Moderne optimering mer enn å derivere!!

Størrelse: px
Begynne med side:

Download "Moderne optimering mer enn å derivere!!"

Transkript

1 Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen råd til Marit Breivik (kombinatorisk optimering) et lite bevis og et lynkurs Moderne optimering: #1 of 19

2 Moderne optimering Oppvarming: funksjon av en variabel, f(x) = x 2 6x+7 derivert lik null, f (x) = 2x 6 = 0såx=3 min eller maks? Sjekk annenderivert! (Konveks) endepunkter (ingen, en eller to) Men: i de fleste interessante optimeringsproblemer har vi mange variable (ofte tusenvis) variablene må oppfylle visse begrensninger visse variable må evt. være heltallige osv. DaharvietoptimeringsPROBLEM!! Moderne optimering: #2 of 19

3 Aksjer og LP Finne optimal aksjeportefølje: portefølje: investering i ulike aksjer for en viss periode scenario: angir utvikling av hver aksjekurs vektlegging av scenarier (sannsynligheter) redd for tap sammenlikner porteføljen med en basisinvestering ( benchmark ) hvor mye skal investeres i hver aksje? gevinsten ulik for hvert scenario: vi tar veiet sum (forventet gevinst) maksimere forventet gevinst Moderne optimering: #3 of 19

4 Aksjer og LP Aksjemodell i AMPL: set SCENARIO; set AKSJE; param verdi {SCENARIO,AKSJE} 0; param bench {SCENARIO}; param scenario vekt {SCENARIO}; var Gevinst {SCENARIO} ; var Tap {SCENARIO} ; var Invest {AKSJE} 0 150; maximize forventet gevinst: sum {i in SCENARIO} scenario vekt[i] * Gevinst[i] - 2* sum{i in SCENARIO} scenario vekt[i] * Tap[i]; subject to scen {i in SCENARIO}: sum {j in AKSJE}verdi[i,j] * Invest[j]- bench[i] = Gevinst[i]-Tap[i]; subject to budsjett: sum {j in AKSJE}Invest[j] 500; Dette er et LP problem. LP = lineær programmering (optimering): optimere en lineær funksjon under lineære begrensninger (likninger eller ulikheter). Moderne optimering: #4 of 19

5 Aksjer og LP Data: set SCENARIO := SC1 SC2 SC3 SC4; set AKSJE:=A1A2A3A4A5A6A7A8A9A10; param verdi: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 := SC SC SC SC ; param: bench scenario vekt := SC SC SC SC ; Moderne optimering: #5 of 19

6 Aksjer og LP Løser problemet: ampl: model aksje.mod option solver cplex; ampl: solve; data aksje.dat CPLEX 4.0: No LP presolve or aggregator reductions. Iteration: 1 Infeasibility = Iteration: 5 Objective = CPLEX 4.0: optimal solution; objective iterations (4 in phase I) Solution time = 0.01 sec. ampl: display Invest, Gevinst, Tap; Invest: A1 A2 A3 A4 A5 A6 A7 A8 A9 A Gevinst Tap: SC SC SC SC Moderne optimering: #6 of 19

7 Noen råd til Marit Breivik Har vi det beste håndball-landslaget? keeper: alternerer Leganger og Tjugum utespillere velges fra de 13 spillerne Hilmo, Larsen, Duvholt, Sørlie, Davidsen, Rokne, Sættem, Eriksen, Grini, Hundvin, Goksør, Haltvik og Hausmann 6 uteplasser: H VING, V VING, H BEKK, V BEKK, M BEKK og SENTER hver spiller har en viss kvalitet på hver plass hvilket lag er best, og hvem spiller hvor? antall kombinasjoner: = Dette er et kombinatorisk optimeringsproblem! Moderne optimering: #7 of 19

8 Noen råd til Marit Breivik Modell: set SPILLER; set PLASS; param kvalitet {SPILLER,PLASS}; var Bruk {SPILLER,PLASS} 0; maximize total kvalitet: sum {i in SPILLER, j in PLASS} kvalitet[i,j] * Bruk[i,j]; subject to spillerbruk {i in SPILLER}: sum {j in PLASS}Bruk[i,j] 1; subject to plassbruk {j in PLASS}: sum {i in SPILLER} Bruk[i,j] = 1; Data: set SPILLER := Hilmo Larsen Duvholt Sørlie Davidsen Rokne Sættem Eriksen Grini Hundvin Goksør Haltvik Hausmann; set PLASS := H VING V VING H BEKK V BEKK M BEKK SENTER; Moderne optimering: #8 of 19

9 Noen råd til Marit Breivik param kvalitet: H V V V H B V B M B SENT := Hilmo Larsen Duvholt Sørlie Davidsen Rokne Sættem Eriksen Grini Hundvin Goksør Haltvik Hausmann Moderne optimering: #9 of 19

10 Noen råd til Marit Breivik Verdens beste håndball-landslag (!!???) ampl: display Bruk: H B H V M B SENT V B V V:= Davidsen Duvholt Eriksen Goksør Grini Haltvik Hausmann Hilmo Hundvin Larsen Rokne Sættem Sørlie Score: 28.5 (regnetid 1/100 sek.) Laget: Sørlie Hundvin Grini Haltvik Sættem Duvholt Moderne optimering: #10 of 19

11 Noen råd til Marit Breivik Men hva med litt sunn fornuft!? Ja, man kan finne en optimal løsning her direkte ved åsepå hvilken spiller som passer best på hver plass + litt drøfting. Betyr dette at alle slike problemer er enkle å løse direkte? Nei, det var enkle data som gjorde det mulig her. Å finne bestemann på en gitt plass kan gi dårlig løsning, avhengig av rekkefølgen man velger for plassene: Plass 1 Plass 2 Spiller Spiller < 18 Moderne optimering: #11 of 19

12 Tilordningsproblemet Tilordningsproblemet Gitt en matrise (tabell) med n n tall c 1,1 c 1,2... c 1,n c 2,1 c 2,2... c 2,n... c n,1 c n,2... c n,n Velg ut n tall med nøyaktig ett tall fra hver rad og hver kolonne slik at summen av de valgte tallene er størst mulig. kan skrives som et spesielt LP problem finnes alltid heltallig optimal løsning av dette! fins effektive algoritmer brukes bl.a. i ruteplanlegging: tilordne transportbiler til kunder så noen kombinatoriske optimeringsproblemer kan løses raskt! men mange komb-opt-problemer er vanskelige i betydningen... eksempel: Traveling Salesman Problem (korteste rundtur gjennom gitte byer) Moderne optimering: #12 of 19

13 Dagens bevis Hvorfor fins alltid en optimal løsning i tilordningsproblemet som er heltallig? maksimer i,j c i,j x i,j slik at n j=1 x i,j = 1 for i = 1,...,n n i=1x i,j = 1 for j = 1,...,n x i,j 0 for alle i,j. Moderne optimering: #13 of 19

14 Simpleksmetoden Simpleksmetoden: metode for å løse alle LP problemer Metoden ble utviklet av George B. Dantzig rundt 1947 i forbindelse med transportproblemer i U.S. Air Force. Arbeidet ble publisert i Andre tidlige bidragsytere var T.J.Koopmans og L.V.Kantorovich, og disse to fikk Nobel prisen i økonomi for dette arbeidet i Forresten: H. Markowitz fikk Nobel prisen i økonomi i 1990 for sitt arbeid med porteføljeoptimering (1959). maksimer 5x 1 + 4x 2 + 3x 3 slik at (i) 2x 1 + 3x 2 + x 3 5 (ii) 4x 1 + x 2 + 2x 3 11 (iii) 3x 1 + 4x 2 + 2x 3 8 x 1,x 2,x 3 0. Konverterer til likninger ved å innføre slakkvariable for hver -ulikhet: f.eks. erstattes (i) av w 1 = 5 2x 1 3x 2 x 3 og w 1 0. Moderne optimering: #14 of 19

15 Simpleksmetoden Får da: maksimer η = 5x 1 + 4x 2 + 3x 3 slik at (i) w 1 = 5 2x 1 3x 2 x 3 (ii) w 2 = 11 4x 1 x 2 2x 3 (iii) w 3 = 8 3x 1 4x 2 2x 3 x 1,x 2,x 3,w 1,w 2,w 3 0. Venstre side: avhengige variable, basisvariable. Høyre side: uavhengige variable, ikkebasisvariable. Startløsning: Lar x 1 = x 2 = x 3 = 0ogdermedfår vi w 1 = 5,w 2 =11,w 3 =8. Vi lar alltid ikkebasisvariable være 0. Basisvariablene blir bestemt entydig, nemlig lik konstantene på venstre side. Moderne optimering: #15 of 19

16 Simpleksmetoden Har vi optimal løsning? Nei!! Vi kan f.eks. øke x 1 mens vi fortsatt lar x 2 = x 3 = 0. Da vil η øke vi får nye verdier på basisvariablene som blir bestemt fra x 1 jo mer vi øker x 1 jo mer øker η! men pass på: w j -ene nærmer seg null! Maksimal økning av x 1 : vil unngå at basisvariable blir negative. Fra w 1 = 5 2x 1, w 2 = 11 4x 1 og w 3 = 8 3x 1 får vi at x 1 5/2, x 1 11/4, x 1 8/3 så vi kan øke x 1 til den minste verdien, nemlig 5/2. Dette gir den nye løsningen x 1 = 5/2, x 2 = x 3 = 0 og dermed w 1 = 0,w 2 =1,w 3 =1/2. Og nå er η=25/2. Altså: en mye bedre løsning!! Hvordan komme videre? Listeform er fin for åteste optimalitet, så vi vil komme over i neste liste! Moderne optimering: #16 of 19

17 Simpleksmetoden Vi ønsker at x 1 og w 1 skal bytte side. Dette kan gjøres ved å bruke w 1 -likningen til å eliminere x 1 fra alle andre likninger. Dette endrer ikke løsningsmengden til likningssystemet. Resultat: η = w 1 3.5x x 3 x 1 = w 1 1.5x 2 0.5x 3 w 2 = 1 + 2w 1 + 5x 2 w 3 = w x 2 0.5x 3 Vi har nå gjennomført en pivotering. Moderne optimering: #17 of 19

18 Simpleksmetoden Gjentar prosessen og etter nok en pivotering får vi: η = 13 w 1 3x 2 w 3 x 1 = 2 2w 1 2x 2 + w 3 w 2 = 1 + 2w 1 + 5x 2 x 3 = 1 + 3w 1 + x 2 2w 3 Nå kan vi stoppe! Hvorfor? Konklusjon: vi har funnet en optimal løsning! Den er w 1 = x 2 = w 3 = 0ogx 1 =2,w 2 =1,x 3 =1. Optimal verdi er η = 13. Moderne optimering: #18 of 19

19 Avsluttende kommentarer mange optimeringsproblemer rundt omkring raske algoritmer spennende matematiske problemer motivert av anvendelser optimering svært aktivt forskningsfelt VENNLIGST SEND GODE STUDENTER HIT!! nytt studium i anvendt matematikk anbefalt LP bok: R.J. Vanderbei: Linear programming: foundations and extensions, Kluwer, 1996, se evt. rvdb/lpbook/ anbefalt kombinatorikk bok: R. Brualdi: Introductory combinatorics, Prentice-Hall, Geir Dahl, telefon , Webside: geird/ Inneholder div. informasjon om optimering, forskning, studier, Web optimering. Også dette foredraget. Moderne optimering: #19 of 19

Verdens beste håndball-lag?

Verdens beste håndball-lag? Klassebesøk i matematikk Verdens beste håndball-lag? Litt om håndball, kombinatorikk og optimering Geir Dahl, Matematisk inst. og Inst. for informatikk, Universitetet i Oslo et problem fra håndball tilordningsproblemet:

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

Spesialisering i økonomistyring og investeringsanalyse DST 9530

Spesialisering i økonomistyring og investeringsanalyse DST 9530 Spesialisering i økonomistyring og investeringsanalyse DST 950 Disposisjon Bruk av LP i økonomiske problemer Et LP-problem Begreper og noen grunnleggende sammenhenger Lineær programmering og bedriftsøkonomiske

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja)

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja) Eirik Benum Reksten Hans Olav Norheim (ja, det kommer nok litt matte nå ja) Hva er lineærprogrammering? Vi har et problem hvor vi... 1. ønsker å minimere eller å maksimere et mål 2. kan spesifisere målet

Detaljer

Lineær optimering. Plan for kurset

Lineær optimering. Plan for kurset Lineær optimering 27. mars 2007 Endre Bjørndal Plan for kurset 1000-1100 1100-1115 1115-1200 1200-1245 1245-1400 1400-1415 1415-1500 Introduksjon Produktmiksproblemet (eksempel 1) Grafisk løsning og følsomhetsanalyse

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Taylor- og Maclaurin-rekker

Taylor- og Maclaurin-rekker Taylor- og Maclaurin-rekker Forelest: Okt, 004 Potensrekker er funksjoner Vi så at noen funksjoner vi kjenner på andre måter kan skrives som funksjoner, for eksempel: = + t + t + t 3 + + t n + t e x =

Detaljer

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.

Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Grafteori og optimering en kort innføring. Geir Dahl

Grafteori og optimering en kort innføring. Geir Dahl Grafteori og optimering en kort innføring Geir Dahl 24. oktober 2001 Innhold 1 Introduksjon til grafteori 1 1.1 Hva er en graf? 1 1.2 Noen grunnleggende begreper 3 1.3 Trær 9 1.4 Oppgaver 12 2 Königsberg,

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal

TMA4135 Matematikk 4D Kompendium i numerikk. Eirik Refsdal TMA4135 Matematikk 4D Kompendium i numerikk Eirik Refsdal 2. august 2005 En mangel ved dagens autorative kompendium i matematikk 4, er at numerikkbiten i matematikk 4D er fullstendig utelatt. Dette er

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Avanserte flytalgoritmer

Avanserte flytalgoritmer Avanserte flytalgoritmer Magnus Lie Hetland, mars 2008 Stoff hentet fra: Network Flows av Ahua m.fl. (Prentice-Hall, 1993) Graphs, Networks and Algorithms, 2. utg., av Jungnickel (Springer, 2005) Repetisjon

Detaljer

Heuristiske søkemetoder I

Heuristiske søkemetoder I Heuristiske søkemetoder I Lars Aurdal Intervensjonssenteret Lars.Aurdal@labmed.uio.no 14. september 2003 Plan Hva slags søkemetoder snakker vi om? Kombinatoriske strukturer. Sett. Lister. Grafer. Søkealgoritmer

Detaljer

LØSNING: Eksamen 18. des. 2013

LØSNING: Eksamen 18. des. 2013 LØSNING: Eksamen 8. des. 03 MAT00 Matematikk, høst 03 Oppgave : ( algebra / faktorisering / brøk ) a) Setter inn ligningene i generalbudsjettligningen: R = C +I +G+X () = C 0 +c(r T) + I + G + X 0 br ()

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00 SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner: På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

Beregninger i ingeniørutdanningen

Beregninger i ingeniørutdanningen Beregninger i ingeniørutdanningen John Haugan, Høyskolen i Oslo og Akershus Knut Mørken, Universitetet i Oslo Dette notatet oppsummerer Knuts innlegg om hva vi mener med beregninger og Johns innlegg om

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave (8 poeng) a) Løs likningene ) 7 + + = 6 3 6 ) = 0 b) Løs likningssystemet y= y+ = 3 c) ) Løs likningen 3 = 4 ) Finn en formel for når y = a b d) Vi har gitt funksjonen: (

Detaljer

Funksjoner, likningssett og regning i CAS

Funksjoner, likningssett og regning i CAS Funksjoner, likningssett og regning i CAS MKH, TUS 2014, GeoGebra 4.4 Innholdsfortegnelse Funksjoner og likningssett i GeoGebra... 2 Introduksjon til lineære funksjoner... 2 Oppgave om mobilabonnement...

Detaljer

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Faktor -en eksamensavis utgitt av Pareto Eksamen høst 2004 SØK 1002: Innføring i mikroøkonomisk analyse Besvarelse nr 1: OBS!! Dette er en eksamensbevarelse, og ikke en fasit. Besvarelsene er uten endringer

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 6. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 6 Løsningsforslag Oppgave 1 Funksjoner og tangenter 2.1: 15 a) Vi plotter grafen med et rutenett: > x=-3:.1:3; > y=x.^2; > plot(x,y) > grid on > axis([-2

Detaljer

Når Merge sort og Insertion sort samarbeider

Når Merge sort og Insertion sort samarbeider Når Merge sort og Insertion sort samarbeider Lars Sydnes 8. november 2014 1 Innledning Her skal vi undersøke to algoritmer som brukes til å sortere lister, Merge sort og Insertion sort. Det at Merge sort

Detaljer

Stokastisk korttidsmodell = SHARM

Stokastisk korttidsmodell = SHARM Stokastisk korttidsmodell = SHARM Motivasjon Modell Tilrettelegging for bruk Eksempel Michael Belsnes 1 Motivasjon (1) ENERGI21 programmet Balansekraft som 1 av 6 satsninger RENERGI som har sponset utvikling

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

1T og 1P på Studiespesialiserende

1T og 1P på Studiespesialiserende 1T og 1P på Studiespesialiserende Snart skal du velge hvilket matematikkurs du ønsker å følge på VG1. Valget ditt på VG1, kommer også å påvirke dine valgmulighetene på VG2 og VG3. Vi ønsker derfor å informere

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

Norsk informatikkolympiade 2012 2013 1. runde

Norsk informatikkolympiade 2012 2013 1. runde Norsk informatikkolympiade 2012 2013 1. runde Uke 45, 2012 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler. Instruksjoner:

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET040 Statistikk for økonomer Eksamensdag: 4 november 2008 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra

Tempoplan: Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 4: Algebra Tempoplan: Kapittel 5: /1 1/. Kapittel 6: 1/ 1/. Kapittel 7: 1/ 1/4. Resten av tida repetisjon og prøver. 4: Algebra Algebra omfatter tall- og bokstavregninga i matematikken. Et viktig grunnlag for dette

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet

Detaljer

2 Om statiske variable/konstanter og statiske metoder.

2 Om statiske variable/konstanter og statiske metoder. Litt om datastrukturer i Java Av Stein Gjessing, Institutt for informatikk, Universitetet i Oslo 1 Innledning Dette notatet beskriver noe av det som foregår i primærlageret når et Javaprogram utføres.

Detaljer

En studentassistents perspektiv på ε δ

En studentassistents perspektiv på ε δ En studentassistents perspektiv på ε δ Øistein Søvik 16. november 2015 5 y ε 4 3 ε 2 1 1 δ 1 δ 2 x Figur 1: Illustrerer grenseverdien lim x 1 2x + 1. Innledning I løpet av disse korte sidene skal vi prøve

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der

I denne øvingen vil vi sammenlikne det teoretiske resultat med et grafisk bilde av konturlinjene til flaten. Vi tegner konturene der Øving uke 44 Kritiske punkter Se også Mathematicakompendiet, kap 3.8 En funksjon av to variable kan ha lokale maksimal- og minimalpunkter innenfor definisjonsmengden, akkurat som funksjoner av en variabel.

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

2 Likninger. 2.1 Førstegradslikninger med én ukjent

2 Likninger. 2.1 Førstegradslikninger med én ukjent MATEMATIKK: 2 Likninger 2 Likninger 2.1 Førstegradslikninger med én ukjent Ulike problemer kan løses på ulike måter. I den gamle folkeskolen brukte man delingsregning ved løsning av enkelte oppgaver. Eksempel

Detaljer

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 30.11.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar.

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1015 Matematikk 2P. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1015 Matematikk 2P Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Grunnleggende matematikk for ingeniører Side 1 av 5

<kode> Grunnleggende matematikk for ingeniører Side 1 av 5 Grunnleggende matematikk for ingeniører Side 1 av 5 Emnebeskrivelse 1 Emnenavn og kode Grunnleggende matematikk for ingeniører 2 Studiepoeng 10 studiepoeng 3 Innledning Dette er det ene av

Detaljer

Marginalkostnaden er den deriverte av totalkostnaden: MC = dtc/dq = 700.

Marginalkostnaden er den deriverte av totalkostnaden: MC = dtc/dq = 700. Oppgaver fra økonomipensumet: Oppgave 11: En bedrift har variable kostnader gitt av VC = 700Q der Q er mengden som produseres. De faste kostnadene er på 2 500 000. Bedriften produserer 10 000 enheter pr

Detaljer

Optimeringsmetoder innen operasjonsanalyse en oversiktsstudie

Optimeringsmetoder innen operasjonsanalyse en oversiktsstudie FFI-rapport 2008/00123 Optimeringsmetoder innen operasjonsanalyse en oversiktsstudie Maria F. Fauske Forsvarets forskningsinstitutt (FFI) 15. januar 2008 FFI-rapport 2008/00123 1068 ISBN 978-82-464-1314-3

Detaljer

Discrete Optimization Methods in Maritime and Road-based Transportation

Discrete Optimization Methods in Maritime and Road-based Transportation Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005

SOS1120 Kvantitativ metode. Regresjonsanalyse. Lineær sammenheng II. Lineær sammenheng I. Forelesningsnotater 11. forelesning høsten 2005 SOS1120 Kvantitativ metode Regresjonsanalyse Forelesningsnotater 11. forelesning høsten 2005 Per Arne Tufte Lineær sammenheng I Lineær sammenheng II Ukelønn i kroner 4000 3500 3000 2500 2000 1500 1000

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden

Detaljer

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål

Eksempeloppgave 2008. REA3024 Matematikk R2. Bokmål Eksempeloppgave 008 REA04 Matematikk R Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer:

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Vann i rør Ford Fulkerson method

Vann i rør Ford Fulkerson method Vann i rør Ford Fulkerson method Problemet Forestill deg at du har et nettverk av rør som kan transportere vann, og hvor rørene møtes i sammensveisede knytepunkter. Vannet pumpes inn i nettverket ved hjelp

Detaljer

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015

Divide-and-Conquer. Lars Vidar Magnusson 13.1.2015 Divide-and-Conquer Lars Vidar Magnusson 13.1.2015 Kapittel 4 Maximum sub-array problemet Matrix multiplikasjon Analyse av divide-and-conquer algoritmer ved hjelp av substitusjonsmetoden Divide-and-Conquer

Detaljer

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014

Eksamen MAT1005 Matematikk 2P-Y Høsten 2014 Eksamen MAT1005 Matematikk P-Y Høsten 014 Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 0,0003 500000000 0,00,0 10,0 4 8 3,0 10 5,0 10 3,0 5,0 4 8 ( 3) 7 3 10 7,5 10 Oppgave (1 poeng) Prisen

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Kompleksitetsteori reduksjoner

Kompleksitetsteori reduksjoner Kompleksitetsteori reduksjoner En slags liten oversikt, eller huskeliste, for kompleksitetsteorien i INF 4130. Ikke ment å være verken fullstendig eller detaljert, men kanskje egnet til å gi noen knagger

Detaljer

Krasjkurs MAT101 og MAT111

Krasjkurs MAT101 og MAT111 Krasjkurs MAT101 og MAT111 Forord Disse notatene ble skrevet under et åtte timer (to firetimers forelesninger) i løpet av 10. og 11. desember 2012. Det er mulig at noen av utregningene ikke stemmer, enten

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

I Spillet Mathable er et spill basert på matematiske likninger som må være dannet på spillbrettet. For å gjøre dette, må spillerne gjøre bruk av et spillebrett med normale ruter(hvite), ruter med en begrensning

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett.

Start et nytt Scratch-prosjekt. Slett kattefiguren, for eksempel ved å høyreklikke på den og velge slett. Norgestur Introduksjon Bli med på en rundreise i Norge! Vi skal lage et spill hvor du styrer et helikopter rundt omkring et kart over Norge, mens du prøver å raskest mulig finne steder og byer du blir

Detaljer

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål

Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Onsdag 10. august 2011 Tid: kl. 0900-1300 Bokmål Side 1 av 10 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Lars Magnus Hvattum Oppgave settet laget av: Navn:

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Eksponentielt vekst: En størrelse vokser eller avtar med en fast prosent per tidsenhet. Eulers tall e: En matematisk konstant, e=2,7 1828.. ln a gir det tallet du må opphøye Eulers tall e i for å få

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Eksamen i TTK4135 Optimalisering og regulering

Eksamen i TTK4135 Optimalisering og regulering Norwegian university of science and technology Department of engineering cybernetics Kontaktperson under eksamen: Navn: Professor Bjarne Foss Tlf: 92422004 Norsk/nynorsk utgave/utgåve Eksamen i TTK4135

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteori Høsten 014 Richard Williamson 1. august 015 Innhold Forord 7 1 Induksjon og rekursjon 9 1.1 Naturlige tall og heltall............................ 9 1. Bevis.......................................

Detaljer