EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler."

Transkript

1 KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 14. mai 2009 KLASSE: Ingeniørutdanning TID: kl EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl. forside) TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Ved innlevering skilles hvit og gul besvarelse og legges i hvert sitt omslag. Oppgavetekst, kladd og blå kopi beholder kandidaten. Husk kandidatnummer på alle ark.

2 Eksamen i Kvalitetsledelse med Statistikk. 14. mai Oppgave 1 Forklar innholdet i disse begrepene: 1. kvalitet 2. kvalitetsavvik 3. avviksbehandling 4. korrigerende tiltak 5. kvalitetsledelse 6. revisjon 7. kvalitetssystem 8. styringsprosedyre 9. dokumentstyring 10. FMEA Oppgave 2 Beskriv hvilke fordeler prosessorganisering kan innebære i forhold til tradisjonelle organisasjonsformer. Anvend prosessorganisering for å tilrettelegge for systematisk og planlagt organisatorisk læring. Vis dette ved å utforme en eller flere aktuelle prosesser, som eventuelt har et avhengighetsforhold. Er du usikker på hvordan du skal løse denne oppgaven, definer dine egne forutsetninger og løs oppgaven på dette grunnlaget. Oppgave 3 Opptaket av studenter på norske høgskoler og frafallet i løpet av studiet kan ofte beskrives som statistiske fordelinger. Tabellen nedenfor viser gjennomsnitt og standardavvik for en bestemt utdanning: b ) c ) fordeling Gjennomsnitt, antall standardavvik, antall opptak frafall i løpet av studiet 20 5 Bestem ØRP og NRP for antall utdannede kandidater til næringsliv og samfunn. Samfunnet har behov for minst 40 kandidater årlig. Bestem evnen til å oppfylle dette samfunnskravet. Høgskolen som utdanner disse kandidatene styrer frafallet etter en ØKG på 30kan- didater. Bestem evnen til å oppfylle samfunnsbehovet. d ) Det er ønskelig fra næringslivet at leveranseevnen av 40 kandidater settes til 90 %. Høgskolen prøver å oppfylle dette kravet ved å påvirke frafallet. Forutsett at standardavviket for opptaket reduseres fra 10 til 6. Bestem ØKG for frafallet. Statistikkdelen kommer på de to neste sidene. Du er snill mot sensorene hvis du har de resterende tre oppgavene på andre ark enn de tre første.

3 Eksamen i Kvalitetsledelse med Statistikk. 14. mai Oppgave 4 Du skal betrakte stikkprøver av volumet av maling i 3 liters malingsspann. Antar volumene i spannene er stokastisk uavhenginge og N (μ, 0.10) fordelt. Anta observasjonene av en stikkprøve på 5 spann ble { 3.02, 2.84, 2.92, 2.76, 2.79 } b ) Finne empirisk forventningsverdi x og standardavvik s for dette datasettet. En storkunde ønsker åsjekkeomhanfår tilstrekkelig mengde maling fra fabrikken. Han skal derfor gjennomføre en hypotesetest om dette basert på en stikkprøve på 5 spann. Det vil si han skal teste H 0 : μ =3.00 mot H 1 : μ<3.00, signifikansnivå α =5%,σ=0.10 Sett opp denne testen. Det er venstresidig z test, siden σ =0.10 er kjent, og det kreves ikke at du utleder formelen for den kritiske verdien k. Utfør testen med dataene fra oppgaven. Gir dataene grunnlag for å klage til fabrikanten? c) Hva er styrken γ(2.90) til denne testen? Teststyrken γ(2.90) er sannsynligheten for åforkasteh 0 hvis den virkelige verdien på μ er Oppgave 5 I følge statistisk årbok var Norges befolkning 1. januar i årene 1920, 1940, 1960, 1980 og 2000 (der vi angir årstall med 1900 som år 0): x =år etter y = befolkning (i millioner) z =ln(y) b ) Regn ut regresjonslikingen y = a + bx for disse dataparene. Hvis vi antar en lineær vekst i befolkningen (i det minste for perioden ), hva vil du fra dette anslå Norges befolkning vil være i år 2020? Det kreves ikke at du viser utregningene. Under visse idealiserte forutsetninger vil befolkningen følge en eksponentialfunksjon y = ke lx,derk og l er parametre. Gjør en transformasjon av dataene slik at k og l kan anslås ved hjelp av lineær regresjon, og anslå Norges befolkning i år 2020 ut fra denne modellen. Oppgavesettet fortsetter på neste side.

4 Eksamen i Kvalitetsledelse med Statistikk. 14. mai Oppgave 6 Et terningspill baserer seg på kast med 4 terninger, og gunstig resultat for hver terning er femmer eller sekser. Antall gunstige er dermed binomisk fordelt med n =4ogp =1/3, og dette gir følgende punktsannsynlighet ferdig utregnet for deg: x P(X = x) Et pengespill basert på dette terningspillet er slik at gevinstutbetalingen er kr. 3,- for nøyaktig 3 gunstige og kr. g,- for 4 gunstige utfall. Innsatsen per spill er kr. 1,-. Hva må gevinsten g være for at spillet skal være rettferdig (dvs. at forventningsverdien på gevinsten skal være 0)? b ) Anta gevinsten g settes til kr. 50,-, og la Y i være nettogevinst i et spill (i { 1, 2,...,1000 }). Finn (tilnærmet) sannsynligheten for at en spiller vil komme ut med samlet (positiv) nettogevinst i 1000 spill. Lykke til!

5 Løsning, eksamen i Kvalitetsledelse med Statistikk. 14. mai Oppgave 4 a) x =2.866, s = b) Vi kan bruke X som testobservator, og forkaste H 0 for små verdier av denne. Vi har da Z = X / 5 N(0, 1) hvis H 0 er sann Dermed forkastes H 0 for z<z 0.95 = x / 5 < x< / 5=2.926 Dermed er kritisk verdi k =2.926, ogh 0 forkastes om x< Siden x =2.866 <kforkastes H 0,deter grunnlag for å klage. ( c) Hvis μ =2.90 er X N 2.90, 0.10/ ) 5, og sannsynligheten for åforkasteh 0 er da Oppgave 5 ( ) ( ) P X<2.926 =Φ 0.10/ =Φ(0.58) = Selv om det ikke kreves at mellomregninger vises i besvarelsen tar jeg med disse: n =5,x = ( )/5 = 60, y =( )/5 =3.542 s xx = = 4000, s xy = = 96.8 b = s xy /s xx =96.8/4000 = , a = y b x = = 2.09 Dermed er regresjonslikningen y = x År 2020 tilsvarer x = 120, og da anslår vi befolkningen til y(120) = = 4.99 (millioner) Spredningsplott (det spørres ikke etter det i oppgaven, de små siklene er regresjonskurven fra b oppgaven): 5 mill. 4 mill. 3 mill. 2 mill. 1 mill

6 Løsning, eksamen i Kvalitetsledelse med Statistikk. 14. mai b) Ved å ta den naturlige logaritmen på begge sider får vi y = ke lx ln(y) =ln(k)+lx Dette gir en lineær sammenheng mellom x og z =ln(y), med koeffisienter a =ln(k) k = e a og b = l. Tabellen for x og ln(y) kan da brukes, og lineær regresjon utføres på disse transformerte dataene: Viser ikke utregningene (som er tilsvarende de i a oppgaven), som gir b = og a = , som gir l = b = og k = e a = e =2.287, og dermed tilpasningskurven Dette gir for år 2020: y =2.287e x y(120) = 2.287e =5.28 (millioner) Funksjonsverdier for denne kurven er prikket inn i diagrammet. Det er vel ikke så lett å se i diagrammet om det er den rette linjen eller eksponentilafunksjonen som passer best. Oppgave 6 a) La Y være nettogevinsten i et enkelt spill. Da er Y = 1 forx =0,x =1ogx = 2 (da hele innsatsen tapes) så P(Y = 1) = = Med x = 3 vinnes 3 1 = 2 kroner, så P(Y =2)=0.0988, mens for x = 4 vinnes g 1 kroner, så P(Y = g 1) = Punktsannsynligheten for gevinsten er da på tabellform Forventet gevinst er da y 1 2 g 1 P(Y = y) E(Y )= (g 1) = g Rettferdig spill betyr E (Y )=0somfåes ved g = 0 g = b) Y i får fordeling som Y i b oppgaven, når vi setter inn g = 50: y P(Y i = y) Skal bruke sentralgrenseteoremet og si at gevinsten W = Y 1 +Y 2 + +Y 1000 er tilnærmet normalfordelt. Må da finne μ =E(W )ogσ = Var (W ), ved først å finne E (Y i )og Var (Y i ): E(Y i )= = Var (Y i )=( 1) ( ) 2 =30.81

7 Løsning, eksamen i Kvalitetsledelse med Statistikk. 14. mai Reglene for forventningsverdi og varians av lineærkombinasjoner av uavhengige stokastiske variable gir da: E(W ) =( ) + ( ) + +( ) = 1000 ( ) = Var (W )= = = så σ = = Samlet nettogevinst betyr at W>0. Med så storn bryr vi oss ikke med halvkorreksjon, og får: ( ) 0 ( 88.6) P(W>0) 1 P(W 0) = 1 Φ =1 Φ(0.50) =

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2010 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081F REA1081) EKSAMENSDATO: 1. juni 2010. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 10. juni Ingeniørutdanning. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. Rea181 EKSAMENSDATO: 1. juni 28 KLASSE: Ingeniørutdanning. TID: kl. 9. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl.

Detaljer

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl.

EKSAMEN. Flexibel ingeniørutdanning, 2kl. Bygg m.fl. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA 1081 og REA1081F EKSAMENSDATO: 1. juni 2011. KLASSE: Flexibel ingeniørutdanning, 2kl. Bygg m.fl. TID: kl. 9.00 12.00. FAGLÆRER: Hans Petter Hornæs

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. REA1081 EKSAMENSDATO: 11. juni 2007. KLASSE: Ingeniørklasser. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 11. juni HiS Jørstadmoen. TID: kl EMNEANSVARLIG: Hans Petter Hornæs KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Statistikk. BtG27 EKSAMENSDATO: 11. juni 28 KLASSE: HiS 6-9 Jørstadmoen. TID: kl. 8. 13.. EMNEANSVARLIG: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 4 (innkl.

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 16. juni 2009. KLASSE: HIS 07 10. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside)

Detaljer

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.

EKSAMEN. EMNEANSVARLIG: Inger Gamme og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler. KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 1. juni 2011 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Inger Gamme og Hans Petter

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG27 EKSAMENSDATO: 27. mai 211. KLASSE: HIS 8 11. TID: kl. 8. 13.. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 innkl. forside) TILLATTE

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: 01.06.2015 Sensur kunngjøres: 22.06.2015 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler:

Detaljer

TMA4240 Statistikk Høst 2012

TMA4240 Statistikk Høst 2012 TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)

EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning) KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

NTNU Fakultet for lærer- og tolkeutdanning

NTNU Fakultet for lærer- og tolkeutdanning NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU52003 Emnenavn: Matematikk 2 (5-10), emne 2 Studiepoeng: 15 Eksamensdato: 23. mai 2016 Varighet/Timer: 6 Målform: Nynorsk Kontaktperson/faglærer:

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.

EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning. KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

Eksamensoppgave i SØK1004 - Statistikk for økonomer

Eksamensoppgave i SØK1004 - Statistikk for økonomer Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid

Detaljer

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

Eksamensoppgave i ST1201/ST6201 Statistiske metoder

Eksamensoppgave i ST1201/ST6201 Statistiske metoder Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.).

EKSAMEN. Ingeniørstudenter som tar opp igjen eksa- men (6stp.). KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: F74A EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 Ingeniørstudenter som tar opp igjen eksa- KLASSE: men 6stp.). TID: kl. 9. 4.. FAGLÆRER:

Detaljer

Beskrivende statistikk.

Beskrivende statistikk. Obligatorisk oppgave i Statistikk, uke : Beskrivende statistikk. 1 Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse. Statistikk Ukeoppgaver uke I løpet av uken blir løsningsforslag lagt ut

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Hypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007

Hypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007 Hypotesetesting Notat til STK1110 Ørnulf Borgan Matematisk institutt Universitetet i Oslo September 2007 Teorien for hypotesetesting er beskrevet i kapittel 9 læreboka til Rice. I STK1110 tar vi bare for

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2014/2016. Individuell skriftlig eksamen. STA 400- Statistikk. Fredag 13. mars 2015 kl. 10.00-12.00 MASTER I IDRETTSVITENSKAP 2014/2016 Individuell skriftlig eksamen i STA 400- Statistikk Fredag 13. mars 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator Eksamensoppgaven består av 10 sider inkludert forsiden

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25

A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25 1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU52003 Emnenavn: Matematikk 2 (5-10), emne 2 Studiepoeng: 15 Eksamensdato: 11. mai 2015 Varighet/Timer: Målform: Kontaktperson/faglærer:

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT0 STATISTISKE METODER VARIGHET: TIMER DATO:. NOVEMBER 00 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV OPPGAVER PÅ 7 SIDER HØGSKOLEN

Detaljer

S1 Eksamen våren 2009 Løsning

S1 Eksamen våren 2009 Løsning S1 Eksamen, våren 009 Løsning S1 Eksamen våren 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig 1) x 1 x 1 x 1 x 1 1 x 1 x 1 x x 1 x 1 x 1 1 x 1 x 1 ) a b 3 a b 3 a 4a b 1 3 4a b 3 b 1 b) Løs likningene

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai 2008 Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL. mai 008 EKSAMEN I MATEMATIKK 1. semester 10 studiepoeng Skolebasert lærerutdanning Tid 5 timer Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor.

Oppgave 6 (4 poeng) La X være utbyttet til kasinoet ved en spilleomgang. a) Forklar at. b) Skriv av og fyll ut tabellen nedenfor. Oppgave 6 (4 poeng) I et terningspill på et kasino kastes to terninger. Det koster i utgangspunktet ikke noe å delta i spillet. Dersom summen av antall øyne blir 2 eller 12, får spilleren 200 kroner. Blir

Detaljer

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.

Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080. EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

EKSAMEN I TMA4245 Statistikk

EKSAMEN I TMA4245 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik

Detaljer

Kontinuasjonseksamen

Kontinuasjonseksamen Høgskolen i Gjøvik Kontinuasjonseksamen FAGNAVN: FAGNUMMER: Grunnleggende datakunnskap, programmering og datastrukturer L 176 A EKSAMENSDATO: 5. januar 1999 KLASSE: 97HINDA / 97HINDB / 97HDMUA TID: 09.00-14.00

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 y (kroner) x (antall stoler) a) Grafen ovenfor viser hva det koster for en fabrikk for å produsere x stoler. Hva blir kostnadene per stol dersom bedriften produserer 50

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

Emnenavn: Statistikk og økonomi. Eksamenstid: Faglærer: Christian F Heide

Emnenavn: Statistikk og økonomi. Eksamenstid: Faglærer: Christian F Heide EKSAMEN Emnekode: ITD20106 Emnenavn: Statistikk og økonomi Dato: 2. mai 2016 Eksamenstid: 09.00 13.00 Hjelpemidler: - Alle trykte og skrevne. - Kalkulator. Faglærer: Christian F Heide Om eksamensoppgaven

Detaljer

EKSAMEN I TMA4240 Statistikk

EKSAMEN I TMA4240 Statistikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Henning Omre (909 37848) Mette Langaas (988 47649) EKSAMEN I TMA4240 Statistikk 18.

Detaljer

Emnenavn: Statistikk og økonomi. Eksamenstid:

Emnenavn: Statistikk og økonomi. Eksamenstid: Høgskolen i østfold EKSAMEN Emnekode: ITD20106 Emnenavn: Statistikk og økonomi Dato: 2. mai 2016 Eksamenstid: 09.00 13.00 Hjelpemidler: Faglærer: - Alle trykte og skrevne. Christian F Heide - Kalkulator.

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007

Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Løsningsforslag til eksamen i TMA4245 Statistikk 7. juni 2007 Oppgave 1: Pengespill a) For hver deltaker har vi følgende situasjon: Deltakeren får en serie oppgaver. Hver runde har to mulige utfall: Deltakeren

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.

Detaljer

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG Løsningsforlag statistikk, FO4N, AMMT, HiST.årskurs, 7. desember 006 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr:

Detaljer

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal

Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene

Detaljer

Hypotesetesting av λ og p. p verdi.

Hypotesetesting av λ og p. p verdi. Forelesning 7, kapittel 6 Hypotesetesting av λ og p. p verdi. Det som gjøres i denne forelesningen er nær opptil det vi gjorde da vi konstruerte z test for µ, og styrkefunksjon for denne. I tillegg til

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er

Detaljer

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt. Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.

Detaljer

SKOLEEKSAMEN I. SOS4010 Kvalitativ metode. 19. oktober 2015 4 timer

SKOLEEKSAMEN I. SOS4010 Kvalitativ metode. 19. oktober 2015 4 timer SKOLEEKSAMEN I SOS4010 Kvalitativ metode 19. oktober 2015 4 timer Ingen hjelpemidler, annet enn ordbøker som er kontrollert av SV-infosenter, er tillatt under eksamen. Sensur for eksamen faller 12. november

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

E K S A M E N. - Kontroller at alle oppgavearkene er tilstede. - Les hele oppgaveteksten nøye, før du begynner å besvare noe som helst.

E K S A M E N. - Kontroller at alle oppgavearkene er tilstede. - Les hele oppgaveteksten nøye, før du begynner å besvare noe som helst. Høgskolen i Gjøvik E K S A M E N FAGNAVN: FAGNUMMER: Grunnleggende programmering og datastrukturer LO169A EKSAMENSDATO: 7. juni 1996 KLASSE: 1 AA/AE TID: 09.00-14.00 FAGLÆRER: Frode Haug ANTALL SIDER UTLEVERT:

Detaljer

Matteknologisk utdanning

Matteknologisk utdanning Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 5) HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato: 30. mai 2007

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: Onsdag 5. desember 2012 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): (navn og telefonnr

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

Løsningsforslag til seminar 4 Undervisningsfri uke

Løsningsforslag til seminar 4 Undervisningsfri uke Løsningsforslag til seminar 4 Undervisningsfri uke Iman Ghayoornia February 22, 2016 Oppgave 2.1 Se Excel-filen som er tilgjengelig på emnesiden. Hvis du lurer på hvordan jeg fikk verdiene i cellene så

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

Matematisk julekalender for 5. - 7. trinn, 2008

Matematisk julekalender for 5. - 7. trinn, 2008 Matematisk julekalender for 5. - 7. trinn, 2008 Årets julekalender for 5.-7. trinn består av 9 enkeltstående oppgaver som kan løses uavhengig av hverandre. Alle oppgavene gir et tall som svar, og dette

Detaljer

Oppgave 1: Feil på mobiltelefoner

Oppgave 1: Feil på mobiltelefoner Oppgave 1: Feil på mobiltelefoner a) Sannsynlighetene i oppgaven blir P (F 1 F 2 ) P (F 1 ) + P (F 2 ) P (F 1 F 2 ) P (F 1 ) + 1 P (F2 C ) P (F 1 F 2 ) 0.080 + 0.075 0.006 0.149 P (F 1 F 2 ) P (F 1 F 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK1000 Innføring i avvendt statistikk Eksamensdag: Onsdag 8. oktober 2014 Tid for eksamen: 10.00 12.00 Oppgavesettet er på

Detaljer

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik.

a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Løsningsforslag utsatt eksamen Matematikk 2, 4MX25-10 (GLU2 5-10) 5.desember 2013 Oppgave 1 a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Ved å bruke tangentlinja i punktet

Detaljer

Høgskolen i Gjøvik Institutt for informatikk og medieteknikk E K S A M E N. Grunnleggende programmering

Høgskolen i Gjøvik Institutt for informatikk og medieteknikk E K S A M E N. Grunnleggende programmering Høgskolen i Gjøvik Institutt for informatikk og medieteknikk E K S A M E N FAGNAVN: Grunnleggende programmering FAGNUMMER: IMT 1031 EKSAMENSDATO: 19.desember 2005 KLASSE(R): 05HBIND*, 05HBINFA, 05HBISA,

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning

Detaljer

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer)

EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) EKSAMEN I SOS1120 KVANTITATIV METODE 6. DESEMBER 2007 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller torsdag 3. Januar

Detaljer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Eksamensoppgåve i TMA4240 Statistikk

Eksamensoppgåve i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgåve i TMA4240 Statistikk Fagleg kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

Emnekode: LV121A Dato: 03.03.2005. Alle skrevne og trykte hjelpemidler

Emnekode: LV121A Dato: 03.03.2005. Alle skrevne og trykte hjelpemidler II ~ høgskolen i oslo Emne: Programmering i C++ Gruppe(r): EksamensoppgavenAntall sider (inkl. består av: forsiden):5 Emnekode: LV121A Dato: 03.03.2005 Antall oppgaver:3 Faglig veileder: Simen Hagen Eksamenstid:

Detaljer

Eksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål

Eksamen 27.11.2013. MAT1010 Matematikk 2T-Y. Nynorsk/Bokmål Eksamen 27.11.2013 MAT1010 Matematikk 2T-Y Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Framgangsmåte: Rettleiing om vurderinga: Andre opplysningar:

Detaljer

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.

Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2. Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir

Detaljer

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.

ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser. ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35

Detaljer

Emnenavn: Grunnleggende matematikk og statistikk

Emnenavn: Grunnleggende matematikk og statistikk Høgskolen i østfold EKSAMEN Emnekode: IR13511 Emnenavn: Grunnleggende matematikk og statistikk Dato: 14.06.2016 Eksamenstid: 0900-1300 Sensurfrist: 05.07.2016 Antall oppgavesider: 3 Faglærer: Mikjel Thorsrud,

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Fakultet for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Fakultet for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU52003 Emnenavn: Matematikk 2 (5-10), emne 2 Studiepoeng: 15 Eksamensdato: 4. desember 2015 Varighet/Timer: 6 timer Målform:

Detaljer

Tabell 1: Beskrivende statistikker for dataene

Tabell 1: Beskrivende statistikker for dataene Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7, blokk II Løsningsskisse Oppgave 1 a) Utfør en beskrivende analyse av datasettet % Data for Trondheim: TRD_mean=mean(TRD);

Detaljer

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår

Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x

Detaljer

Forelening 1, kapittel 4 Stokastiske variable

Forelening 1, kapittel 4 Stokastiske variable Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med

Detaljer

! Antall oppgaver: Antall vedlegg: 5 3 o. Kalkulator. alle skrevne og trykte

! Antall oppgaver: Antall vedlegg: 5 3 o. Kalkulator. alle skrevne og trykte 6 høgskolen i oslo,[emne: Statitikk -.. Gruppe(r): Alle r 2. årskull) Antall sider (inkl. Eksamensoppgav en best6r av: Tillatte hjelpemidler: forsiden): Emnekode: Faglig veileder: LOO70A Mari Mehlen Dato:

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave

Detaljer

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål

Eksamen 27.05.2010. REA3026 Matematikk S1. Nynorsk/Bokmål Eksamen 7.05.010 REA306 Matematikk S1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del

Detaljer