Obligatorisk oppgave 1 MAT1120 H15

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Obligatorisk oppgave 1 MAT1120 H15"

Transkript

1 Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden. Dersom du på grunn av sykdom eller andre tungtveiende grunner har behov for å utsette innleveringen, må du i god tid før innleveringsfristen sende søknad til: Husk at sykdom må dokumenteres ved legeattest. Oppgavesettet består av tilsammen 9 oppgaver/deloppgaver. For å få godkjent Oblig kan høyst ett av disse 9 punktene leveres blankt og det må komme klart frem fra din besvarelse at du har gjort et seriøst forsøk på å løse alle de andre punktene. Videre må minst 6 av de 9 punktene være besvart på en tilfredstillende måte, med en ryddig fremstilling og gode begrunnelser. Det vil også bli lagt vekt på at Matlab-delene i oppgavesettet er rimelig godt besvart en besvarelse som viser mangelfulle Matlab-ferdigheter kan bli underkjent selv om den tilfredstiller de andre kravene. Der det står at Matlab skal brukes, må det vedlegges passende utskrifter med kommentarer. Det er tillatt å bruke Python (eller en annen programpakke enn Matlab), men husk at det vil kunne bli stilt spørsmål som kreves kjennskap til Matlab ved slutteksamen. Studenter som ikke får sin opprinnelige besvarelse godkjent, men som har gjort et reelt forsøk på å løse oppgavesettet, vil få en mulighet til å levere en revidert besvarelse. Studenter som ikke får godkjent begge sine besvarelser til Oblig og Oblig 2 vil ikke få adgang til avsluttende eksamen. Det er lov å samarbeide om oppgavene. Men alle må levere sin egen personlige besvarelse og selv ha gjennomført alle Matlabkjøringer. Er vi i tvil om at du virkelig ha forstått det du har levert inn, kan vi be deg om en muntlig redegjørelse. Det vises ellers til regelverket for obligatoriske oppgaver, som du finner via hjemmesiden til emnet.

2 Om Markov kjeder og absorpsjonssannsynligheter Avsnitt 4.9 i læreboka gir en innføring i Markov kjeder. Vi minner om at en Markov kjede i R n er en følge av sannsynlighetsvektorer x 0, x, x 2,... i R n som er slik at x k+ = P x k, k = 0,, 2,... der P er en n n stokastisk matrise. Vi har da at x k = P k x 0 for alle k = 0,, 2,... Husk her at P 0 = I n (= n n identitetsmatrisen). Markov kjeder brukes ofte til å modellere tilfeldige prosesser med diskret tidsskala. Anta at vi studerer et system som kan veksle mellom et endelig antall tilstander, la oss si n. Hva som menes med tilstander i en konkret situasjon er gjerne en del av selve modelleringen av systemet. Er det f.eks. været i Oslo vi ønsker å modellere som en tilfeldig prosess kan vi innskrenke oss til en grov inndeling i tre tilstander (f.eks. sol, skyet og regn), eller vi kan innføre flere tilstander (f.eks. sol, delvis skyet, jevnt overskyet, periodevis regn, regn). Vi tenker oss at overgang mellom tilstander skjer ved tidspunktene, 2,... og styres i henhold til bestemte sannsynligheter (som gjerne anslås ved eksperimenter). Vi antar her at disse sannsynlighetene ikke forandrer seg med tiden (i mer naturtro modeller vil disse ofte gjøre det). Mengden S = {s, s 2,..., s n } av alle de n ulike tilstandene systemet kan være i kalles gjerne tilstandsrommet til systemet. Sannsynligheten for at systemet går fra tilstand s j til tilstand s i i ett tidsskritt angis ved et tall p ij i intervallet [0, ]. Disse sannsynlighetene, som kalles overgangssannsynligheter, tilfredstiller da at n i= p ij = for enhver j, slik at n n matrisen P = [p ij ] er en stokastisk matrise. Matrisen P kalles overgangsmatrisen til systemet. Vanligvis er vi gitt en startvektor x 0 R n som er en sannsynlighetsvektor; den i-te komponenten a i til x 0 angir da sannsynligheten for at systemet er i tilstand s i ved starttidspunktet t = 0. Hvis vi f.eks. vet med 00 prosents sikkerhet (altså med sannsynlighet ) at systemet er i tilstand s j for en bestemt j ved t = 0, betyr det at a j =, mens a i = 0 når i j, altså at x 0 = e j (som betegner standardbasisvektor nr. j i R n ). I denne obligen skal vi stort sett tenke oss Markov kjeder der startvektoren er en av e j -ene, dvs at prosessen begynner i en av tilstandene ( starttilstanden ) ved t = 0. Vektoren x = P x 0 blir en ny sannsynlighetsvektor (dette følger av oppgave i boka). Denne vektoren er slik at dens i-te 2

3 komponent angir sannsynligheten for at systemet er i tilstand s i ved tidspunktet t =. De neste vektorene i den assosierte Markov kjeden, gitt ved x k+ = P x k, k 0, har en tilsvarende tolkning. Ofte blir et system som ovenfor fremstilt ved hjelp av en figur som viser alle tilstandene og de positive overgangssannsynlighetene, angitt ved piler. (Vi sløyfer altså pil fra tilstanden s j til tilstanden s i dersom p ij = 0.) Eksempel. La n = 5. Et system er angitt ved følgende figur: s 0.7 s s s s 5 Den tilhørende overgangsmatrisen blir P = () Her er f.eks. p 32 = 0.3, så sannsynligheten for å gå fra tilstand s 2 til tilstand s 3 i ett tidsskritt er 0.3. Produktet av to overgangssannsynligheter har en naturlig tolkning som sannsynligheten for at en bestemt begivenhet inntreffer. Anta f.eks. at prosessen ovenfor starter i tilstand s 3. Hva er da sannsynligheten for at prosessen går slik: i løpet av to tidsskritt? s 3 s 2 s Jo, denne begivenheten har sannsynlighet lik produktet av de to aktuelle overgangssannsynlighetene, nemlig p 2 p 23 = = Vi kan her tenke oss at en partikkel starter i s 3, hopper derfra til en tilstand s l med sannsynlighet p l3 ved t =, at den hopper videre derfra til en tilstand s i med sannsynlighet p il ved t = 2, osv. Sannsynligheten for at partikkelen vandrer langs veien s 3 s 2 s i løpet av to tidsskritt (blant alle mulige veier fra s 3 i løpet av to tidsskritt) er da nettopp p 2 p 23 = =

4 Vi betrakter igjen et system med tilstandsrom S = {s,..., s n } og overgangsmatrise P = [p ij ]. Vi vil bruke følgende notasjon: hvis k {0,, 2,...} lar vi p (k) ij betegne elementet i posisjon (i, j) i matrisen P k. Elementene i matrisen P k kan også tolkes som sannsynligheter: Elementet p (k) ij angir sannsynligheten for at systemet går fra tilstand s j til tilstand s i i løpet av k tidsskritt. Vi begrunner dette for k = 2. Rad-kolonne-regelen for matriseproduktet P 2 = P P gir at p (2) ij = n p il p lj l= Nå er p il p lj sannsynligheten for å gå fra s j til s l og videre derfra til s i i h.h.v. første og andre tidsskritt. Ved å summere over alle mulige mellomtilstander s l får vi sannsynligheten for å gå fra s j til s i i løpet av 2 tidsskritt. Oppgave Betrakt systemet med overgangsmatrise P angitt i (). Bruk Matlab til å beregne P k for k {2, 3, 4, 40, 80}. Angi deretter sannsynlighetene for at systemet går fra tilstand s 4 til tilstand s 2 i løpet av henholdsvis 2, 3, 4, 40 og 80 tidsskritt. I avsnitt 4.9 i boka er mye av fokus rettet mot Markov kjeder der overgangsmatrisen er såkalt regulær. Dette skyldes at det slike stokastiske matriser har en entydig bestemt likevektsvektor, som vektorene i enhver Markov kjede vil konvergere mot (se Teorem 8 i avsnitt 4.9). Regularitetet er et sterkt krav, som mange stokastiske matriser ikke oppfyller, noe vi skal se eksempler på i denne obligen. Oppgave 2 La igjen P være den stokastiske matrisen angitt i (). Bestem en basis for Nul(P I 5 ). Begrunn deretter at P ikke er regulær. (Hint: Har P en entydig likevektsvektor?). Kunne du ha konkludert med at P ikke er regulær på grunnlag av beregningene du utførte i Oppgave? Vi går tilbake til et system med tilstandsrom S = {s,..., s n } og overgangsmatrise P = [p ij ]. Betrakt tilstander s j og s i. Dersom p (k) ij > 0 for en k 0 sier vi at tilstand s j leder til tilstand s i og skriver da s j s i. 4

5 Merk at vi alltid har s j s j (siden p (0) jj = ). At vi har p (k) ij > 0 for en k svarer til at det er en positiv sannsynlighet for å gå fra s j til s i i løpet av k tidsskritt: det finnes da (minst) en vei s j s j s j2 s jk s i der sannsynlighetene p j j, p j2 j,..., p ijk alle er positive. Hvis vi har at s j s i og s i s j, sier vi at s i og s j kommuniserer (med hverandre), og skriver s j s i. Eksempel 2. La n = 3 og betrakt systemet: s 0.7 Her ser vi f.eks. at s 2 s 3, s 2 s og s 3 s, mens s ikke kommuniserer med s 2 og heller ikke med s 3 : det fins jo ingen vei som leder fra s til en annen tilstand (enn s selv). s 2 Hvis s k er en tilstand, kalles mengden som består av alle tilstandene i S som kommuniserer med s k for en (kommunikasjons)klasse. Det kan begrunnes at tilstandsrommet S kan alltid oppdeles i et endelig antall parvis disjunkte klasser. I Eksempel 2 er det f.eks. klart at det fins bare to forskjellige klasser, nemlig K = {s } og K 2 = {s 2, s 3 }. En klasse K kalles lukket dersom s j K og s j s i medfører at s i K. Dette betyr at så snart prosessen (tenk på en partikkel som vandrer, som nederst på side 3) kommer inn i klassen K, så vil den aldri komme ut av denne igjen. I Eksempel 2 er K lukket, mens K 2 ikke er lukket (siden vi f.eks. har at s 2 K 2 og s 2 s, samtidig som s K 2 ). Dersom en tilstand s i er slik at {s i } er en lukket klasse kalles s i for en absorberende tilstand (fordi prosessen kommer aldri ut av denne tilstanden hvis den kommer dit en gang). I Eksempel 2 er s absorberende. Oppgave 3 a) Bestem klassene for systemet beskrevet i Eksempel. Angi hvilke klasser som er lukket, og hvilke tilstander som er absorberende. b) Betrakt et system der overgangsmatrisen P er regulær. Begrunn at det fins da bare én klasse, med andre ord at alle tilstandene kommuniserer med hverandre. 0.3 s 3 5

6 Gitt en starttilstand s j og en lukket klasse K, kan vi stille oss følgende grunnleggende spørsmål: hva er sannsynligheten for at prosessen før eller siden havner i K? Vi setter derfor: x K j = sannsynligheten for at prosessen før eller siden kommer til en tilstand i K, gitt starttilstand s j (2) for j =, 2,..., n. Neste oppgave handler om hvordan vi kan bestemme alle disse absorpsjonssannsynlighetene x K j. Det kan nemlig vises at absorpsjonssannsynlighetene oppfyller følgende lineære likningssystem: x K j = for hver s j K x K j = n i= p ij x K i for hver s j K der j n. (De som ønsker det kan forsøke å begrunne dette ut fra elementær sannsynlighetsregning.) Oppgave 4 (3) Betrakt igjen systemet beskrevet i Eksempel. Beregn x K 2 og x K 3 for hver av de lukkede klassene du fant i Oppgave 3 a). Vi skal til slutt se på en noe mer generell situasjon enn den fra Eksempel. Igjen er tilstandsrommet S = {s, s 2,..., s 5 }, men vi antar nå at systemets overgangsmatrise P er gitt ved P = p p q 2 0 p q q 4 der 0 < p i < og q i = p i for i = 2, 3, 4. Oppgave 5 a) Begrunn at s er en absorberende tilstand. Finnes det andre absorberende tilstander? b) La x j være sannsynligheten for at prosessen før eller siden kommer til tilstand s (med andre ord, at den absorberes i tilstanden s ) når den starter i tilstand s j (j =, 2,..., 5). Videre, la A være 3 3 matrisen gitt ved (4) 6

7 A = q 2 0 p 3 q 3 0 p 4 Forklar ut fra (3) at vektoren y = (x 2, x 3, x 4 ) (som består av de ikke-trivielle absorpsjonssannsynlighetene) er løsning av systemet A y = b for en viss vektor b R 3 som du skal bestemme. (Hint: Bestem først de trivielle absorpsjonssannsynlighetene x og x 5 ). c) Begrunn at A kan omformes ved hjelp av to elementære radoperasjoner til en øvre triangulær matrise. Forklar deretter hvorfor A er invertibel. Hva kan du si om løsningen til systemet A y = b? d) Lag en Matlab funksjon Walk som for en inputvektor (p 2, p 3, p 4 ) gjør følgende sjekker at 0 < p j < og beregner q j = p j for j = 2, 3, 4, setter opp matrisen A og vektoren b, løser systemet A y = b og returnerer vektoren y = (x 2, x 3, x 4 ). Kjør programmet med (p 2, p 3, p 4 ) = (0.2, 0.5, 0.3) som inputvektor og rapporter løsningen (x 2, x 3, x 4 ). Legg ved utskrift av koden. Sluttkommentarer: a) Et system med en overgangsmatrise angitt ved (4) kan f.eks. oppstå ved at to personer E og G konkurrerer mot hverandre. Tilstandene s 2, s 3 og s 4 beskriver da at de spiller et bestemt spill for j = 2, 3, 4 (spillene kan være forskjellige), mens tallet p j angir sannsynligheten for at E vinner spillet s j. Videre tolkes tilstanden s som at E har vunnet hele konkurransen, mens s 5 tolkes som at G har vunnet den. Et naturlig valg av starttilstand vil være at de begynner med spill s 3 ; tallet x 3 vil da angi sannsynligheten for at E vinner konkurransen. b) Denne oppgaven kan utvides til en enda mer generell situasjon der tilstandsrommet består av n tilstander og inputvektoren består av sannsynligheter (p 2, p 3,..., p n ). Det overlates til spesielt interesserte å tenke over hvordan Oppgave 5 kan da reformuleres (og løses!). Lykke til! 7

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014

Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Obligatorisk oppgave 1 MAT1120 HØSTEN 2014 Innleveringsfrist: torsdag 25. september 2014, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, Ekspedisjonskontoret, 7. etasje i N.H. Abels hus.

Detaljer

Obligatorisk oppgavesett 2 MAT1120 H16

Obligatorisk oppgavesett 2 MAT1120 H16 Obligatorisk oppgavesett 2 MAT1120 H16 Innleveringsfrist: torsdag 03.11.2016, innen kl 14.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner

Detaljer

4.9 Anvendelser: Markovkjeder

4.9 Anvendelser: Markovkjeder 4.9 Anvendelser: Markovkjeder Markov kjeder er en spesiell type diskret dynamisk system. Stokastisk modell: grunnleggende i sannsynlighetsregning. Vinner av Abelprisen 2007, S. Varadhan, jobber i dette

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

MAT 1120: Obligatorisk oppgave 2, H-09

MAT 1120: Obligatorisk oppgave 2, H-09 MAT 1120: Obligatorisk oppgave 2, H-09 Innlevering: Senest fredag 30 oktober, 2009, kl1430, på Ekspedisjonskontoret til Matematisk institutt (7 etasje NHA) Du kan skrive for hånd eller med datamaskin,

Detaljer

FORELESNING I STK1130

FORELESNING I STK1130 FORELESNING I STK30 STEFFEN GRØNNEBERG (STEFFENG@MATHUIONO) Sammendrag Det anbefales at man TEX er den kommende obligen, og her er et lite eksempel på relevant TEX-kode TEX er uten tvil det fremtidige

Detaljer

MAT1110. Obligatorisk oppgave 1 av 2

MAT1110. Obligatorisk oppgave 1 av 2 30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner

Detaljer

STK1000 Obligatorisk oppgave 1 av 2

STK1000 Obligatorisk oppgave 1 av 2 6. september 2017 STK1000 Obligatorisk oppgave 1 av 2 Innleveringsfrist Torsdag 21. september 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 4.8 Teorem 16 s. 282: y k+n + a 1 y k+n 1 + + a n 1 y k+1 + a n y k = z k har alltid en løsning

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

MEK1100, vår Obligatorisk oppgave 1 av 2.

MEK1100, vår Obligatorisk oppgave 1 av 2. 9. februar 2017 Innleveringsfrist MEK1100, vår 2017 Obligatorisk oppgave 1 av 2 Torsdag 2. mars 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

STK1000 Obligatorisk oppgave 2 av 2

STK1000 Obligatorisk oppgave 2 av 2 STK1000 Obligatorisk oppgave 2 av 2 Innleveringsfrist Torsdag 16. november 2017, klokken 14:30 i Devilry (https://devilry.ifi.uio.no). Instruksjoner Du velger selv om du skriver besvarelsen for hånd og

Detaljer

MAT-INF 2360: Obligatorisk oppgave 2

MAT-INF 2360: Obligatorisk oppgave 2 6. mars, 13 MAT-INF 36: Obligatorisk oppgave Innleveringsfrist: 4/4-13, kl. 14:3 Informasjon Den skriftlige besvarelsen skal leveres i obligkassa som står i gangen utenfor ekspedisjonen i 7. et. i Niels

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 22. september, 2016 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 6/10-2016, kl. 14:30 i Devilry Obligatoriske oppgaver («obliger») er en sentral del av MAT-INF1100 og er utmerket trening i å

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Markov-kjede I ("dekk-eksemplet")

Markov-kjede I (dekk-eksemplet) > restart: with(linalg): with(linearalgebra): with(plots): Warning, the protected names norm and trace have been redefined and unprotected Warning, the name GramSchmidt has been rebound Warning, the name

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per

SIF5072 Stokastiske prosesser Side 2 av 7 Gitt at en pasient er symptomfri ved tidspunkt t, hva er sannsynligheten for at han er symptomfri i hele per Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Bo Lindqvist 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Tirsdag 22. mai

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter

Detaljer

Første sett med obligatoriske oppgaver i STK1110 høsten 2015

Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Første sett med obligatoriske oppgaver i STK1110 høsten 2015 Dette er det første obligatoriske oppgavesettet i STK1110 høsten 2015. Oppgavesettet består av fire oppgaver. Du må bruke Matematisk institutts

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 3

MAT-1004 Vårsemester 2017 Obligatorisk øving 3 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE OPPGAVE Hvordan løses oppgave? 5 4 Hvordan løses oppgave? 6 5 Formatering av svarene 8 5. Rasjonale tall............................. 8 5. Matriser

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00

EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER Onsdag 10. august 2005 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Håkon Tjelmeland 73 59 35 38 EKSAMEN I EMNE TMA4265/SIF5072 STOKASTISKE PROSESSER

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

TMA4265 Stokastiske prosesser ST2101 Stokastisk simulering og modellering

TMA4265 Stokastiske prosesser ST2101 Stokastisk simulering og modellering Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 9 8 26, 99 4 673 TMA426 Stokastiske prosesser ST2 Stokastisk

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

Andre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7.

Andre obligatoriske oppgave i STK1000 H2016: Innlevering: Besvarelsen leveres på instituttkontoret ved Matematisk institutt i 7. Andre obligatoriske oppgave i STK1000 H2016: Oppgavesettet har fire oppgaver. Oppgave 1 består av oppgaver fra boka. Disse ligner på ukesoppgavene for uke 43 og 44, og gir nyttig øvelse for eksamen og

Detaljer

1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum

1 Oppgave 1 Skriveoppgave Manuell poengsum. 2 Oppgave 2 Code editor Manuell poengsum. 3 Oppgave 3 Skriveoppgave Manuell poengsum MAT102 - Demoprøve Oppgaver Oppgavetype Vurdering Forside Dokument Ikke vurdert 1 Oppgave 1 Skriveoppgave Manuell poengsum 2 Oppgave 2 Code editor Manuell poengsum 3 Oppgave 3 Skriveoppgave Manuell poengsum

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

OPPGAVESETT MAT111-H16 UKE 43. Oppgaver til seminaret 28/10

OPPGAVESETT MAT111-H16 UKE 43. Oppgaver til seminaret 28/10 OPPGAVESETT MAT111-H16 UKE 43 Avsn. 5.1: 41 Avsn. 5.3: 3, 7 Avsn. 5.4: 13, 31, 37 På settet: S.1 Oppgaver til seminaret 28/10 Oppgaver til gruppene uke 44 Merknad: Oppgavene under skal kunne løses uten

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Sannsynlighetsbegrepet

Sannsynlighetsbegrepet Sannsynlighetsbegrepet Notat til STK1100 Ørnulf Borgan Matematisk institutt Universitetet i Oslo Januar 2004 Formål Dette notatet er et supplement til kapittel 1 i Mathematical Statistics and Data Analysis

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2006-2007 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 3. september, 2004 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 17/9-2004, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Obligatorisk innlevering 1 i emnet MAT111, høsten 2016 Innleveringsfrist: Mandag 26. september 2016, kl. 14, i Infosenterskranken i inngangsetasjen

Detaljer

Obligatorisk oppgave MAT2200 VÅREN 2011

Obligatorisk oppgave MAT2200 VÅREN 2011 Obligatorisk oppgave MAT2200 VÅREN 2011 Alle punkter teller likt. Det kreves at 50% er riktig (som betyr 10 av 19 punkter) for at oppgaven skal godkjennes. Den skal leveres i egen innleveringsboks i 7.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i emnet STK4500 v2009: Finans og forsikring Prosjektoppgave, utlevering onsdag 27. mai kl. 9.00, innleveringsfrist fredag 29. mai

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

MAT-INF 1100: Obligatorisk oppgave 1

MAT-INF 1100: Obligatorisk oppgave 1 8. september, 2005 MAT-INF 1100: Obligatorisk oppgave 1 Innleveringsfrist: 23/9-2005, kl. 14:30 Informasjon Den skriftlige besvarelsen skal leveres på ekspedisjonskontoret i 7. etg. i Niels Henrik Abels

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.

Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MoD200 Eksamensdag: 15. desember 2003 Tid for eksamen: 14.30 17.30 Oppgavesettet er på 5 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Eksamensoppgave i TMA4140 Diskret matematikk

Eksamensoppgave i TMA4140 Diskret matematikk Institutt for matematiske fag Eksamensoppgave i TMA44 Diskret matematikk Faglig kontakt under eksamen: Christian Skau Tlf: 7359755 Eksamensdato: 8 desember 25 Eksamenstid (fra til): 9:-3: Hjelpemiddelkode/Tillatte

Detaljer

OPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9

OPPGAVESETT MAT111-H17 UKE 39. Oppgaver til seminaret 29/9 OPPGAVESETT MAT111-H17 UKE 39 Avsnitt 3.1: 9, 23, 34 Avsnitt 3.3: 48, 61 Avsnitt 3.4: 1, 2, 9 På settet: S.1 Oppgaver til seminaret 29/9 Oppgaver til gruppene uke 40 Løs disse først så disse Mer dybde

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Bokmål Faglig kontakt under eksamen: Øyvind Bakke Telefon: 73 59 81 26, 990 41 673 TMA4265 Stokastiske prosesser

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON3610/4610 Samfunnsøkonomisk lønnsomhet og økonomisk politikk Dato for utlevering: 16.09.2016 Dato for innlevering: 07.10.2016 innen kl. 15.00

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A =

Oblig 2 - MAT1120. Fredrik Meyer 23. september 2009 A = Oblig - MAT Fredrik Meyer. september 9 Oppgave Linkmatrise: A = En basis til nullrommet til matrisen A I kan finnes ved å bruke MATLAB. Jeg kjører kommandoen rref(a-i) og får følge: >> rref(a-i). -.875.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF-MAT 3370 Lineær optimering Eksamensdag: 1. juni 2010 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer