Moderne optimering mer enn å derivere!!

Størrelse: px
Begynne med side:

Download "Moderne optimering mer enn å derivere!!"

Transkript

1 Faglig pedagogisk dag 2000, 4. januar Moderne optimering mer enn å derivere!! Geir Dahl, Prof. matematikk, Matematisk inst. og Inst. for informatikk aksjer - eksempel på LP (lineær programmering) noen råd til Marit Breivik (kombinatorisk optimering) et lite bevis og et lynkurs Moderne optimering: #1 of 19

2 Moderne optimering Oppvarming: funksjon av en variabel, f(x) = x 2 6x+7 derivert lik null, f (x) = 2x 6 = 0såx=3 min eller maks? Sjekk annenderivert! (Konveks) endepunkter (ingen, en eller to) Men: i de fleste interessante optimeringsproblemer har vi mange variable (ofte tusenvis) variablene må oppfylle visse begrensninger visse variable må evt. være heltallige osv. DaharvietoptimeringsPROBLEM!! Moderne optimering: #2 of 19

3 Aksjer og LP Finne optimal aksjeportefølje: portefølje: investering i ulike aksjer for en viss periode scenario: angir utvikling av hver aksjekurs vektlegging av scenarier (sannsynligheter) redd for tap sammenlikner porteføljen med en basisinvestering ( benchmark ) hvor mye skal investeres i hver aksje? gevinsten ulik for hvert scenario: vi tar veiet sum (forventet gevinst) maksimere forventet gevinst Moderne optimering: #3 of 19

4 Aksjer og LP Aksjemodell i AMPL: set SCENARIO; set AKSJE; param verdi {SCENARIO,AKSJE} 0; param bench {SCENARIO}; param scenario vekt {SCENARIO}; var Gevinst {SCENARIO} ; var Tap {SCENARIO} ; var Invest {AKSJE} 0 150; maximize forventet gevinst: sum {i in SCENARIO} scenario vekt[i] * Gevinst[i] - 2* sum{i in SCENARIO} scenario vekt[i] * Tap[i]; subject to scen {i in SCENARIO}: sum {j in AKSJE}verdi[i,j] * Invest[j]- bench[i] = Gevinst[i]-Tap[i]; subject to budsjett: sum {j in AKSJE}Invest[j] 500; Dette er et LP problem. LP = lineær programmering (optimering): optimere en lineær funksjon under lineære begrensninger (likninger eller ulikheter). Moderne optimering: #4 of 19

5 Aksjer og LP Data: set SCENARIO := SC1 SC2 SC3 SC4; set AKSJE:=A1A2A3A4A5A6A7A8A9A10; param verdi: A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 := SC SC SC SC ; param: bench scenario vekt := SC SC SC SC ; Moderne optimering: #5 of 19

6 Aksjer og LP Løser problemet: ampl: model aksje.mod option solver cplex; ampl: solve; data aksje.dat CPLEX 4.0: No LP presolve or aggregator reductions. Iteration: 1 Infeasibility = Iteration: 5 Objective = CPLEX 4.0: optimal solution; objective iterations (4 in phase I) Solution time = 0.01 sec. ampl: display Invest, Gevinst, Tap; Invest: A1 A2 A3 A4 A5 A6 A7 A8 A9 A Gevinst Tap: SC SC SC SC Moderne optimering: #6 of 19

7 Noen råd til Marit Breivik Har vi det beste håndball-landslaget? keeper: alternerer Leganger og Tjugum utespillere velges fra de 13 spillerne Hilmo, Larsen, Duvholt, Sørlie, Davidsen, Rokne, Sættem, Eriksen, Grini, Hundvin, Goksør, Haltvik og Hausmann 6 uteplasser: H VING, V VING, H BEKK, V BEKK, M BEKK og SENTER hver spiller har en viss kvalitet på hver plass hvilket lag er best, og hvem spiller hvor? antall kombinasjoner: = Dette er et kombinatorisk optimeringsproblem! Moderne optimering: #7 of 19

8 Noen råd til Marit Breivik Modell: set SPILLER; set PLASS; param kvalitet {SPILLER,PLASS}; var Bruk {SPILLER,PLASS} 0; maximize total kvalitet: sum {i in SPILLER, j in PLASS} kvalitet[i,j] * Bruk[i,j]; subject to spillerbruk {i in SPILLER}: sum {j in PLASS}Bruk[i,j] 1; subject to plassbruk {j in PLASS}: sum {i in SPILLER} Bruk[i,j] = 1; Data: set SPILLER := Hilmo Larsen Duvholt Sørlie Davidsen Rokne Sættem Eriksen Grini Hundvin Goksør Haltvik Hausmann; set PLASS := H VING V VING H BEKK V BEKK M BEKK SENTER; Moderne optimering: #8 of 19

9 Noen råd til Marit Breivik param kvalitet: H V V V H B V B M B SENT := Hilmo Larsen Duvholt Sørlie Davidsen Rokne Sættem Eriksen Grini Hundvin Goksør Haltvik Hausmann Moderne optimering: #9 of 19

10 Noen råd til Marit Breivik Verdens beste håndball-landslag (!!???) ampl: display Bruk: H B H V M B SENT V B V V:= Davidsen Duvholt Eriksen Goksør Grini Haltvik Hausmann Hilmo Hundvin Larsen Rokne Sættem Sørlie Score: 28.5 (regnetid 1/100 sek.) Laget: Sørlie Hundvin Grini Haltvik Sættem Duvholt Moderne optimering: #10 of 19

11 Noen råd til Marit Breivik Men hva med litt sunn fornuft!? Ja, man kan finne en optimal løsning her direkte ved åsepå hvilken spiller som passer best på hver plass + litt drøfting. Betyr dette at alle slike problemer er enkle å løse direkte? Nei, det var enkle data som gjorde det mulig her. Å finne bestemann på en gitt plass kan gi dårlig løsning, avhengig av rekkefølgen man velger for plassene: Plass 1 Plass 2 Spiller Spiller < 18 Moderne optimering: #11 of 19

12 Tilordningsproblemet Tilordningsproblemet Gitt en matrise (tabell) med n n tall c 1,1 c 1,2... c 1,n c 2,1 c 2,2... c 2,n... c n,1 c n,2... c n,n Velg ut n tall med nøyaktig ett tall fra hver rad og hver kolonne slik at summen av de valgte tallene er størst mulig. kan skrives som et spesielt LP problem finnes alltid heltallig optimal løsning av dette! fins effektive algoritmer brukes bl.a. i ruteplanlegging: tilordne transportbiler til kunder så noen kombinatoriske optimeringsproblemer kan løses raskt! men mange komb-opt-problemer er vanskelige i betydningen... eksempel: Traveling Salesman Problem (korteste rundtur gjennom gitte byer) Moderne optimering: #12 of 19

13 Dagens bevis Hvorfor fins alltid en optimal løsning i tilordningsproblemet som er heltallig? maksimer i,j c i,j x i,j slik at n j=1 x i,j = 1 for i = 1,...,n n i=1x i,j = 1 for j = 1,...,n x i,j 0 for alle i,j. Moderne optimering: #13 of 19

14 Simpleksmetoden Simpleksmetoden: metode for å løse alle LP problemer Metoden ble utviklet av George B. Dantzig rundt 1947 i forbindelse med transportproblemer i U.S. Air Force. Arbeidet ble publisert i Andre tidlige bidragsytere var T.J.Koopmans og L.V.Kantorovich, og disse to fikk Nobel prisen i økonomi for dette arbeidet i Forresten: H. Markowitz fikk Nobel prisen i økonomi i 1990 for sitt arbeid med porteføljeoptimering (1959). maksimer 5x 1 + 4x 2 + 3x 3 slik at (i) 2x 1 + 3x 2 + x 3 5 (ii) 4x 1 + x 2 + 2x 3 11 (iii) 3x 1 + 4x 2 + 2x 3 8 x 1,x 2,x 3 0. Konverterer til likninger ved å innføre slakkvariable for hver -ulikhet: f.eks. erstattes (i) av w 1 = 5 2x 1 3x 2 x 3 og w 1 0. Moderne optimering: #14 of 19

15 Simpleksmetoden Får da: maksimer η = 5x 1 + 4x 2 + 3x 3 slik at (i) w 1 = 5 2x 1 3x 2 x 3 (ii) w 2 = 11 4x 1 x 2 2x 3 (iii) w 3 = 8 3x 1 4x 2 2x 3 x 1,x 2,x 3,w 1,w 2,w 3 0. Venstre side: avhengige variable, basisvariable. Høyre side: uavhengige variable, ikkebasisvariable. Startløsning: Lar x 1 = x 2 = x 3 = 0ogdermedfår vi w 1 = 5,w 2 =11,w 3 =8. Vi lar alltid ikkebasisvariable være 0. Basisvariablene blir bestemt entydig, nemlig lik konstantene på venstre side. Moderne optimering: #15 of 19

16 Simpleksmetoden Har vi optimal løsning? Nei!! Vi kan f.eks. øke x 1 mens vi fortsatt lar x 2 = x 3 = 0. Da vil η øke vi får nye verdier på basisvariablene som blir bestemt fra x 1 jo mer vi øker x 1 jo mer øker η! men pass på: w j -ene nærmer seg null! Maksimal økning av x 1 : vil unngå at basisvariable blir negative. Fra w 1 = 5 2x 1, w 2 = 11 4x 1 og w 3 = 8 3x 1 får vi at x 1 5/2, x 1 11/4, x 1 8/3 så vi kan øke x 1 til den minste verdien, nemlig 5/2. Dette gir den nye løsningen x 1 = 5/2, x 2 = x 3 = 0 og dermed w 1 = 0,w 2 =1,w 3 =1/2. Og nå er η=25/2. Altså: en mye bedre løsning!! Hvordan komme videre? Listeform er fin for åteste optimalitet, så vi vil komme over i neste liste! Moderne optimering: #16 of 19

17 Simpleksmetoden Vi ønsker at x 1 og w 1 skal bytte side. Dette kan gjøres ved å bruke w 1 -likningen til å eliminere x 1 fra alle andre likninger. Dette endrer ikke løsningsmengden til likningssystemet. Resultat: η = w 1 3.5x x 3 x 1 = w 1 1.5x 2 0.5x 3 w 2 = 1 + 2w 1 + 5x 2 w 3 = w x 2 0.5x 3 Vi har nå gjennomført en pivotering. Moderne optimering: #17 of 19

18 Simpleksmetoden Gjentar prosessen og etter nok en pivotering får vi: η = 13 w 1 3x 2 w 3 x 1 = 2 2w 1 2x 2 + w 3 w 2 = 1 + 2w 1 + 5x 2 x 3 = 1 + 3w 1 + x 2 2w 3 Nå kan vi stoppe! Hvorfor? Konklusjon: vi har funnet en optimal løsning! Den er w 1 = x 2 = w 3 = 0ogx 1 =2,w 2 =1,x 3 =1. Optimal verdi er η = 13. Moderne optimering: #18 of 19

19 Avsluttende kommentarer mange optimeringsproblemer rundt omkring raske algoritmer spennende matematiske problemer motivert av anvendelser optimering svært aktivt forskningsfelt VENNLIGST SEND GODE STUDENTER HIT!! nytt studium i anvendt matematikk anbefalt LP bok: R.J. Vanderbei: Linear programming: foundations and extensions, Kluwer, 1996, se evt. rvdb/lpbook/ anbefalt kombinatorikk bok: R. Brualdi: Introductory combinatorics, Prentice-Hall, Geir Dahl, telefon , Webside: geird/ Inneholder div. informasjon om optimering, forskning, studier, Web optimering. Også dette foredraget. Moderne optimering: #19 of 19

Verdens beste håndball-lag?

Verdens beste håndball-lag? Klassebesøk i matematikk Verdens beste håndball-lag? Litt om håndball, kombinatorikk og optimering Geir Dahl, Matematisk inst. og Inst. for informatikk, Universitetet i Oslo et problem fra håndball tilordningsproblemet:

Detaljer

Kapittel 1 og 2: eksempel og simpleksmetoden

Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1 Kapittel 1 og 2: eksempel og simpleksmetoden et eksempel fra produksjonsplanlegging simpleksalgoritmen, noen begreper algoritmen LP. Leksjon 1: #1 of 14 Eksempel: produksjonsplanlegging Produkter:

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri

LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2. Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri 1 / 16 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable og ikkebasisvariable

Detaljer

Kapittel 3: degenerasjon.

Kapittel 3: degenerasjon. LP. Leksjon 3 Kapittel 3: degenerasjon. degenerasjon eksempel på sirkling den leksikografiske metoden andre pivoteringsregler fundamentaleoremet i LP LP. Leksjon 3: #1 of 15 Repetisjon simpleksalgoritmen:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 2. juni 2006 Tid for eksamen: 09.00 12.00 Oppgavesettet er på 5 sider. Vedlegg: INF-MAT 3370/INF-MAT 4370 Lineær

Detaljer

Kapittel 5: dualitetsteori

Kapittel 5: dualitetsteori LP Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP Leksjon 5: #1 of 17 Motivasjon Til ethvert LP problem (P) er

Detaljer

Kapittel 2: simpleksmetoden, forts.

Kapittel 2: simpleksmetoden, forts. LP. Leksjon 2 Kapittel 2: simpleksmetoden, forts. initialisering to faser ubegrenset løsning geometri LP. Leksjon 2: #1 of 14 Repetisjon LP problem tillatt løsning, optimal løsning basisliste basis, basisvariable

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4

η = 2x 1 + x 2 + x 3 x 1 + x 2 + x 3 + 2x 4 3 x x 3 4 2x 1 + x 3 + 5x 4 1 w 1 =3 x 1 x 2 x 3 2x 4 w 2 =4 x 1 x 3 w 3 =1 2x 1 x 3 5x 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MA-IN-ST 233 Konveksitet og optimering Eksamensdag: 31. mai 2000 Tid for eksamen: 9.00 13.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Korteste vei problemet (seksjon 15.3)

Korteste vei problemet (seksjon 15.3) Korteste vei problemet (seksjon 15.3) Skal studere et grunnleggende kombinatorisk problem, men først: En (rettet) vandring i en rettet graf D = (V, E) er en følge P = (v 0, e 1, v 1, e 2,..., e k, v k

Detaljer

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man

System av likninger. Den andre likningen løses og gir x=1, hvis man setter x=1 i første likning får man System av likninger System av likninger er en mengde likninger med flere ukjente. I økonomiske sammenheng er disse svært vanlige ved optimering. Ofte må vi kreve deriverte lik null for å optimere. I kurset

Detaljer

Spesialisering i økonomistyring og investeringsanalyse DST 9530

Spesialisering i økonomistyring og investeringsanalyse DST 9530 Spesialisering i økonomistyring og investeringsanalyse DST 950 Disposisjon Bruk av LP i økonomiske problemer Et LP-problem Begreper og noen grunnleggende sammenhenger Lineær programmering og bedriftsøkonomiske

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja)

Eirik Benum Reksten Hans Olav Norheim. (ja, det kommer nok litt matte nå ja) Eirik Benum Reksten Hans Olav Norheim (ja, det kommer nok litt matte nå ja) Hva er lineærprogrammering? Vi har et problem hvor vi... 1. ønsker å minimere eller å maksimere et mål 2. kan spesifisere målet

Detaljer

LP. Leksjon Spillteori

LP. Leksjon Spillteori LP. Leksjon Spillteori Kapittel 11: spillteori matrisespill optimale strategier von Neumann s minmax teorem forbindelse til LP nyttig LP modellering av (visse) minmax and maxmin problemer 1 / 11 Eksempel:

Detaljer

1 Mandag 1. februar 2010

1 Mandag 1. februar 2010 Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette

Detaljer

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel

Velkommen til plenumsregning for MAT1030. MAT1030 Diskret matematikk. Repetisjon: Algoritmer og pseudokode. Eksempel fra boka. Eksempel Velkommen til plenumsregning for MAT1030 MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Torsdager 10:15 12:00 Gjennomgang

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk MAT1030 Diskret matematikk Plenumsregning 1: Kapittel 1 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 17. januar 2008 Velkommen til plenumsregning for MAT1030 Torsdager 10:15 12:00 Gjennomgang

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

Lineær optimering. Plan for kurset

Lineær optimering. Plan for kurset Lineær optimering 27. mars 2007 Endre Bjørndal Plan for kurset 1000-1100 1100-1115 1115-1200 1200-1245 1245-1400 1400-1415 1415-1500 Introduksjon Produktmiksproblemet (eksempel 1) Grafisk løsning og følsomhetsanalyse

Detaljer

Ma Linær Algebra og Geometri Øving 1

Ma Linær Algebra og Geometri Øving 1 Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner

Detaljer

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon

Repetisjon og mer motivasjon. MAT1030 Diskret matematikk. Repetisjon og mer motivasjon Repetisjon og mer motivasjon MAT030 Diskret matematikk Forelesning 22: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 4. april 2008 Først litt repetisjon En graf består av noder og

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål

Side 1 av 13. Svar til. EKSAMEN I EMNE TIØ4120 OPERASJONSANALYSE, GK Torsdag 2. desember 2010 Tid: kl Bokmål Side av 3 NTNU Institutt for industriell økonomi og teknologiledelse Faggruppe for bedriftsøkonomi og optimering Faglig kontakt under eksamen: Navn: Bjørn Nygreen Tlf.: 958 55 997 / 93607) Svar til EKSAMEN

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Dag Normann - 14. april 2010 (Sist oppdatert: 2010-04-14 12:45) Kombinatorikk Oppsummering av regneprinsipper Ordnet utvalg med repetisjon: n r Ordnet utvalg uten repetisjon:

Detaljer

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010

Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 Løsningsforslag Øving 5 TMA4140 Diskret matematikk Høsten 2010 1. a) Ingen andre tall enn en deler en, og en deler fire, så (1, 4) = 1 b) 1 c) 7 er et primtall og 7 er ikke en faktor i 41, så største felles

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs

Kontinuasjonseksamen i tdt4125 Algoritmekonstruksjon, videregående kurs Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 7 Eksamenforfattere: Ole Edsberg Kvalitetskontroll: Magnus Lie Hetland Kontakter under eksamen:

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

2.3 Delelighetsregler

2.3 Delelighetsregler 2.3 Delelighetsregler Begrepene multiplikasjon og divisjon og regneferdigheter med disse operasjonene utgjør sentralt lærestoff på barnetrinnet. Det er mange tabellfakta å huske og operasjonene skal kunne

Detaljer

Kapittel 5: Mengdelære

Kapittel 5: Mengdelære MAT1030 Diskret Matematikk Forelesning 9: Mengdelære Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 5: Mengdelære 17. februar 2009 (Sist oppdatert: 2009-02-17 15:56) MAT1030 Diskret

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på

Detaljer

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010

Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å

Detaljer

Kapittel 8. Inntekter og kostnader. Løsninger

Kapittel 8. Inntekter og kostnader. Løsninger Kapittel 8 Inntekter og kostnader Løsninger Oppgave 8.1 (a) Endring i bedriftens inntekt ved en liten (marginal) endring i produsert og solgt mengde. En marginal endring følger av at begrepet defineres

Detaljer

Læreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram

Læreplan i Programmering og modellering - programfag i studiespesialiserende utdanningsprogram 2.12.2016 Læreplan i - programfag i studiespesialiserende utdanningsprogram Formål Programmering er et emne som stadig blir viktigere i vår moderne tid. Det er en stor fordel å kunne forstå og bruke programmering

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer

MAT1030 Diskret matematikk

MAT1030 Diskret matematikk Oppgave 1.1 MAT1030 Diskret matematikk Plenumsregning 2: Ukeoppgaver fra kapittel 1 & 2 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 24. januar 2008 Modifiser algoritmen fra 1.2.1 slik at

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger.

Plenumsregning 10. Diverse ukeoppgaver. Roger Antonsen april Vi øver oss litt på løse rekurrenslikninger. Plenumsregning 10 Diverse ukeoppgaver Roger Antonsen - 17. april 2008 Vi øver oss litt på løse rekurrenslikninger. Oppgave 7.23 Løs følgende rekurrenslikning (c) t(n) 6t(n 1) + 9t(n 2) = 0, t(1) = 3, t(2)

Detaljer

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf

Introduksjon. MAT1030 Diskret matematikk. Søkealgoritmer for grafer. En graf Introduksjon MAT13 Diskret matematikk Forelesning 21: Grafteori Roger Antonsen Matematisk Institutt, Universitetet i Oslo 9. april 28 Vi skal nå over til kapittel 1 & grafteori. Grafer fins overalt rundt

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

MAT1030 Forelesning 22

MAT1030 Forelesning 22 MAT1030 Forelesning 22 Grafteori Roger Antonsen - 21. april 2009 (Sist oppdatert: 2009-04-21 15:13) Introduksjon Introduksjon Vi skal nå over til kapittel 10 & grafteori. Grafer fins overalt rundt oss!

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet

INF 4130. 8. oktober 2009. Dagens tema: Uavgjørbarhet. Neste uke: NP-kompletthet INF 4130 8. oktober 2009 Stein Krogdahl Dagens tema: Uavgjørbarhet Dette har blitt framstilt litt annerledes tidligere år Se Dinos forelesninger fra i fjor. I år: Vi tenker mer i programmer enn i Turing-maskiner

Detaljer

Eivind Eriksen. Matematikk for økonomi og finans

Eivind Eriksen. Matematikk for økonomi og finans Eivind Eriksen Matematikk for økonomi og finans # CAPPELEN DAMM AS 2016 ISBN 978-82-02-47417-1 1. utgave, 1. opplag 2016 Materialet i denne publikasjonen er omfattet av åndsverklovens bestemmelser. Uten

Detaljer

Svararket skal påføres følgende informasjon: - Eksamenskode - Initialer - Eksamenssted - Studentnummer

Svararket skal påføres følgende informasjon: - Eksamenskode - Initialer - Eksamenssted - Studentnummer Handelshøyskolen BI Institutt for samfunnsøkonomi Flervalgseksamen i: MET 24101 Matematikk Eksamensdato: 08.12.05, kl. 09.00-12.00 Tillatte hjelpemidler: Innføringsark: Antall sider/oppgaver: Antall vedlegg:

Detaljer

1 Mandag 15. februar 2010

1 Mandag 15. februar 2010 1 Mandag 15. februar 2010 Vi begynner med et eksempel på bruk av partiell derivasjon for å gjøre såkalt lineær regresjon, eller minste kvadraters metode. Dette er en anvendelse av teorien vi har gjennomgått

Detaljer

MAT1030 Diskret Matematikk

MAT1030 Diskret Matematikk MAT1030 Diskret Matematikk Forelesning 23: Grafteori Dag Normann Matematisk Institutt, Universitetet i Oslo 20. april 2010 (Sist oppdatert: 2010-04-20 14:17) Grafteori MAT1030 Diskret Matematikk 20. april

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

NIO 1. runde eksempeloppgaver

NIO 1. runde eksempeloppgaver NIO 1. runde eksempeloppgaver Oppgave 1 (dersom du ikke klarer en oppgave, bare gå videre vanskelighetsgraden er varierende) Hva må til for at hele det følgende uttrykket skal bli sant? NOT(a OR (b AND

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 11 Eulers metode. Løsningsforslag Matematikk 1000 Øvingsoppgaver i numerikk leksjon 11 Eulers metode Løsningsforslag Oppgave 1 Samanlikning med analytisk løsning y = 3 2 x y, y(0) = 1. a) Kandidat til løsning: y = e x3/2. Vi deriverer

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Diskret matematikk tirsdag 13. oktober 2015

Diskret matematikk tirsdag 13. oktober 2015 Eksempler på praktisk bruk av modulo-regning. Tverrsum Tverrsummen til et heltall er summen av tallets sifre. a = 7358. Tverrsummen til a er lik 7 + 3 + 5 + 8 = 23. Setning. La sum(a) stå for tverrsummen

Detaljer

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39

OPPGAVESETT MAT111-H16 UKE 38. Oppgaver til gruppene uke 39 OPPGAVESETT MAT111-H16 UKE 38 Oppgaver til seminaret 23/9 (Tall i blått angir utgave 6, tall i rødt angir utgave 7.) Avsn. 2.7: 15(11), 21(31)(27) Avsn. 2.8: 5, 17(2.8.13)(2.6.13) Avsn. 2.10: 12, 29, 39

Detaljer

MAT1030 Forelesning 23

MAT1030 Forelesning 23 MAT030 Forelesning 23 Grafteori Roger Antonsen - 22. april 2009 (Sist oppdatert: 2009-04-22 2:36) Forelesning 23 Repetisjon og mer motivasjon Først litt repetisjon En graf består av noder og kanter Kanter

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Polynomisk interpolasjon

Polynomisk interpolasjon Polynomisk interpolasjon Hans Munthe-Kaas 1. jaunar 2002 Abstract Dette notatet tar for seg interpolasjon med polynomer. Notatet er ment som et tillegg til læreboken i I162, og forsøker å framstille dette

Detaljer

Eksamen REA3026 S1, Våren 2012

Eksamen REA3026 S1, Våren 2012 Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b

Detaljer

Fasit Eksamen i LOG530 Distribusjonsplanlegging Tirsdag 3. juni 2008 Kl. 09:00-15:00 Hjelpemidler : A+KD+PC

Fasit Eksamen i LOG530 Distribusjonsplanlegging Tirsdag 3. juni 2008 Kl. 09:00-15:00 Hjelpemidler : A+KD+PC Fasit Eksamen i LOG530 Distribusjonsplanlegging Tirsdag 3. juni 008 Kl. 09:00-5:00 Hjelpemidler : A+KD+PC Oppgave a) Vi innfører følgende symboler: p = antall produsenter l = antall lager k = antall kunder

Detaljer

SØK400 våren 2002, oppgave 9 v/d. Lund

SØK400 våren 2002, oppgave 9 v/d. Lund SØK400 våren 2002, oppgave 9 v/d. Lund Igjen har vi en eksamensoppgave som ligger veldig nær noe som står under Applications i boka, nemlig 4.B4 og oppgave 13 til kapittel 4. Boka bruker toppskrift G der

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2006-2007 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2 Leksjon 8 Ofte behov for å løse mange relaterte LP Regnetid kan spares ved å bruke informasjon fra tidligere løsninger Parametrisk analyse homotopi-metoden Den Parametriske Selv-duale Simpleksmetoden ingen

Detaljer

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS

LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS LØSNINGSFORSLAG EKSAMEN HØST 2012 I TIØ4120 OPERASJONSANALYSE, GRUNNKURS Oppgave 1 a) La x 1, x 2 og x 3 være antall enheter produsert av henholdsvis lenestoler, skamler og kjøkkenstoler. Modellen blir

Detaljer

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016

Norsk informatikkolympiade runde. Sponset av. Uke 46, 2016 Norsk informatikkolympiade 2016 2017 1. runde Sponset av Uke 46, 2016 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner:

På reise Nivå: Formål: Program: Henvisning til plan: 8. klasse Matematikk i dagliglivet: Tall og algebra: Grafer og funksjoner: På reise Nivå: 8. og 9. klasse Formål: Arbeide med lineære funksjoner og verktøyprogram Program: Regneark, kurvetegningsprogram Henvisning til plan: 8. klasse Matematikk i dagliglivet: registrere og formulere

Detaljer

TDT4110 IT Grunnkurs Høst 2014

TDT4110 IT Grunnkurs Høst 2014 TDT4110 IT Grunnkurs Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Auditorieøving 1 Navn: Linje: Brukernavn (blokkbokstaver): Oppgavesettet

Detaljer

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.

DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5. Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med

Detaljer

Discrete Optimization Methods in Maritime and Road-based Transportation

Discrete Optimization Methods in Maritime and Road-based Transportation Discrete Optimization Methods in Maritime and Road-based Transportation Forskningsprosjekt med støtte fra Norges Forskningsråd Samarbeidspartnere Norges Teknisk-Naturvitenskapelige Universitet Institutt

Detaljer

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008

MAT1030 Diskret matematikk. Mengder. Mengder. Forelesning 9: Mengdelære. Dag Normann OVER TIL KAPITTEL februar 2008 MAT1030 Diskret matematikk Forelesning 9: Mengdelære Dag Normann OVER TIL KAPITTEL 5 Matematisk Institutt, Universitetet i Oslo 11. februar 2008 MAT1030 Diskret matematikk 11. februar 2008 2 De fleste

Detaljer

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall.

MAT 100a - LAB 3. Vi skal først illustrerere hvordan Newtons metode kan brukes til å approksimere n-te roten av et positivt tall. MAT 100a - LAB 3 I denne øvelsen skal vi bruke Maple til å illustrere noen anvendelser av derivasjon, først og fremst Newtons metode til å løse likninger og lokalisering av min. og max. punkter. Vi skal

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer