Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Størrelse: px
Begynne med side:

Download "Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS"

Transkript

1 Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS

2 Innhold 1 Om TI-NspireCAS Applikasjonene Dokumenter Regning Tallregning Regnerekkefølge Tallet π Minne og variabler Kvadratrot Parenteser Brøk Store og små tall Sinus, cosinus og tangens n-terøtter Potenser Logaritmer Funksjoner Tegning av grafer for hånd Tegning av grafer på det digitale verktøyet Utregninger på grafen Finne y når du kjenner x Finne x når du kjenner y Nullpunkter Topp- og bunnpunkter Skjæringspunkter mellom grafer Derivert Tangent Lineær regresjon 24 5 Likninger Likninger av andre og tredje grad Likningssett Sannsynlighetsregning n r Simulering

3 Innledning Dette heftet er ment som en beskrivelse av dataprogrammet TI-NspireCAS som digitalt verktøy i undervisningen i faget «Matematikk Vg1T», studieforbedredende utdanningsprogram. Heftet er tilpasset læreverket Sigma matematikk, Gyldendal Undervisning, og inneholder referanser til framstillingen der. Heftet er utviklet i samarbeid med Texas Instruments Norge. Henvisninger fra boka Følgende er en oversikt over de sidetallene i læreboka som har referanse til digitale verktøy. Lista gir deg en oversikt over hvilket avsnitt i dette heftet som omhandler det aktuelle emnet i læreboka. Henvisningene refererer til sidetall i Sigma matematikk 1T, 2. utgave, Gyldendal Undervisning, I den elektroniske utgaven av heftet er referansene klikkbare. Sidetall i læreboka Emne Avsnitt i dette heftet 10 Tallregning Regnerekkefølge Likningssett Regresjon 4 86 Potenser Negative potenser Lese standardform Taste inn standardform N-terot Brøkeksponent Lage verditabell Logaritmer nc r Andregradslikning Sinus, cosinus, tangens Inversfunksjonene Tegne graf Informasjon fra grafer Regne ut funksjonsverdi Regne ut den deriverte Finne tangent 3.4 3

4 1 Om TI-NspireCAS Dette heftet omtaler dataprogrammet TI-NspireCAS fra Texas Instruments. Dette matematikkverktøyet finnes også som en håndholdt kalkulator med nøyaktig samme funksjonalitet som programmet. Du trenger bare en av disse. TI-NspireCAS er ment å dekke alt behov for digitale verktøy i matematikk og andre realfag i skolen. Dokumenthåndtering og utskrifter er tilpasset elektronisk innlevering og deling og videreutvikling av oppgaver sammen med andre. TI-NspireCAS kan lastes ned i prøveversjon på com/norge. Prøveversjonen har ingen begrensninger i funksjonalitet, men har begrenset varighet. På nevnte nettside finner du også lærestoff og opplæringsanimasjoner for programmet. 1.1 Applikasjonene Når du åpner et nytt dokument i TI-NspireCAS, får du forslag om å legge til en såkalt applikasjon på en side. En applikasjon i TI-NspireCAS er en type anvendelse på matematikken. Programmet opererer med applikasjonene kalkulator (som tilsvarer en avansert lommeregner), grafer og geometri, lister og regneark, tekstbehandler og data og statistikk. Dersom du velger «Grafer & Geometri», får du opp et koordinatsystem for dynamisk geometri og grafgeometri. En passende verktøylinje er kommet fram, og du kan arbeide med funksjonsanalyse og geometri i samme miljø. 4

5 Du kan nå åpne en ny side og legge en ny applikasjon på denne siden, eller du kan dele en side for å ha to eller flere applikasjoner på denne. Nedenfor, på side 6, finner du et eksempel på en side som er delt i tre, med tekst øverst til venstre, kalkulator nederst til venstre og grafer og geometri til høyre. 1.2 Dokumenter Når du lager flere sider i samme dokument, får du et rullefelt til venstre med oversikt over sidene, omtrent som i et presentasjonsverktøy, som for eksempel Microsoft PowerPoint. Hvert dokument kan bestå av flere oppgaver og hver oppgave kan bestå av flere sider. Hver gang du åpner en ny oppgave, blir variablene nullstilt. 5

6 2 Regning 2.1 Tallregning Du taster inn regnestykker omtrent som på en vanlig lommeregner, med for gange og «/» for dele. Svaret får du når du trykker enter (linjeskift). Du kan taste inn fra tastaturet. Når du da trykker enter, forenkles uttrykket til pen matematikknotasjon. Taster du inn (2+3) a 3 8, blir det konvertert til 5 a 3 8. Alternativt kan du bruke maler for å lette inntastingen ved å velge «Matematiske sjabloner» fra Verktøy-menyen. TI-NspireCAS regner eksakt. Det betyr at den unngår avrundinger og desimaltall så ofte som mulig. Dersom du vil ha svaret i desimaltall, holder du inne ctrl-tasten (kommando-tasten på Macintosh-maskiner) samtidig med at du trykker på enter. 6

7 Du kan velge om du vil at programmet skal regne eksakt, avrundet med desimaltall eller gjøre det som passer best. Innstillingene finner du i Fil > Innstillinger Dokumentinnstillinger > Eksakt eller tilnærmet. 2.2 Regnerekkefølge Vanlig regnerekkefølge er innebygd i programmet. Så vi kan taste rett inn slik det står. Utregningen taster vi inn som det står og avslutter med enter. Programmet bruker cirkumflex ( ) for potenser. På noen datamaskiner må man taste et mellomrom etter. Når vi trykker på, flytter markøren seg opp i eksponenten. Når du er ferdig med å taste det som skal stå i eksponenten, trykker du på høyrepil. Dersom vi skal omgå regnerekkefølgen, må vi angi ønsket rekkefølge med parenteser, som for eksempel i utregningen 7 ( ( 3)) 2, som tastes inn slik: Når du taster venstreparentes, legger programmet også til en høyreparentes til høyre for markøren, slik at du ikke skal glemme å lukke parenteser. Du avslutter parenteser med selv å taste høyreparentes eller høyrepil. 2.3 Tallet π For å skrive inn π, taster vi «pi», og programmet gjør det om til π. Vi kan også velge tegnet på symbolpaletten. 2.4 Minne og variabler Du kan enkelt lagre tall eller uttrykk for seinere bruk i programmets minne. Alle svar lagres automatisk i det midlertidige minnet «Ans». La oss si at du har regnet ut (4 + 5) 2 3 og fått 72. Om du så taster «pi» og trykker enter, vil programmet multiplisere det forrige svaret du fikk, nemlig 72, med π. 7

8 De fleste tegn og kombinasjoner av tegn fungerer som minne. Du lagrer en verdi eller et uttrykk i et minne ved å skrive navnet etterfulgt av kolon og likhetstegn og så verdien du vil lagre. For å lagre verdien 203 i et minne vi kaller «a», gjør vi slik: For å lagre forrige verdi i et minne vi kaller «b», taster vi «b:=ans». Når vi trykker enter, erstatter programmet variabelen «Ans» med verdien av forrige svar: For å lagre uttrykket 3x 2 på «sigma» gjør vi slik: Verdien i minnet får du fram igjen ved å skrive navnet. Slik ser det ut om vi legger 2 og 71 inn i minnene a og b og så regner ut a b og får 142: 2.5 Kvadratrot For å regne ut kvadratroten av et tall, bruker du kommandoen «sqrt()». Idet du trykker enter, endres teksten «sqrt()» til et rottegn ( ). Og sm alltid, holder du inne ctrl-tasten, får du en tilnærmingsverdi. 8

9 Du finner også kvadratrottegnet på Verktøy > Matematiske sjabloner. 2.6 Parenteser Når vi skriver for hånd, skriver vi ofte brøker og kvadratrottegn uten parenteser, da vi er enige om hvordan de skal regnes ut. For eksempel er = 12 6 = 2 Slike brøker taster vi inn enten med sjabloner, slik at vi taster inn tellerne og nevnerne for seg, eller ved at vi bruker slår parenteser om tellere og nevnere og bruker deletegn. Da skriver programmet om til brøk for oss. Dersom vi taster (5 + 7)/(2 3), ser det slik ut etter å ha trykket på enter. Når du taster venstreparentes, legger programmet også til en høyreparentes til høyre for markøren, slik at du ikke skal glemme å lukke parenteser. Du avslutter parenteser med selv å taste høyreparentes eller høyrepil. 2.7 Brøk Brøker taster du inn med vanlig deletegn i stedet for brøkstrek eller du bruker sjabloner. Pass på å slå parenteser om telleren og nevneren dersom de består av flere ledd. Svaret blir oppgitt i brøk. Dersom du vil ha desimaltall, trykker du som vanlig på enter en gang til mens du holder inne ctrl-tasten (Mac: kommando-tasten). Skal vi for eksempel regne ut slår vi parenteser om den første telleren og den siste nevneren slik: (2 + 3)/3 8/(7 3) og får: 9

10 Ved utregning av brudden brøk er det også nødvendig å bruke parenteser. Skal vi regne ut brøken taster vi det inn med parenteser rundt telleren og nevneren i hovedbrøken slik: (1/2)/(1/3) og får: 2.8 Store og små tall Når tallene blir svært store eller svært små, skriver programmet dem på standardform. I utgangspunktet får du fem desimaler. Du velger selv om du taster inn på standardform eller ikke. Skal du taste inn , kan du velge å taste « ». Regnestykket ,0002 kan du velge å regne ut som 6, ved å taste slik: Programmet skriver tierpotenser med en «E», slik at 3, skrives slik: 2.9 Sinus, cosinus og tangens TI-NspireCAS har innebygget sinus, cosinus og tangens. Før du bruker dem, må du forsikre deg om at du har satt programmet til å regne med grader, ikke for eksempel radianer, som du ikke kommer borti før i Vg3. På Fil > Innstillinger > Dokumentinnstillinger > Vinkel velger du «Grader». Da vil statusruten øverst til høyre i dokumentet endres til «GRA». 10

11 De trigonometriske funksjonene taster du inn med «sin()», «cos()» og «tan()». For å finne sin 45, taster du inn «sin(45)». Altså er sin 45 = For å gå tilbake, bruker vi «sin 1 ()», «cos 1 ()» og «tan 1 ()», som vi finner på tastaturet (velg «Tastatur» fra Vis-menyen). Alternativt taster vi «arcsin()», «arcos()» og «arctan()», som blir gjort om til «sin 1 ()», «cos 1 ()» og «tan 1 ()» når vi trykker enter. For å finne hvilken vinkel som har cosinus-verdi 1 2, taster vi «cos 1 (1/2)» n-terøtter Hvis du velger å taste inn med sjabloner, får du n-terot direkte. Alternativt regner du ut n-terøtter med potenser med brøkeksponenter Potenser Potenser tastes inn med cirkumflex,. Vi regner ut 2 5 ved å taste

12 Når vi trykker på, går markøren opp i eksponenten. Alt du taster havner i eksponenten, inntil du trykker høyrepil. Vi regner ut 2 5 ved å taste 2 5 og ved å taste 2 2/ Logaritmer Logaritmer skriver du inn med «log()», Når du trykker på enter, gjør programmet «log» om til «log 10», for å vise at det er logaritmen med grunntall 10 vi mener. Det fins også logaritmer med andre grunntall enn 10, men det kommer vi ikke inn på i Vg1. Vi finner lg 25 ved å taste «log(25)». Det ser slik ut: Her ser vi at TI-NspireCAS gjør om lg 25 til 2 lg 5. Trykker vi på ctrl-enter (Mac: kommando-enter), ser vi at dette er tilnærmet lik 1, Funksjoner Når vi oppretter applikasjonen «Grafer & geometri», får vi automatisk opp «f1(x)» på funksjonslinja nederst. Her kan du taste inn et funksjonsuttrykk. Vær oppmerksom på at TI-NspireCAS bruker punktum som desimalkomma. Når du har tastet inn funksjonsuttrykket og trykket enter, blir grafen til funksjonen tegnet. Samtidig kommer «f2(x)» til syne på funksjonslinja, klar til eventuelle andre funksjonsuttrykk. 12

13 Når du skal endre på en allerede inntastet funksjon, kan du enkelt gå bakover til tidligere funksjoner ved å trykke oppoverpil. 3.1 Tegning av grafer for hånd Når du tegner grafer for hånd, er det praktisk å bruke digitalt verktøy til å regne ut funksjonsverdier for funksjonen. Først definerer vi funksjonen. Eksempel: Om vi skal arbeide med funksjonen f(x) = 0,023x 1,7, taster vi inn funksjonsuttrykket på funksjonslinja nederst. Så velger vi «Legg til funksjonstabell» fra verktøymeny nummer to. 13

14 Da får vi opp verditabellen ved siden av funksjonsvinduet: For å få en verditabell som starter på x = 0 og så øker med 5, velger du «Rediger funksjonsinnstillinger» fra Funksjonstabell-menyen (verktøymeny nummer fem) og stiller inn slik: 14

15 Da blir verditabellen denne: Når vi så har laget verditabellen, merker vi av punktene i et koordinatsystem og tegner en glatt kurve gjennom dem Tegning av grafer på det digitale verktøyet Vi skal tegne grafen til en funksjon f(x). Ut fra funksjonens definisjonsmengde lager vi verditabell slik det er beskrevet i avsnitt 3.1. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. 15

16 Som eksempel skal vi nå tegne grafen til f(x) = 15 for x < 15. Først definerer vi x funksjonen ved å taste inn 15/x på funksjonslinja nederst. Så lager vi verditabell. Vi lar tabellen gå fra 1 til 15. Vi ser av tabellen at om vi lar x gå fra 1 til 15, må y være mellom 1 og 15. Nå klikker vi på grafen og velger «Akser innstillings-dialog» fra Vindu-menyen (verktøymeny nummer fire). Det kan være greit å la y min være noe lavere enn nødvendig, slik at vi ser x-aksen bedre på skjermen. Vi fyller ut for x og y slik: Vi trykker OK og får grafen slik vi ønsker den: 16

17 Dersom du vil forstørre eller forminske grafen, bruker du «Vindu»-menyen. 3.3 Utregninger på grafen For instruksjonene nedenfor antar vi at vi har tegnet grafen til funksjonen vi undersøker Finne y når du kjenner x Om vi skal finne funksjonsverdien av en bestemt verdi av x, kan vi sette den rett inn i funksjonsuttrykket i kalkulator-applikasjonen. Eksempel: La f være funksjonen f(x) = 0,001x 3 +0,09x Vi skal finne f(10). Vi legger inn funksjonsuttrykket som f1(x) og regner ut f(10) ved å taste f1(10). Vi har altså at f(10) =

18 3.3.2 Finne x når du kjenner y Om vi skal finne hvilken x-verdi som svarer til en bestemt y-verdi, legger vi inn denne y-verdien som en ny funksjon f2(x). Deretter finner vi skjæringspunktene. Eksempel: Vi har funksjonen f(x) = 0,5x 3 + 2x 2 + 3x 6 som f1(x). Vi skal finne når f(x) oppnår verdien 4. Da går vi til en Grafer & geometri-applikasjon og legger inn f2(x) = 4. Da ser det slik ut: Nå velger vi «Skjæringspunkt» fra punkt-menyen og klikker på de to grafene. Da kommer koordinatene til skjæringspunktene opp. 18

19 Altså har funksjonen verdien 4 når x er ca. 2,3, 2 eller 4,3. I TI-NspireCAS er det også mulig å legge til et punkt på grafen med «Punkt på» fra Punkt-menyen og så endre y-koordinaten ved å dobbeltklikke på y-koordinaten. Da vil punktet flytte seg til nærmeste sted hvor funksjonen har denne y-verdien, og vi kan lese av x-verdien. Om du gjør det på denne måten, må du huske å se om det er andre verdier av x som gir samme y-verdi! Nullpunkter I TI-NspireCAS finner du nullpunkter ved å velge «Punkt på» fra Punkt-menyen og klikke på grafen. 19

20 Deretter drar du punktet langs grafen til du kommer til nullpunktet. Da kommer det til syne en merkelapp med «null» på, og vi kan lese av koordinatene. Eksempel: La f(x) = 0,5x 3 + 2x 2 + 3x 6. Vi skal finne nullpunktene. Vi tegner grafen og velger «Punkt på». Så klikker vi på grafen og drar punktet til det første nullpunktet: Her kan vi lese av at koordinatene til venstre nullpunkt er ( 2, 0). Slik fortsetter vi 20

21 til vi har tatt alle nullpunktene Topp- og bunnpunkter Topp- og bunnpunkter finner vi ved å velge «Punkt på» fra Punkt-menyen og klikke på grafen, jfr. avsnitt Deretter drar du punktet langs grafen til du kommer til toppunktet eller bunnpunktet. Da kommer det til syne en merkelapp med henholdsvis «maksimum» eller «minimum» på, og vi kan lese av koordinatene. Eksempel: La f(x) = 0,5x 3 +2x 2 +3x 6. Vi skal finne bunnpunktet. Vi definerer f, velger «Punkt på» og klikker på grafen. Så drar vi punktet til det er på bunnpunktet og merkelappen «minimum» kommer opp. Slik fortsetter vi til vi har tatt alle topp- og bunnpunkter. Vi finner at koordinatene til bunnpunktet er ( 0,6; 7,0). Koordinatene til toppunktet er (3,3; 7,7) Skjæringspunkter mellom grafer Skjæringspunkter mellom to grafer f og g finner vi ved å løse likningen f = g. Vi taster «solve(f=g)». Eksempel: Vi skal finne skjæringspunktene mellom f(x) = 0,5x 3 +2x 2 +3x 6 og g(x) = x + 2. Vi definerer f og g og velger «Skjæringspunkter» fra Punkt-menyen (verktøymeny nummer seks). Så klikker vi på de to grafene og leser av svaret. 21

22 Altså er skjæringspunktene ( 2, 0), (2, 4) og (4, 6) Derivert I Kalkulator-applikasjonen velger vi «Derivasjon» fra Kalkulus-menyen (verktøymeny nummer fire). Da får vi opp en sjablon for derivasjon: I ruta til venstre taster vi inn x og i ruta til høyre taster vi inn uttrykket vi skal derivere, for eksempel f1(x). Eksempel: La f være funksjonen f(x) = 0,001x 3 + 0,09x Vi skal finne f (x) og f (10): Først definerer vi f1(x) ved å taste «f1(x) := 0.001x x ». Deretter velger vi «Derivasjon» fra Kalkulus-menyen og taster inn x og f1(x): Altså har vi at f (x) = 0,003x 2 + 0,18x. For å finne f (10), definerer vi f2(x) = f (x) ved å taste «f2(x) :=» foran «d dx (f1(x)). Så regner vi ut f2(10): 22

23 Dette betyr at f (10) = 1,5 En annen måte å derivere på i TI-NspireCAS er å derivere grafisk i «Grafer & geometri»-applikasjonen. Vi tegner grafen, legger en tangent på kurven og bruker måleverktøyet for stigningstall for å lese av den deriverte. 3.4 Tangent For å finne likningen til en tangent til kurven, tegner vi grafen, legger et punkt på kurven der vi skal ha tangenten, velger «Tangent» fra Punkter og linjer-menyen og viser likningen til tangenten ved å velge «Koord. og lgn.» fra Handlinger-menyen. Eksempel: La f være funksjonen f(x) = x 2 4x + 5. Vi skal finne likningen til tangenten til kurven for x = 1: 1. Vi tegner grafen. 2. Vi velger «Tangent» fra Punkter & linjer-menyen og klikker et sted på grafen. Da kommer det opp en tangent til kurven der vi klikket på den. 23

24 3. Nå velger vi «Koord. og lgn.» fra Handlinger-menyen og klikker på punktet, slik at vi får fram koordinatene til punktet: Først trykker du på punktet, deretter der du vil ha skrevet koordinatene. 4. Dobbeltklikk på x-koor dinaten til punktet slik at du kan endre det: Vi taster inn 1 på x-koordinaten. Da flytter punktet seg slik at x = 1. Vi ser at punktet nå er (1, 2). 5. Nå velger vi «Koord. og lgn.» fra Handlinger-menyen igjen og klikker på tangenten, slik at vi får fram likningen til tangenten: Først trykker du på tangenten, deretter der du vil ha skrevet likningen. Altså er likningen til tangenten y = 2x Lineær regresjon Vi lager en ny oppgave eller side og oppretter en ny «Lister og regneark»-applikasjon. I kolonne A legger vi inn x-verdiene og i B legger vi inn y-verdiene. Hver av listene (kolonnene) gir vi så et navn. Så oppretter vi en «Data og statistikk»-applikasjon og 24

25 henter fram navnene på kolonnene der. Da får vi datasettet vårt i et koordinatsystem, hvor vi til slutt kan foreta en regresjonsanalyse. Eksempel: Vi har følgende verditabell, hvor x er antall år etter år 2000 og y er utslipp i tusen tonn. x y I applikasjonen «Lister og regneark» skriver vi inn «tid» øverst i kolonne A og «utslipp» øverst i kolonne B. Så legger vi x-verdiene i kolonne A og y-verdiene i kolonne B. Da er det slik ut: 1. Lag en ny side i samme oppgave med en «Data og statistikk»-applikasjon. 2. Velg «Legg til X-verdi» på Plottegenskaper-menyen (verktøymeny nummer to). Da får du opp en meny hvor du kan velge mellom «tid» og «utslipp». Velg «tid». Du får opp et koordinatsystem med x-verdien lagt inn. 3. Velg «Legg til Y-verdi» på Plottegenskaper-menyen. Velg «utslipp». Da får du en y-akse og y-verdiene til datasettet vårt blir lagt til. Om du vil, kan du nå justere vindusinnstillingene. 4. Klikk på «Analyser»-menyen (verktøymeny nummer fire). Gå til «Regresjon» og velg «Vis lineær (mx + b)». Da tegnes regresjonslinja opp sammen med funksjonsuttrykket for den. Da skal det se slik ut: 25

26 Altså er regresjonslinja y = 28,6x + 582,8. 5 Likninger 5.1 Likninger av andre og tredje grad Likninger løser vi med «solve()» i kalkulatorapplikasjonen. Vi skriver inn to ting inni parentesen, nemlig likningen vi vil løse, så et komma og så hvilken variabel vi vil ha likningen løst med hensyn på, for eksempel x. Eksempel på andregradslikning: Vi løser likningen slik: 1,2388x 2 + 3,423x 4 3 = 0 Løsning på likningen er altså at x er 0,47 eller 2,29. Eksempel på tredjegradslikning: 3x 3 x 2 12x + 4 = 0 26

27 Så løsningene til likningen er x { 2, 1 3, 2}. Dersom likningen ikke har noen løsning, får vi «false». Eksempel: Vi løser likningen x 2 + 3x Likningssett Likningssett løses med «solve()» i kalkulatorapplikasjonen. Vi bruker en sjablon for likningssystem inni solve-kommandoen slik: Eksempel: Vi skal løse likningssettet 3x 2y = 4 x + 2y = 4 Vi skriver «solve(» og klikker på knappen for matematiske sjabloner til høyre på verktøylinja øverst i vinduet. Der velger vi sjablon for likningssett. Vi skriver inn de to likningssettene og angir variablene x og y: Altså er løsningen x = 2 og y = 1. 6 Sannsynlighetsregning 6.1 n r Antall kombinasjoner av r ut fra n, taster vi som «ncr()» i Kalkulator-applikasjonen. Eksempel: Vi skal regne ut 3 2. Vi taster «ncr(3,2)»: Altså er 3 2 = 3. 27

28 6.2 Simulering I Kalkulator-applikasjonen kan du bruke «rand()» og «randint()» til å simulere tilfeldige hendelser. Funksjonen «rand()» gir et tilfeldig tall mellom 0 og 1. Funksjonen «randint(x, y)» gir deg et tilfeldig heltall som er større eller lik x og mindre enn eller lik y. Det er mulig å bruke dette til å simulere enkle uniforme modeller. Eksempel: Vi skal simulere terningkast. Vi skriver inn «randint(1,6)». Da får vi et tilfeldig tall større enn eller lik 1 og mindre enn eller lik 6. Hvert nytt trykk på ENTER gir oss et tilfeldig tall mellom 1 og 6. 28

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1T. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1T av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Faktorisering. Side 55 i læreboka... 3 Rette linjer. Side 73 i læreboka... 3 Digital løsning av likninger. Side 77 i læreboka...

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus 1P. av Sigbjørn Hals GeoGebra 4.2 for Sinus 1P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 GeoGebra som kalkulator. Eksempel side 55... 3 Omforming av formler. Side 82 i læreboka... 4 Rette linjer. Side 89 i læreboka...

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Det digitale verktøyet. Matematikk 1T. Kristen Nastad

Det digitale verktøyet. Matematikk 1T. Kristen Nastad Det digitale verktøyet og Matematikk 1T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2409 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows og Aschehougs

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Hurtigstart. Hva er GeoGebra? Noen fakta

Hurtigstart. Hva er GeoGebra? Noen fakta Hurtigstart Hva er GeoGebra? En dynamisk matematisk programvare som er lett å ta i bruk Er egnet til læring og undervisning på alle utdanningsnivå Binder interaktivt sammen geometri, algebra, tabeller,

Detaljer

Grafisk løsning av ligninger i GeoGebra

Grafisk løsning av ligninger i GeoGebra Grafisk løsning av ligninger i GeoGebra Arbeidskrav 2 Læring med digitale medier 2013 Magne Svendsen, Universitetet i Nordland Innholdsfortegnelse INNLEDNING... 3 GRAFISK LØSNING AV LIGNINGER I GEOGEBRA...

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ]

Velg mellom disse kommandoene: Dersom[<Vilkår>, <Så>, <Ellers>] Funksjon[<Funksjon>, <Start>, <Slutt>] 442 Grafer Å tegne grafen til en funksjon Nullpunkter Velg mellom disse kommandoene: Dersom[, , ] Funksjon[, , ] GeoGebra finner nullpunktene til en innlagt

Detaljer

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016)

GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) 1 KURSHEFTE INNFØRING GEOGEBRA (Versjon 5.0.233.0 6. mai 2016) Østerås 8. mai 2016 Odd Heir 2 Innhold Side 3-13 Innføring i GeoGebra 13-14 Funksjonsanalyse 14-16 Utskrift 17-18 Overføring til Word 18-20

Detaljer

Matematikk 1P. det digitale verktøyet. Kristen Nastad

Matematikk 1P. det digitale verktøyet. Kristen Nastad Matematikk 1P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Løsninger til kapitteltesten i læreboka

Løsninger til kapitteltesten i læreboka S1 kapittel 4 Funksjoner Løsninger til kapitteltesten i læreboka 4.A a f ( ) 0,5 3 4 b Fra grafen leser vi av at nullpunktene til grafen er og 4. For å finne nullpunktene løser vi likningen f ( ) 0. 0,5

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering.

Figur 62: Faktorisering kan lett gjøres ved å skrive inn uttrykket og så klikke på verktøyet for faktorisering. 11 CAS i GeoGebra Fra og med versjon 4.2 får GeoGebra et eget CAS-vindu. CAS står for Computer Algebra System og er en betegnelse for programvare som kan gjøre symbolske manipuleringer. Eksempler på slike

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Klarer dere disse abel-nøttene fra 2011?

Klarer dere disse abel-nøttene fra 2011? 2: Lineære funksjoner VG1-T - teoretisk retning En del av dere synes nok at innføringa i kapittel 1 er i vanskeligste laget. Trass i at vi stort sett har repetert foreløpig, ser jeg at dere merker overgangen

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter:

Hvordan forandrer jeg på innstillingene langs aksene, slik at hele grafen viser? Dette kan du gjøre på seks ulike måter: Spørsmål og svar om GeoGebra, versjon 3.0 bokmål. Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Funksjoner med GeoGebra

Funksjoner med GeoGebra Funksjoner med GeoGebra Wallace Anne Karin 2015 G e o G e b r a 5. 0 Innhold Oppsett for arbeid med funksjoner... 2 Flytte tegneflaten, endre enheter på aksene... 4 Flytt inntastingsfeltet øverst... 4

Detaljer

Lær å bruke wxmaxima

Lær å bruke wxmaxima Bjørn Ove Thue og Sigbjørn Hals Lær å bruke wxmaxima Et godt og gratis CAS-verktøy med enkelt brukergrensesnitt. Oppdatert versjon, november 2009 Lær å bruke wxmaxima. Eksempler fra Sinus-bøkene fra Cappelen

Detaljer

Matematikk 2P. det digitale verktøyet. Kristen Nastad

Matematikk 2P. det digitale verktøyet. Kristen Nastad Matematikk 2P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals

GeoGebra 4.2 for Sinus Påbyggingsboka P. av Sigbjørn Hals GeoGebra 4.2 for Sinus Påbyggingsboka P av Sigbjørn Hals Innhold Litt om GeoGebra... 3 Eksponentiell vekst. Side 45 i læreboka... 3 Søylediagram. Side 50-52 i læreboka... 4 Kurvediagram. Side 55-56 i læreboka...

Detaljer

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS

13.03.2013 Manual til Excel. For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS 13.03.2013 Manual til Excel 2010 For ungdomstrinnet ELEKTRONISK UNDERVISNINGSFORLAG AS Innholdsfortegnelse Huskeliste... 3 Lage en formel... 3 Når du får noe uønsket som f.eks. en dato i en celle... 3

Detaljer

Det digitale verktøyet. Matematikk 2T. Kristen Nastad

Det digitale verktøyet. Matematikk 2T. Kristen Nastad Det digitale verktøyet og Matematikk 2T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Det digitale verktøyet. Matematikk 2P. Kristen Nastad

Det digitale verktøyet. Matematikk 2P. Kristen Nastad Det digitale verktøyet og Matematikk 2P Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Det digitale verktøyet. Matematikk 1T. Kristen Nastad

Det digitale verktøyet. Matematikk 1T. Kristen Nastad Det digitale verktøyet og Matematikk 1T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 2.1.0.631 14.07.2010 av operativsystemet til programmene TI-nspire TM CAS Student Software og TI-nspire

Detaljer

Matematikk 2T. det digitale verktøyet. Kristen Nastad

Matematikk 2T. det digitale verktøyet. Kristen Nastad Matematikk 2T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og

Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og Ei innføring i Calc 1 Innledning Etter å ha gjennomgått dette «kurset», bør du ha fått et innblikk i hva et regneark er, og noe av hva det kan brukes til. OpenOffice Calc er brukt som mønster her, men

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

SINUS R1, kapittel 1-4

SINUS R1, kapittel 1-4 Løsning av noen oppgaver i SINUS R1, kapittel 1-4 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 1.13 e, side 13 1.31 a, side

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals

GeoGebra. brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals GeoGebra brukt på eksamensoppgaver i 10. kl. Sigbjørn Hals Innhold Hva er GeoGebra?... 2 Hvilken nytte har elevene av å bruke GeoGebra?... 2 Hvor finner vi GeoGebra?... 2 Oppbyggingen av programmet...

Detaljer

Bruksanvisning Numeri 624. Norsk utgave laget av Ola Brox

Bruksanvisning Numeri 624. Norsk utgave laget av Ola Brox Math Bruksanvisning Numeri 624 Norsk utgave laget av Ola Brox Gratulerer med ny lommeregner! Ta godt vare på den så har du den lenge! Lommeregneren har det best i beskyttelsesdekselet. Sett derfor dekselet

Detaljer

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MX etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK av samme forfatter. Mål og hovedmomenter 1 2 Mål 3:

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 9 Kapittel 2 Bokmål 1 av 9 Kurs i GeoGebra Funksjoner og grafer I dette kurset skal vi se nærmere på hvordan vi kan bruke GeoGebra som en graftegner. Grunnleggende innstillinger Når vi skal bruke

Detaljer

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet

Detaljer

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX 3. juni 2005. eksamensoppgaver.org Løsningsforslag AA654 Matematikk 3MX 3. juni 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Løsningsforslag heldagsprøve våren 2012 1T

Løsningsforslag heldagsprøve våren 2012 1T Løsningsforslag heldagsprøve våren 01 1T DEL 1 OPPGAVE 1 a1) Skriv så enkelt som mulig x 9 x 6 Vi må faktorisere både teller og nevner. Så kan vi forkorte felles faktorer. Da får vi: x 9 x x 6 a) 4a4 b

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi

with plots plot sin x, x =KPi..Pi Pi 3 eval tan eval cos K1 1 > evalf sin 3 2 K 2 $Pi with plots Maple har en rekke innebygde funksjoner. Kommandoen plot brukes til å tegne grafen til en funksjon, og kommandoene eval og evalf brukes til å beregne funksjonsverdier for en funskjon. Den første

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen 25.05.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Vår 25.05.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer