Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1

Størrelse: px
Begynne med side:

Download "Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1"

Transkript

1 Løigforlg EKSMEN Mtmti - Eltro dmbr 6 OPPGVE ltrtiv. yttr prgfujor og "tigigtllbtrtig" f ut ) t ) f ut) t ) ft) ) )tigigtll ) 5-5) ) t -5) -5 - f ut ) 5t ) 5) -5) -5 f ut ) 5t ) f t) f f f f ut) t ut ) 5t ) ut ) t ) ut ) 5t ) Tgg b: Sid dlfujo f f lå på vd uli tidputr blir d mld tigig om følgr: For t < : For t < : 5 5 For t < : 5 5 For t : 5 5 f f f f ff f f f f f Hvr v dlfujo f f r ltå rtt lij på form K i t ) ut ) Ki Fr Lplctbll: L{ Kit } hvor Ki ott. ifttorm: L{Ki t ) ut )} Md dr ord: F ) Ki

2 OPPG. fort.) ltrtiv. Vh. fujobrivl og prgfujor Vd ipjo v oppgvfigur r vi t fujo briv om: f t) t t < 5 5t t < 5t 5 t < t f f f f b c d Vd å bru prgfujo om V/PÅ-brytr dtt omriv til: ft) t f t) t { t ut ) 5 5t) ut ) 5 5t) ut ) 5t 5) ut ) 5t 5) ut ) f PÅ f V f PÅ f V f PÅ f V b t 5 5t) ut ) t ) ut ) 5t 5) ut ) t 5 t ) ut ) t ) ut ) 5 t ) ut ) b c c Dtt r dt mm uttryt om i ltrtiv drmd: F ) 5 5 ltrtiv. Vh. fujobrivl og dfiijoitgrlt F) t t dt t t) 5 5t) t dt 5 5t) t 5 5 5t) t dt t 5 5 5t) ) 5 5) 5 ) 5 5 5) 5 ) ) OPPGVE Må ført fi trfrfujo H) Idr løyf gtiv tilboplig: X) r br hjlptørrl ). _ X) Y) Y) X) Ytr løyf y gtiv tilboplig: H) Y) F) F) _ X) Y) Løigforlg m d-6 id v 6

3 OPPG. fort.) Fortr omrivig md fulltdig vdrrig: H) ) ) ) t Dirt v tbll: ht) i t ht) Impulrpo t [] OPPGVE Lplctrformrr diffrilliig: X) x) X) ) X) x' ) ) ) ) X) x) ) X) ) X) ) C D ) ) tmmr offiit: ) ) ) ) C ) D ) Md : Md : C Smmlir -ldd: D Md : D X) ).5... xt) Tbll. xt) t t t t -t -t Kotroll: x' t) x' ' t) t t t t t ) t t t ) t t t) t t t Itt i diff.liig: x' ' x' x t) t t t t ) t t t t t t t ) ) Dut: x) OK! x' ) ) OK! t t t OK! Løigforlg m d-6 id v 6

4 Løigforlg m d-6 id v 6 OPPGVE ltrtiv. Dirt fr tbll D ød v oppå vd å tt 5..5 ± llr mr prit: for ) f[] D fir vi rtt fr tbll: ) ) ) ) ) F) ltrtiv. Gomtri rr yttr dfiijo f[] ) F. Dt gir i dtt tilfllt: F) M r gomtri r md um r S foruttt: < ) Drmd: F) OPPGVE 5 Z-trformrr diffrliig dirt vh. tbll og. ifttorm ) ) Y) Y) Y) Y) tmmr offiit: ) ) : Md Smmlir -ldd: Y) Dirt fr tbll: y[] y[] Kotroll ) ) ] y[ y[] Itt i diffrliig: ) ) ) ) ) ) OK! ] y[ y[] K ogå om lg otroll tt o ldd i v: Itt i løig: ) ) ) 7 y[] y[] [] y Itt i diffrliig: ) ) ) 7 u[] y[] y[] u[] y[] y[] ] u[ ] y[ y[]

5 OPPGVE 6 6 f x) 6 x x f 'x) x f ''x) 96 x 6 f ) f ') 96 f '') fx) p x).ordtylorpolyom: f ' ' ) px) f ) f ' )x ) x )! x ) x ) 6 x x x Kotroll: p ) f ) OK! OPPGVE 7 p ' ' x) 6 6x p ) 6 f ' ) OK! p ' ' '' x) 6 p ) 6 f ' ' ) OK! Md forholdritrit: x l) x x l) ρ lim lim lim ) l ) x x ) l ) x x x Ellr ditto md rotritri t : ρ lim lim lim x l) l) R ovrgrr bolutt hvi ρ < dv. år x < x < < x < R divrgrr år ρ > Dt r uirt hv om jr år ρ dv. x llr x. Dtt må udrø ærmr. Itt x i rumm: ) l) ) l) Kovrgrr id r r ltrrd og lim l) Itt x i rumm: ) l) ) ) l) l) Divrgrr : *) *) Itgrltt: dx [ llx)) ] x lx) D må ogå l) dv. divrgr Kovrgitrvllt for r: < x Ellr vivlt: x Løigforlg m d-6 id 5 v 6

6 OPPGVE ft) t [] Dtt r lifujo id f t) f t) dv. b. Priodtid: T. Grufrv: ω π rl ) Middlvrdi: Ellr mr tugvit: t dt t T T Strgt ttt r vi dirt v figur t ut å mått fort brgigr) π t coπ t) t co dt t co t) dt T T π π) ) for ltrtivt : π) t iπ t) coπ) ) π π) 6 for 5 π) Fourirr: f t) π) ) coπ t) 5 6 π) coπ t) På litform: f t) 6 co πt) coπt) co5πt) co7πt) π 5 7 Som vi r vtr mplitud rt md ød vrdir v. R ovrgrr drfor rt. Dt r vi ogå v figur dt bhøv i mg ldd før vi ærmr o d opprilig urvform. Fourirr md br og.hrmoi t.o.m. 5.hrmoi t.o.m. 9.hrmoi Løigforlg m d-6 id 6 v 6

EKSAMEN I FAG SIF 4014 FYSIKK 3 Fredag 17 desember 1999 kl Bokmål

EKSAMEN I FAG SIF 4014 FYSIKK 3 Fredag 17 desember 1999 kl Bokmål Sid av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig otat udr a: Førtaaui Kut Ar Strad Tlfo: 73 59 34 6 EKSAMEN I FAG SIF 44 FYSIKK 3 Frdag 7 dbr 999 l. 9-3 Boål Hjlpidlr:

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matmati V-8 Løsigsorslag til øvig 7 OPPGVE Liigssttt på matrisorm: t b t y. t z t Et liært og vadratis liigsstt ar tydig løsig vis og bar vis dt Drsom dt må ølglig liigssttt a dlig mag løsigr llr ig løsig.

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norgs tkiskaturvitskaplig uivrsitt Istitutt for matmatisk fag MA Grukurs i aalys II Vår 4 Løsigsforslag Øvig 8.8. a) Vi har fuksjo f(). Vi skal taylorrkk til f i puktt, kovrgsitrvallt til d rkk, og vis

Detaljer

Matematikk for IT, høsten 2018

Matematikk for IT, høsten 2018 Mtmtkk for IT, høst 8 Oblg Løsgsforslg 7. sptmbr 8.7. ) for >. 7 b) for >. 7 c) for >. 7 d) ) for >. 8 8 8 8 8 7 8 7 8 .7. ) for >. 7 8 b) for >. 7 ) 7 ) 7) ) 7 ) 7) c) for >..7.8 ) ) ) ) ). Bss:. Rkursjosforml:

Detaljer

Emnenavn: Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnkod: ITD503 Emnnavn: Mmikk andr dlkamn Do: 20. mai 209 Hjlpmidlr: Ekamntid: 09.00 2.00 Faglærr: To A4-ark md valgfritt innhold på bgg idr. Formlhft. Kalkulor om dl ut amtidig md oppgavn. Chritian

Detaljer

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5.

2 π[r(x)] 2 dx = u 2 du = π 1 ] 2 = π u 1. V = π. V = π [R(x)] 2 [r(x)] 2 dx = π (x + 3) 2 (x 2 + 1) 2 dx = 117π 5. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 6 Avsnitt 6. 7 Ved å bruke disk-metoden får mn t volumet er π[r(x)] 2 dx 3 Ved å bruke disk-metoden får mn t volumet er L u

Detaljer

Formelsamling for matematiske metoder 3.

Formelsamling for matematiske metoder 3. Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

TMA4100 Matematikk 1 Høst 2006

TMA4100 Matematikk 1 Høst 2006 TMA4 Mtemtikk Høst 26 Norges tekisk turviteskpelige uiversitet Istitutt for mtemtiske fg Løsigsforslg, vsluttede eksme 5.2.26 De første greseverdie er e uestemt form v type "/", og L Hopitls regel gir

Detaljer

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1 HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag EKAMEN løigforlag 5. augut 6 Emkod: ITD5 Emav: Matmatikk adr dlkam Dato: 8. mai 6 Hjlpmidlr: - To A-ark md valgfritt ihold på bgg idr. Ekamtid: 9.. Faglærr: Chritia F Hid - Formlhft. Kalkulator r ikk tillatt.

Detaljer

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 8. august 2007 TFY4250 Atom- og molekylfysikk Eksmn TFY45 8 ugust 7 - løsningsforslg Oppgv Løsningsforslg Eksmn 8 ugust 7 TFY45 Atom- og molkylfysikk I grnsn V r potnsilt V x t nklt bokspotnsil md vidd, V V for < x < og undlig llrs Dn normrt grunntilstndn

Detaljer

KONSEPT/SITUASJON. Konseptet illustreres ovenfor med en 3D tegning av bygget i sammenheng med uteoppholdsarealene.

KONSEPT/SITUASJON. Konseptet illustreres ovenfor med en 3D tegning av bygget i sammenheng med uteoppholdsarealene. KONSEPT/SITUASJON Slå u i KJØKK Ap lt u / v i SYK For å illutrr rhg utoppholdrlr (MUA) o hgd og v god vlitt hr dt litt utridt t opt o dlr opp utoppholdrlt i fir forjllig tr, hvor hvrt t hr uli tivittr

Detaljer

( ) ( Tosidig spektrum for x(t) = cos(100π t π/3) + 15 cos(400π t + π/4) 8 15/2 e jπ/4. absoluttverdi av a k 6. 5 e 5.

( ) ( Tosidig spektrum for x(t) = cos(100π t π/3) + 15 cos(400π t + π/4) 8 15/2 e jπ/4. absoluttverdi av a k 6. 5 e 5. dr X A r n rll kontant og X k A k jφ k Forlning,. april 6 Pnum i bokn: - og -, no fra -4 ikk n dvndig å l, -6., INF4-8 -3. og -3.5 3- til 3-4 Ovrikt Spktrum for tignal, frkvninnholdt Bruk av Fourir-tranform

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Erik Lindgren Mobil: 454 75 993 Ekamen i TMA422 Matematikk 4M Nynork Måndag 9. deember 20 Tid:

Detaljer

EKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13

EKSAMEN I TMA4130 MATEMATIKK 4N Bokmål Fredag 17. desember 2004 kl. 9 13 Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Inkluive formelark og Laplacetabell Faglig kontakt under ekamen: Finn Faye Knuden tlf. 73 59 35 23 Sigmund Selberg tlf.

Detaljer

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),...

dx k dt н x 1,..., x n f 1,...,f n н- н f k (x 1,..., x n ), k =1,2,...,n, нн d X = f( X). X = (t),.. x 1 = 1 (t), x 2 = 2 (t),... - ( ) - 3 579 : - - : - / : : 3 4 579-4 5 9 3 9 4 3 5 5 6 3 33 34 3 35 4 36 39 c - ( ) 3 c 3 - - ( ) - ( - ) - - - ( ) - - ( - ) ( t) - dx k = f k (x x n ) k = n () dt x x n f f n - d X = f( X) dt f k

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

122-13 Vedlegg 3 Rapportskjema

122-13 Vedlegg 3 Rapportskjema Spsifikasjon 122-13 Vdlgg 3 Rapportskjma Dok. ansvarlig: Jan-Erik Dlbck Dok. godkjnnr: Asgir Mjlv Gyldig fra: 2013-01-22 Distribusjon: Åpn Sid 1 av 6 INNHOLDSFORTEGNELSE SIDE 1 Gnrlt... 1 2 Tittlflt...

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.

Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016. Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 3. mrs 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: Studiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,

Detaljer

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI.

ØVING 2: DIMENSJONERING MHT KNEKKING. Likevekt: Momentlikevekt om punkt C (venstre del av figur (b)): M +Hx - Fy = 0 M = Fy - Hx. Fy EI. Hx EI. MSK0 Masiosrusjo ØSNINGSOSG TI ØVINGSOPPGV Kap. Oppgav.5.8 ØVING : DIMNSJONING MT KNKKING Oppgav.5 a) Uldig av ulr ilfll III iv: Momliv om pu C (vsr dl av figur ()): M +x - y 0 M y - x Vi v fra fashslær

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 3. augut d: 9-4 tall d klu fod: 7 kludt dlgg tall oppga: 6 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Løsningsforslag til eksamen i MAT 1100, H06

Løsningsforslag til eksamen i MAT 1100, H06 Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz

Detaljer

TALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C

TALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:

Detaljer

Rekordhøy EBITDA og godt posisjonert for fremtidig vekst

Rekordhøy EBITDA og godt posisjonert for fremtidig vekst Rkrhøy EBITDA ijr fr frii v I fjr kvrl vr Tlr rifir illirr krr, ilvr rik iv å r. EBITDA før r r vr, illirr krr, EBITDA-ri vr,6 r, rø vr, illirr krr. -I lø v hr Tlr-kr ø llr rhl rkl i vår vii rkr. I fjr

Detaljer

FOLKETS PIMPER PØLSA!

FOLKETS PIMPER PØLSA! DET FINNES EN PØLSE MED 80% KJØTT, OG DET FINNES EN HEL VERDEN AV TILBEHØR. FOLKETS PIMPER PØLSA! Vi yn pøln frtjnr å få dn trni rin hburrn tcn. Drfr lnrr vi ått frh ppriftr til inpirjn! FOLKETS WIENER

Detaljer

TMA4240 Statistikk Høst 2013

TMA4240 Statistikk Høst 2013 TMA44 Statistikk Høst Norgs tkisk-aturvitskaplig uivrsitt Istitutt for matmatisk fag Øvig ummr, blokk II Løsigsskiss Oppgav a) Th probability is R.9.5 6x( x) dx = R.9.5 (6x 6x ) dx =[x x ].9.5 =.47. b)

Detaljer

Eksamen i TMA4130 Matematikk 4N

Eksamen i TMA4130 Matematikk 4N Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Yura Lyubarkii: mobil 9647362 Anne Kværnø: mobil 92663824 Ekamen i TMA430 Matematikk 4N Bokmål

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk

KONTINUASJONSEKSAMEN I FAG SIF8043 BILDETEKNIKK LØRDAG 16. AUGUST 2003 KL Løsningsforslag - grafikk Sd v 8 NTNU Norgs tksk-turvtskpg uvrstt Fkutt for formsostkoog, mtmtkk og ktrotkkk Isttutt for dttkkk og formsosvtskp KONTINUASJONSEKSAEN I FAG SIF8 BILDETEKNIKK LØRDAG 6. AUGUST KL. 9.. Løsgsforsg - grfkk

Detaljer

MDG Bergen - alternativt bybudsjett 2015 Revisjon av budsjettforlik mellom Høyre, Frp og støttepartiene

MDG Bergen - alternativt bybudsjett 2015 Revisjon av budsjettforlik mellom Høyre, Frp og støttepartiene MDG Brg - altrativt bybudsjtt 2015 Rvisjo av budsjttforlik mllom Høyr, Frp og støttparti Økt itktr og midrutgiftr Eidomsskatt Rdusr kosultbruk Møthoorar Kutt i studiturr for politikr Rdusr politikrlø Bruk

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

MA1102 Grunnkurs i Analyse II Vår 2017

MA1102 Grunnkurs i Analyse II Vår 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA2 Grukurs i Aalyse II Vår 27 Løsigsforslag Øvig 7 2.5: For hvilke x kovergerer rekke? b) (2x) c) (l x) e) 2 si x 2 b) Dette er

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

VEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Målform: Eksmesdto: 5. jui 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): Studiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg, Elektro, Mski, Kjemi,

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag . mai EKSAMEN løningforlag Emnkod: ITD5 Emnnavn: Mamaikk andr dlkamn Dao:. mai Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. - Kalklaor om dl amidig md oppgavn. Ekamnid: 9.. Faglærr:

Detaljer

TØRBERGVIKA, OLDERVIKA, HESTVIKA

TØRBERGVIKA, OLDERVIKA, HESTVIKA ØV, DV, V I ppdragsgivr:jørmohrs Kommu:amsos ådgivr:rødrpla Dato: 20.12.17 vidrt: ØVI K,DVI K,VI K 2 I apportav: Plabskrivls, rgulrigspla«ørbrgvika,ldrvika;stvika2» Prosjktummr: 1561 PlaID: 1703250 Forslagsstillr:

Detaljer

Ubestemt integrasjon.

Ubestemt integrasjon. Ukeoppgaver, uke 4, i Matematikk 0, Ubestemt integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 4 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea04

Detaljer

T Hcm ^>\xrl, X X. 1 au X," e( \ Søknad om ansvarsrett etter plan- og bygningsloven

T Hcm ^>\xrl, X X. 1 au X, e( \ Søknad om ansvarsrett etter plan- og bygningsloven ø vtt tt g gigv Vgg ggtt ' i ø gj i/ ggt vi I I t I gig ig K t I tt t t t H itt ivvi ' Kt Mv t t@ t ' f ',t I tt t Ogij Mitf vc ( vfø ti gjføig, t v føt g it ) j ( O, ØK, U, t) O O iv v vt ittjt g ti ø

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 8-12/2

Fasit til utvalgte oppgaver MAT1110, uka 8-12/2 Fasit til utvalgte oppgaver MAT, uka 8-/ Øyvind Ryan oyvindry@i.uio.no February, Oppgave 3.3.6 Vi har funksjonen fx, y, z xyz og kurven Vi ser at rt e t, e t, t, t. vt e t, e t, vt e t + e t + frt t. e

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

(s + 1) 4 + 2(s + 1)

(s + 1) 4 + 2(s + 1) NTNU Intitutt for matematike fag TMA4135 Matematikk 4D, øving 6, høt 215 Løningforlag Notajon og merknader Vi dropper enheter i oppgavene om benytter dette. Læreboken er uanett inkonekvent når det gjelder

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre

A. forbli konstant B. øke med tida C. avta med tida D. øke først for så å avta E. ikke nok informasjon til å avgjøre Flervlgsoppgver 1. En induktor L og en motstnd R er forbundet til en spenningskilde E som vist i figuren. Bryteren S 1 lukkes og forblir lukket slik t konstnt strøm går gjennom L og R. Så åpnes bryter

Detaljer

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016

Løsningsforslag Matematikk4N/4M, TMA4123/TMA4125, vår 2016 Løigforlag MatematikkN/M, TMA/TMA5, vår 6 Oppgave Skriver om ligigytemet på valig måte Gau Seidel blir da Setter vi x, y, z får vi x y z y x z z x y 6 x y z y x z z x y 6 Dv,,,, x y z x y z 6 Oppgave Side

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

si1, }ll :i tl .nn -{i q il th; !9ft $.\ l l.i t- -l s i l l)l\ _1 L _!.1 '{'- l s -,,

si1, }ll :i tl .nn -{i q il th; !9ft $.\ l l.i t- -l s i l l)l\ _1 L _!.1 '{'- l s -,, .L q,. -, + s. :.nn = -,, _. ''- ' ' } 3, _ L ' s, - - s :,34 : q )L 9 h;,u 9 r c ( ( q ( : - ' -' D,T -a 4 : n,r 3' -r 3?' - : '?:). L '29_ 'r }5. r's '_, T e: 'a...nn. 2 T ' 3, Z ',, . ; :.,,r.' - *

Detaljer

Lag et lavpass filter ved hjelp av et Butterworth polynom

Lag et lavpass filter ved hjelp av et Butterworth polynom FYS3 Forligotat.Balk Ihold LA ET LAVPASS FILTER VED JELP AV ET BUTTERWORT POLYNOM... a Start... b rgr baklg fra M til -...4 Studrr pol til...5 Ovrttr ytmfuko til lktroik krt...9 va md adr ordr?... Ektra

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksmesdto: 5. jui 04 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsser: tudiepoeg: Bygg, Elektro, Mski, Kjemi, Logistikk,

Detaljer

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen

Dans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

A ft tt * 1 ^ an T ii ft. *< X IP * ft ii l> ff ffl *> (2 # * X fa c, * M L 7 ft tf ;U -h h T T* L /< ft * ft 7 g $ /i & 1 II tz ft ft ip ft M.

A ft tt * 1 ^ an T ii ft. *< X IP * ft ii l> ff ffl *> (2 # * X fa c, * M L 7 ft tf ;U -h h T T* L /< ft * ft 7 g $ /i & 1 II tz ft ft ip ft M. Pal 77»_ a< IP ft A 6 * *' -5 m y, m *J 7 7 t< m X D $ ^ 7 6 X b 7 X X * d 1 X 1 v_ y 1 ** 12 7* y SU % II 7 li % IP X M X * W 7 ft 7r SI & # & A #; * 6 ft ft ft < ft *< m II E & ft 5 t * $ * ft ft 6 T

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske

Detaljer

Salisbury. t S. t w. ry W. it P e. Ro a " t S eet. Ce n x t. S t S t re. i r S tr e. Pr in. e Dr e. u e e. St e r Stree. et J. B a rt. u a.

Salisbury. t S. t w. ry W. it P e. Ro a  t S eet. Ce n x t. S t S t re. i r S tr e. Pr in. e Dr e. u e e. St e r Stree. et J. B a rt. u a. h E T F I ff F T F fh h T h N Ff F f Ff h v h T Ff h F U h h H F f H I H F f A B KH T K N J K E T D v F A T v E h A D v 80T h B T v D V D N v D K A h B h ff Jf f U A v h N b H h b B Dv D v h T hf T F A

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt). NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Visma Flyt skole. Foresatte

Visma Flyt skole. Foresatte Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...

Detaljer

ENKELT, TRYGT OG LØNNSOMT!

ENKELT, TRYGT OG LØNNSOMT! Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 34 TMA4 Matematikk 4K H-3 Oppgave A-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side

Detaljer

TMA4125 Matematikk 4N

TMA4125 Matematikk 4N Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA425 Matematikk 4N Løsigsforslag - Øvig 9 Fra Kreyszig, avsitt.5 3 Vi skal fie temperature u(x, t) i e stav (L = π, c = ) som er

Detaljer

Fra IK T pla n. Lærings strategier /Lese strategier. Fra bib lio tek pla n

Fra IK T pla n. Lærings strategier /Lese strategier. Fra bib lio tek pla n Fag: Musikk Tri: 9 Lærbok: A t. uk r Tma 10 Spill på istrumt Akkordlæ r Komp.mål (dirkt fra lær) Bruk s symbolr for akkordprogrsjor i spill på Øv i og framfør t rprtoar og das fra ulik sjagr md vkt på

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGKOLEN I ØR-TRØNDELAG Avdelig for tekologi Målform: Eksmesdto: 3. mrs 03 Vrighet/eksmestid: Emekode: 3 timer ALM304V Emev: Mtemtikk 4 Klsse(r): tudiepoeg: Fglærer(e): (v og telefor på eksmesdge) Bygg,

Detaljer

Søknad om Grønt Flagg på Østbyen skole

Søknad om Grønt Flagg på Østbyen skole Søknad om på Østbyn skol Østbyn skol startt opp md i 2007, og har sidn da vært n Grønt Flagg-skol som r opptatt av miljø Skoln hatt n dl utfordringr dt sist årt, som har gjort dt vansklig å følg opp intnsjonn

Detaljer

2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er.

2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er. MA2 Vår 28 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 9.2.9 Ønsker å finne ut om 3+ 2 n+2 er konvergent eller divergent. Observer først at; 3 + 2 n 2 n+2 = ( 3 ) + +2

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

Repitisjon av Diverse Emner

Repitisjon av Diverse Emner NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr

Detaljer

KRAVFIL TIL KREDINOR [Spesialrapport]

KRAVFIL TIL KREDINOR [Spesialrapport] KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]

Detaljer

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1 NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)

Detaljer