f mest når x = og y =? b. Regn ut kurveintegralet f(x, y) ds

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

UDIRs eksempeloppgave høsten 2008

UDIRs eksempeloppgave høsten 2008 UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b. .9 til oppgavene i avsnitt.9.9. Regn ut (a) k ( i + j ), () ( i k ) ( j + 3k ), (c) ( i j + 3k ) ( 3i + j k ) a. k ( i + j ) = 0,0,,,0 = 0 + 0 + 0 = 0. ( i k ) ( j k ) ( ) + 3 =, 0, 0,,3 = 0 + 0 + 3 =

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Løsning eksamen R1 høsten 2009

Løsning eksamen R1 høsten 2009 Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed

Detaljer

Markov-kjede I ("dekk-eksemplet")

Markov-kjede I (dekk-eksemplet) > restart: with(linalg): with(linearalgebra): with(plots): Warning, the protected names norm and trace have been redefined and unprotected Warning, the name GramSchmidt has been rebound Warning, the name

Detaljer