Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Motivasjon for kurset. ÅMA110 Sannsynlighetsregning med statistikk, våren 2008. Oppsummering. ÅMA110 Sannsynlighetsregning med statistikk våren 2008"

Transkript

1 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Oppsummering ÅMA0 Sannsynlighetsregning med statistikk våren 008 Pensum: Pensumbok: Per Chr. Hagen: "Innføring i sannsynlighetsregning og statistikk", 4. utgave; Cappelen akademisk forlag, 003. (ISBN: ) Pensum: kp.,, 3, 4, 5 og utgave i bokhandelen både 4. og 5. kan brukes. Motivasjon for kurset Hva skal du med statistikk-kunnskaper? Kan anvendes på svært mange fagfelter Blir mer og mer relevant siden det er vanligere å registrere og lagre data Er et utmerket verktøy for usikkerhetshåndtering Hva håper jeg at du sitter igjen med etter kurset? Gjenkjenne situasjoner hvor du får bruk for den statistiske verktøykassen, spesielt skille mellom Problemstillinger knyttet til beskrivende statistikk Problemstillinger knyttet til statistisk inferensteori Problemstillinger knyttet til statistisk/stokastisk modellering Større forståelse for usikkerhetsbegrepet Lysten til å lære mer! 3

2 Oversikt over delene i pensumboken kp. : Beskrivende statistikk kp., 3, 4: Sannsynlighetsregning (sannsynlighetsteori...) kp. 5, 6: Statistisk inferensteori Beskrivende statistikk Numeriske beskrivelser Grafiske beskrivelser Tidsrekkediagram Histogram Prikkdiagram Relativfrekvenshistogram areal = relativfrekvens => høyde av søyle = rel.frk. / bredde 5 Beskrivende statistikk, grafisk Histogram klasser frekvenser (-6,-]: (-, 0]: 4 ( 0, ]: 5 (, 4]: 8 (4, 6]: (6, 8]: 6

3 Beskrivende statistikk Numeriske beskrivelser (numeriske mål) Sentrumsmål (beliggenhetsmål): Empirisk gjennomsnitt Empirisk median Empirisk prosentil (Q og Q 3 : nedre- og øvre kvartil) 7 Beskrivende statistikk Median: Den verdien der 50% av målingene er mindre og 50% er større. Temperaturdata: (.7+.8)/ =.75 Merknad: Medianen kalles også P50 og blir mye brukt i olje- og gassindustrien NB: forventer også at dere kan regne medianer for kontinuerlige sannsynlighetsfordelinger 8 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallene av et stokastisk forsøk Utfallsrom: samling av alle mulige utfall Eks.: et terningkast; utfallsrommet kan bestå av de seks enkeltutfallene,, 3, 4, 5, og 6 (Andre utfallsrom er mulige) 9 3

4 Grunnbegrep, operasjoner med begivenheter (kp..,.3) Vi har ofte behov for å utrykke og finne sannsynligheten for sammensatte begivenheter; A eller B, A eller B eller C, B og C, osv. Snitt, union og komplement fra mengdelæren brukes. 0 Regneregler med sannsynlighet. Komplementsetningen: P( A) = P( A) ( P( Ω) = ) A A C Regneregler med sannsynlighet. Addisjonssetningen (generell): P( A B) = P( A) + P( B) P( A B) A B 4

5 Sannsynlighetsregning, oppsummering av regneregler Sannsynligheten for A: P( A) = P( u), u A P(A) 0 P( A), P( Ω) = Komplementsetningen : P( A) = P( A) Addisjonssetningen : P( A B) = P( A) + P( B) P( A B) Disjunkte begivenheter : C D = φ, ("den tomme mengden"; C og D har ingen felles element / utfall) 3 Opptellingsregler, oppsummering Multiplikasjonsregelen : m m L m k Antall ord. utvalg, s fra N Antall permutasjoner av N : ( N) = N( N )( N ) L ( N s + ) s : ( N) = N( N )( N ) L 3 = N! N Antall utvalg, s fra N N ( N) s : = s s! 4 Betinget sannsynlighet Def. For to begivenheter A og B definerer vi den betingede sannsynligheten for A gitt B (at B har inntruffet) ved: P( A B) P( A B) = P( B) (Sannsynlighetene på høyre side er vanlige, ubetingede.) 5 5

6 Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( A B ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt, det vil si og-hendelser. (Bevises ved rett fram manipulering av definisjon av betinget sannsynlighet.) Obs.: Generelt er det ikke slik at: P(A B) = P(A) P(B) (Dette gjelder dersom A og B er uavhengige begivenheter som vi skal lære om siden.) 6 Statistisk uavhengighet, definisjon P( A B ) = P( A ) P( B ) Eks.: To kast med terning; Sanns. for ikke sekser på første og sekser på andre. Løsning: A= ikke sekser på første B= sekser på andre. Vi vil finne: P( A B ) = P( A ) P( B ), siden A og B opplagt er uavh. = (5/6) (/6) = 5/36. 7 Statistisk uavhengighet, flere begivenheter Setning Dersom de k begivenhetene A, A,...,A k er uavhengige, så er: P(A A... A k ) = P(A ) P(A )... P(A k ) (Sannsynligheten for snittet av A, A,...,A k er lik produktet av sannsynligheten for hver enkelt.) 8 6

7 Lov om total sannsynlighet B og B er en oppdeling av utfallsrommet: B B Da gjelder for en hvilken som helst begivenhet A: P( A ) = P( A B ) + P( A B ) = P( A B )P(B ) + P( A B )P(B ) 9 Bayes formel P(A)P(B A B) A) P( A B) = P( B) - Svært anvendelig formel for reelle problemstillinger - P(A) kalles apriori sannsynligheten (det vi vet på forhånd) - P(A B) kalles aposteriori sannsynligheten (den oppdaterte sannsynligheten gitt data eller observasjoner) 0 Diskrete tilfeldige variable, innledning {KKK, KKM, KMK, MKK, KMM, MKM, MMK, MMM} = { u, u, u 3, u 4, u 5, u 6, u 7, u 8 } 0 3 X = antall mynt i tre kast med pengestykke Mulige verdier for X: 0,, eller 3 En diskret sannsynlighetsfordeling gis ofte i tabell. Fordeling til X: x 0 3 P(X=x) /8 3/8 3/8 /8 (Obs: sannsynlighetene i en fordeling må summere seg til!) 7

8 Diskrete tilfeldige variable, varians (kp. 3.4) Varians måler spredning i sannsynlighetsfordelingen. (Empirisk varians måler spredning i data.) Def.: Variansen til en tilfeldig variabel X defineres ved : Var(X) = E{(X -μ) }, der μ = E(X). Obs.: Dersom X er en diskret tilf. var. som kan anta verdiene x, x, x, K, så har vi : Var(X) = (x - μ) P(X = x ) + (x - μ) P(X = x ) + (x -μ) P(X = x ) + L Regneregler for varians Var(X) 0, X : tilfeldig variabel Var(k) = 0, k : konstant V: Var(X) = E(X ) { E(X) } V3: Var(aX + b) = a Var(X), a,b : konstanter Eks.: Innkjøp av el.artikler; varians til kostnad. 3 Varians til sum; kovarians Def.: Kovariansen mellom to tilfeldige variable defineres ved: Cov( X, Y ) = E[(X μ )(Y μ )], X Y der μ = E[X], og μ = E[Y]. X Y Kovarians er et viktig mål på statistisk samvariasjon 4 8

9 Korrelasjon Def.: Korrelasjonen mellom to tilfeldige variable X og Y er definert ved: ( X,Y) Cov ρ ( X, Y) = = Corr SD(X)SD(Y) ( X, Y) 5 Korrelasjon Obs.: Korrelasjonen - er alltid mellom og, - har samme fortegn som kovariansen, og - er også et mål på styrken av samvariasjonen Corr(X,Y) = (eller ): komplett (lineær) sammenheng Corr(X,Y) = 0: ingen (lineær) sammenheng 6 Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.) Binomisk modell (kp. 3.6) Hypergeometrisk modell (kp. 3.7) Geometrisk modell (notater) Poisson-modell (kp. 3.8) (Seinere skal vi se på viktige kontinuerlige sannsynlighetsmodeller.) 7 9

10 Binomisk modell X = antall ganger en bestemt begivenhet inntreffer i løpet av et fastlagt antall forsøk. = antall suksesser i n delforsøk Delforsøkene må tilfredstille:. uavhengige resultat i ulike delforsøk. resultatet er enten suksess eller fiasko 3. P( suksess ) er konstant i alle delforsøkene Def.: Når disse kravene er tilfredsstilt kaller vi de n delforsøkene for en binomisk forsøksrekke. 8 Binomisk modell Dersom: X ~ B(n, p) X kan anta verdiene 0,,,..., n sannsynligheter og forventning og varians gitt ved formel: P ( X = x) n x = p ( p) x n x, for x = 0,,, K,n E ( X) = np ( X) = np( p) Var (obs: forutsetningene om binomisk forsøksrekke medfører resultatene over.) 9 Hypergeometrisk modell Generelt: Vi trekker n stykker fra en populasjon på N objekt; hvert objekt kan kategoriseres som defekt eller ikke-defekt ; det er M defekte blant de N N-M (ikke-defekte) M (defekte) Y = antall defekte i utvalget Vi sier da at Y er hypergeometrisk fordelt, (N,M,n) 30 0

11 Hypergeometrisk modell Def.: Når Y er hypergeometrisk fordelt, (N,M,n), er sannsynlighetsfordelingen gitt ved: P(Y = y) = P( akkurat y defekte i utvalget ) M N m y n y =, for y = 0,,,..., n N n N-M (ikke-defekte) n-y N M n y M (defekte) M y y ( P(Y = y) = 0, dersom y > M. ) 3 Geometrisk modell Def.: Dersom Y er antall delforsøk til første suksess i en binomisk forsøksrekke, så sier vi at Y er geometrisk fordelt med suksessannsynlighet p, der p=p(suksess). Vi skriver: Y ~ geom.(p) (Man sier ofte at dette er en ventetidsfordeling.) 3 Geometrisk modell Def.: Dersom Y er antall delforsøk til første suksess i en binomisk forsøksrekke, så sier vi at Y er geometrisk fordelt med suksessannsyn-lighet p, der p=p(suksess). Vi skriver: Y ~ geom.(p) Sannsynlighetsfordeling, generelt: P(Y = y) = (- p) y- p, y =,, 3,... E(Y) = p og p Var(Y) = p 33

12 Poissonmodell (kp. 3.8) Situasjoner der Poissonfordeling kan være en god beskrivelse: X=antall forekomster av en bestemt begivenhet i et tidsrom (f.eks. antall ulykker pr. måned) eller X=antall forekomster av et bestemt objekt i et bestemt volum eller areal (f.eks. antall bakterier i en vannprøve) 34 Poissonmodell Eks.: La Y = antall telefonsamtaler inn til sentralbordet i løpet av ett minutt. Y kan anta: 0,,,... I slike situasjoner er det ofte rimelig å anta. at antall forekomster i disjunkte intervall er statistisk uavhengig av hverandre,. at forventet antall forekomster pr. enhet er konstant, og 3. at sannsynligheten for to eller flere forekomster i samme intervall, går mot null når intervallengden går mot null 35 Poissonmodell Resultat: Dersom Y er Poissonfordelt med parameter λt, har vi at: E(Y) = λt og For y = 0,,, 3,... y ( λt) λt P(Y = y) = e y! Var(Y) = λt Skrivemåte : Y ~ Poiss. ( λt ) 36

13 Kontinuerlige tilfeldige variable, intro. Def.: Kurven f(x) kalles sannsynlighetstetthetsfunksjonen til X. For tetthetsfunksjonen f(x) må vi ha at : ) f(x) 0 ) for to tall a og b der a < b, P(a X b) = f(x) dx 3) f(x) dx = - b a er 37 Kontinuerlige tilfeldige variable, intro. Forventning og varians for kontinuerlige variable: Def.: Dersom X er en kontinuerlig tilfeldig variabel med tetthet f(x), så E(X) = xf(x)dx = μ - Var(X) = (x - μ) f(x)dx - ( = E{ ( X μ) }) 38 Kontinuerlige tilfeldige variable Viktige klasser av kontinuerlige fordelinger som vi skal se på: Eksponensialfordelingen (kp. 4.) Normalfordelingen (kp. 4.3) Seinere: Student s t-fordeling (kp. 6.6) 39 3

14 f(x),0 0,5 0, x Eksponensialfordelingen (kp. 4.) Def.: Vi sier X er eksponensialfordelt med parameter λ dersom X har tetthet f(x) gitt ved : λx λe, f(x) = 0, for for x > 0 x 0,0 λ = : x e, for f(x) = 0, for x > 0 x 0 f(x) 0,5 0, x 40 Eksponensialfordelingen Def.: Vi sier X er eksponensialfordelt med parameter λ dersom X har tetthet f(x) gitt ved : λx λe, for x > 0 f(x) = 0, for x 0 Setning : Dersom X er eksponensialfordelt med parameter λ, så E(X) = og Var(X) = λ λ 4 Normalfordelingen Definisjon: Dersom X er en tilfeldig variabel med tetthet : f ( x) = e πσ ( x ) σ μ, < x <, sier vi at X er normalfordelt med forventning μ og varians σ. Skriver : X ~ N( μ, σ ) 4 4

15 Normalfordelingen, sannsynligheter La Z~N( 0, ). 0,5 P(Z ) = - f(x)dx = 0,4 0,3 0, 0, 0,0-4,0 -,0 0,0,0 4,0-0, = Normalfordelingen Setning: Dersom X,..., X n er uavhengige, normalfordelte tilfeldige variable (og a 0, a,..., a n er konstanter), så er Y = a 0 + a X a n X n en normalfordelt tilfeldig variabel. Forventning: E(Y) = E(a 0 +a X a n X n ) = a 0 + a E(X )+...+ a n E( X n ) Varians: Var(Y) = Var(a 0 +a X a n X n ) =a Var(X )+...+ a n Var( X n ) 44 Statistiske egenskaper til gjennomsnittet Setning : Dersom X,X, K,X er n uavhengige tilfeldige variable som alle er normalfordelte med forventning μ og varians σ, så er X = ( X + X n + L+ X ) n n normalfordelt med forventning μ og varians σ. n 45 5

16 Sentralgrensesetningen Obs : Sentralgrensesetningen : Dersom X, X, K, X n er n uavhengige og identisk fordelte tilfeldige variable med forventning μ og varians σ, så er ( X + X + + X ) Y = L tilnærmet normalfordelt med forventning n μ og varians n σ, når n er stor. n Videre : Y - E(Y) SD(Y) er tilnærmet normalfordelt med forventning 0 og varians. 46 Normaltilnærming, binomisk Altså: Y ~ B( n, p ). np( p) 0, så har vi med god tilnærming : P(Y y) P(X y), der X ~ N( np, np(- p) ) 47 Estimering. Målemodellen. Innhold:. (Punkt)Estimering i binomisk modell (kp. 5.). Målemodellen... (kp. 5.3) 3. (Punkt)Estimering i målemodellen (kp. 5.3) 4. Estimere, estimat, estimator 5. Intervallestimering (konfidensintervall) (kp. 5.4) i målemodell med a) normalantakelse og kjent varians, eller med b) normaltilnærming i binomisk modell med normaltilnærming 48 6

17 Estimering i binomisk modell Estimering av suksessannsynligheten i binomisk modell: X ~ B(n,p) Estimator for p : Forevntingsrett : X pˆ = n E( pˆ ) = L = p Varians til estiamtor : p( p) Var( pˆ ) = L = n 49 (Punkt)Estimering i målemodellen Generelt: Vi har n målinger, x, x,..., x n, og n tilhørende tilfeldige variable, X, X,..., X n. La θ være en (ukjent) parameter i fordelingen til X i ene, og θˆ en estimator av θ. Vi sier θˆ er forventningsrett for θ, dersom E( θˆ) = θ (Begrepet og definisjonen gjelder ikke bare for målemodellen, naturligvis også for binomisk modell, Poissonmodell, osv....) 50 (Punkt)Estimering i målemodellen Generelt om best estimator: Dersom vi kan velge mellom flere forventningsrette estimatorer, velger vi den med minst varians. 5 7

18 Konfidensintervall, innledning Konfidensintervall er en meget god måte å rapportere resultater på. punktestimatet i midten (i de fleste typer konfidensintervall) bredden på intervallet forteller om grad av statistisk usikkerhet 5 Konfidensintervall, innledning. Mer om hva konfidensintervall er. Konfidensintervall i ulike situasjoner: i. for forventningen, μ, i målemodellen med normalantakelse og kjent varians, σ. ii. for forventningen, μ, i målemodellen med stor n og normaltilnærming. iii. for suksessannsynligheten, p, i binomisk modell med stor n og normaltilnærming. (Konfidensintervall for forventningen i målemodellen med normalantakelse og ukjent varians: etter at vi har gjennomgått t-fordeling!) 53 Hypotesetesting, innledning Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde Signifikansnivå Styrke p-verdi 54 8

19 Hypotesetesting oppskrift. Formuler H 0 og H - gjelder testen μ eller p? (kan også gjelde λ) - er den ensidig eller tosidig?. Er n > 30 eller er np(-p) > 0? - hvis ja, bruk normaltilnærming -hvis nei: -hvis X i -ene er normalfordelte og σ er kjent, bruk normalfordeling -hvis X i -ene er normalfordelte og σ er ukjent, bruk t-fordeling 3. Finn formelen for caset identifisert i. og gjennomfør testen 55 Hypotesetesting, innledning Først noen kommentarer. Statistiske hypoteser: alternativhypotesen, H : μ < 6.0, uttrykker at virkelig ph er mindre enn 6.0. nullhypotesen, H 0 : μ = 6.0, ville det gjerne vært naturlig å hatt som: H 0 : μ 6.0, men det er en forenkling åbruke =; dette spiller i praksis ingen rolle for resultatet i de fleste situasjoner.. Vi forblir ved å tro på H 0 inntil noe annet er bevist

20

21 6 6 63

22

23

24 70 7 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling

Detaljer

Betinget sannsynlighet

Betinget sannsynlighet Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av

Detaljer

statistikk, våren 2011

statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Noen viktige sannsynlighetsmodeller ÅMA0 Sannsnlighetsregning med statistikk, våren 008 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsnlighetsmodeller Noen viktige sannsnlighetsmodeller Binomisk modell (kp. 3.6) Hpergeometrisk modell

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Hypergeometrisk modell

Hypergeometrisk modell Hpergeometrisk modell Tilnærming til binomisk fordeling - enklere å beregne binomiske sannsnligheter Dersom n er liten i forhold til N, er det tilnærmet uavhengighet mellom resultatene i ulike trekninger/

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall

ÅMA110 Sannsynlighetsregning med statistikk, våren Grunnbegrep. Grunnbegrep, sannsynligheten for et utfall ÅM110 Sannsynlighetsregning med statistikk, våren 006 Kp. Sannsynlighetsregning (sannsynlighetsteori) 1 Grunnbegrep Stokastisk forsøk: forsøk med uforutsigbart utfall Enkeltutfall: et av de mulige utfallen

Detaljer

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4 ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 011, s. 1 (Det tas forbehold om feil i løsningsforslaget. Oppgave 1 Vi betrakter dataene x 1,..., x 1 somutfall av n = 1 u.i.f.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA0 Sannsynlighetsregning med statistikk, våren 0 ÅMA0 Sannsynlighetsregning med statistikk våren 0 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅM0 Sannsynlighetsregning med statistikk, våren 00 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4, 5, 6}. Ved bruk av uniform modell: hvert utfall

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012

ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Introduksjon Prakstisk informasjon, s. 1 ÅMA110 Sannsynlighetsregning med statistikk (5sp), våren 2012 BMF100 Sannsynlighetsregning og statistikk 1 (10sp), våren 2012 Ny rammeplan for ingeniørfag Sannsynlighetsregning

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011

ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 ÅMA110 Sannsynlighetsregning med statistikk, våren 2011 Kp. 2 Sannsynlighetsregning i (sannsynlighetsteori) t i) 2.5 Betinget sannsynlighet 1 Betinget sannsynlighet (kp. 2.5) - innledning Eks.: Et terningkast;

Detaljer

Kontinuerlige sannsynlighetsfordelinger.

Kontinuerlige sannsynlighetsfordelinger. Kontinuerlige sannsynlighetsfordelinger. Dekkes av kap. 6 og deler av kap. 8.5 i boka. Husk: f(x er sannsynlighetstettheten til en kontinuerlig X dersom:. f(x 0 for alle x R 2. f(xdx = 3. P (a

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

Kapittel 5: Tilfeldige variable, forventning og varians.

Kapittel 5: Tilfeldige variable, forventning og varians. Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren 006. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller (k. 3.6 Hyergeometrisk modell (k. 3.7 Geometrisk

Detaljer

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet

Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

STK Oppsummering

STK Oppsummering STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter

Detaljer

Kapittel 2: Hendelser

Kapittel 2: Hendelser Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2015 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Standardavvik. Varians. Utfallsrom (sannsynlighet)

Standardavvik. Varians. Utfallsrom (sannsynlighet) Standardavvik Median Varians n = partall Utfallsrom (sannsynlighet) Persentil er verdien definert ved at minst 100% * p% lav observasjonene ligger nedenfor denne verdien En stokatisk variabel X er en funksjon

Detaljer

TMA4240 Statistikk Høst 2008

TMA4240 Statistikk Høst 2008 TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har

Detaljer

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.

A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik. Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:

Detaljer

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at

Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være

Detaljer

Oppfriskning av blokk 1 i TMA4240

Oppfriskning av blokk 1 i TMA4240 Oppfriskning av blokk 1 i TMA4240 Geir-Arne Fuglstad November 21, 2016 2 Hva har vi gjort i dette kurset? Vi har studert to sterkt relaterte grener av matematikk Sannsynlighetsteori: matematisk teori for

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Innhold. Innledning. Del I

Innhold. Innledning. Del I Innhold Del I Innledning 1 Hva er statistikk?...17 1.1 Bokas innhold 18 1.1.1 Noen eksempler 18 1.1.2 Historie 21 1.1.3 Bokas oppbygning 22 1.2 Noen viktige begreper 23 1.2.1 Populasjon og utvalg 23 1.2.2

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

Litt mer om eksponensialfordelingen

Litt mer om eksponensialfordelingen Litt mer om eksponensialfordelingen og Poissonprosesser. Dekkes av 5.6, 6.6, 6.7 og det som står under. Eksponensialfordelingen Så langt har vi lært at det finnes to parametriseringer av eksponensialfordelingen

Detaljer

FORMELSAMLING TIL STK1100 OG STK1110

FORMELSAMLING TIL STK1100 OG STK1110 FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN et) Høgskoleni østfold EKSAMEN Emnekode:Emne: SFB10711Metode 1 Statistikkdel Dato: 5. feb. 2016Eksamenstid: kl. 1400 Hjelpemidler: Kalkulator Utlevert formelsamling til kl. 1800 Faglærer: Nils Ingar Arvidsen

Detaljer

TMA4245 Statistikk Vår 2007

TMA4245 Statistikk Vår 2007 TMA4245 Statistikk Vår 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har lært.

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 3 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 20. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger.

Høgskoleni Øs fold EKSAMEN. Om noe er uklart eller mangelfullt i oppgaven inngår det som en del av oppgaven å ta de nødvendige forutsetninger. Høgskoleni Øs fold EKSAMEN Emnekode: Emne: SFB10711 Metodekurs 1: Grunnleggende matematikk og statistikk Deleksameni statistikk Dato: 3. januar 2014 Eksamenstid: kl. 0900 til kl. 1300 Hjelpemidler: Faglærer:

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1 ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sannsynlighetsregning med statistikk, våren 007 ÅMA0 Sannsynlighetsregning med statistikk våren 007 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet

Detaljer

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Statistikk 1 kapittel 4

Statistikk 1 kapittel 4 Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Statistikk 1 kapittel 5

Statistikk 1 kapittel 5 Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k

Hogskoleni Østfold EKSAMEN. Eksamenstid: kl til k Hogskoleni Østfold EKSAMEN Emnekode: SFB10711 Dato: 5. jan 2015 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metodekurs I: Grunnleggende matematikk og statistikk (Statistikk, ny og utsatt eksamen)

Detaljer

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6

Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6 Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4

Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4 3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF

Detaljer

Medisinsk statistikk Del I høsten 2008:

Medisinsk statistikk Del I høsten 2008: Medisinsk statistikk Del I høsten 2008: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Noen tips Boka Summary etter hvert kapittel forteller hvor dere har vært og hva som er sentralt Øvingene Overdriv

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

Kapittel 4.4: Forventning og varians til stokastiske variable

Kapittel 4.4: Forventning og varians til stokastiske variable Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal

Formelsamling V MAT110 Statistikk 1. Per Kristian Rekdal Formelsamling V-2016 MAT110 Statistikk 1 Per Kristian Rekdal Figur 1: Statistikk. 3 Innhold 1 Beskrivende statistikk 9 1.1 Populasjon og utvalg.................................. 9 1.2 Statistiske mål

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA0 Sannsynlighetsregning med statistikk, våren 00 ÅMA0 Sannsynlighetsregning med statistikk våren 00 Praktisk om kurset Foreleser og faglig ansvarlig: Bjørn H. Auestad (kontor: E-536). Undervisningstider:

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre

Detaljer

Kapittel 4.3: Tilfeldige/stokastiske variable

Kapittel 4.3: Tilfeldige/stokastiske variable Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) HG April 010 Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) Innledende merknad. De fleste oppgavene denne uka er øvelser i bruk av den viktige regel 5.0, som er sentral i dette kurset,

Detaljer

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard

Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emnenavn: Metodekurs 1: statistikk, deleksamen Dato: Eksamenstid: 4. januar 2017 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling m/tabeller Faglærer:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 ÅMA0 Sasylighetsregig med statistikk, våre 008 ÅMA0 Sasylighetsregig med statistikk våre 008 Praktisk om kurset Foreleser og faglig asvarlig: Øystei Arild (IRIS, oystei.arild@iris.o) Bjør H. Auestad (kotor:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:

Detaljer

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger

1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Om eksamen. Never, never, never give up!

Om eksamen. Never, never, never give up! Plan vidare Onsdag Gjere ferdig kap 11 + repetisjon Fredag Rekning av eksamensoppgåver Eksamen Mai 2014, oppgåve 2 (inkl normal fordeling, lin.reg. og deskriptiv statistikk) Eksamen August 2012, oppgåve

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6

6.2 Normalfordeling. Høyde kvinner og menn. 6.1 Kontinuerlig uniform fordeling. Kapittel 6 3 6.2 Normalfordeling Kapittel 6 Noen kontinuerlige sannsynlighetsfordelinger TMA4245 V2007: Eirik Mo Normalfordeling: Sannsynlighetstettheten til en normalfordelt stokastisk variabel, X, med forventning

Detaljer

Repeterbarhetskrav vs antall Trails

Repeterbarhetskrav vs antall Trails Repeterbarhetskrav vs antall Trails v/ Rune Øverland, Trainor Automation AS Artikkelserie Dette er første artikkel i en serie av fire som tar for seg repeterbarhetskrav og antall trials. Formålet med artikkelserien

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

ST0103 Brukerkurs i statistikk Høst 2014

ST0103 Brukerkurs i statistikk Høst 2014 Norges teknisk naturvitenskapelige univsitet Institutt for matematiske fag ST0103 Brukkurs i statistikk Høst 2014 Løsningsforslag Øving 6 5.2 Antall sprukne pøls X binomialfordelt med n 8 og p 0.2, og

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene

Detaljer

Kap. 5.2: Utvalgsfordelinger for antall og andeler

Kap. 5.2: Utvalgsfordelinger for antall og andeler Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

Forventning og varians.

Forventning og varians. Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x

Detaljer